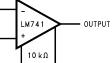

LM741 Operational Amplifier


General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

Schematic Diagram

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

DS009341-7

T

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 6)

	LM741A	LM741E	LM741	LM741C
Supply Voltage	±22V	±22V	±22V	±18V
Power Dissipation (Note 2)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V	±30V
Input Voltage (Note 3)	±15V	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	–55°C to +125°C	0°C to +70°C	–55°C to +125°C	0°C to +70°C
Storage Temperature Range	–65°C to +150°C	–65°C to +150°C	–65°C to +150°C	–65°C to +150°C
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
See AN-450 "Surface Mounting Me	thods and Their Effect o	n Product Reliability" fo	or other methods of sold	ering
surface mount devices.				
ESD Tolerance (Note 7)	400V	400V	400V	400V

ESD Tolerance (Note 7)	400V	400V	400V	4

Electrical Characteristics (Note 4)

Parameter	Conditions	LM7	LM741A/LM741E			LM741			LM741C		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_{s} \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_S \le 50\Omega$			4.0							mV
	$R_{S} \le 10 \ k\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \leq T_A \leq T_{AMAX},$	0.5									MΩ
	$V_{S} = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions LM		741A/LM741E		LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{s} = \pm 20V, V_{o} = \pm 15V$	50									V/mV
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \le T_A \le T_{AMAX}$,										
	$R_L \ge 2 k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				25			15			V/mV
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/mV
Output Voltage Swing	$V_{S} = \pm 20V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	$V_{S} = \pm 15V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 \ k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35		25			25		mA
Current	$T_{AMIN} \leq T_A \leq T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \leq T_A \leq T_{AMAX}$										
Rejection Ratio	$R_{S} \leq 10 \; k\Omega, \; V_{CM} = \pm 12 V$				70	90		70	90		dB
	$R_{S} \le 50\Omega$, V_{CM} = ±12V	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
Ratio	$V_{S} = \pm 20V$ to $V_{S} = \pm 5V$										
	$R_S \le 50\Omega$	86	96								dB
	$R_{S} \le 10 \text{ k}\Omega$				77	96		77	96		dB
Transient Response	T _A = 25°C, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 5)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	$T_A = 25^{\circ}C$					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{s} = \pm 20V$		80	150							mW
	$V_{S} = \pm 15V$					50	85		50	85	mW
LM741A	$V_{S} = \pm 20V$										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							mW
LM741E	$V_{S} = \pm 20V$										
	$T_A = T_{AMIN}$			150							mW
	$T_A = T_{AMAX}$			150							mW
LM741	$V_{\rm S} = \pm 15 V$										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW

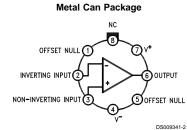
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics (Note 4) (Continued)

Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ _{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 4: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.

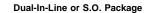
Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

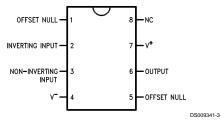
Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 7: Human body model, 1.5 kΩ in series with 100 pF.

Connection Diagram

NC - NC 13 + OFFSET NULL 12 - NC -IN 11 - V+ - OUT +IN 10 v-- OFFSET NULL c NC NC 8

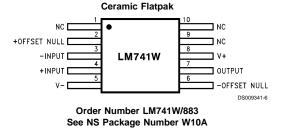

Ceramic Dual-In-Line Package


14 NC

DS009341-5

Note 8: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 8), LM741AH/883 or LM741CH See NS Package Number H08C



Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN See NS Package Number J08A, M08A or N08E Note 9: also available per JM38510/10101 Note 10: also available per JM38510/10102

NC

Order Number LM741J-14/883 (Note 9), LM741AJ-14/883 (Note 10) See NS Package Number J14A

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI(华冠)