

-
-
-
-
- **• 28-**m**A Typical No-Load Quiescent Current** 3.3-V/5-V to 12-V power conversions.
-
-
-

-
-
-
-
-
- **•• Internet Audio Player** *Player Player* **Player** *Player Player Player*
- **• Standard 3.3-V/5-V to 12-V Conversion**

ORDERING INFORMATION

¹FEATURES DESCRIPTION

1.8-V to 6-V Input Voltage Range The TPS61040/41 is a high-frequency boost **• Adjustable Output Voltage Range up to 28 V** converter dedicated for small to medium LCD bias supply and white LED backlight supplies. The device **• 400-mA (TPS61040) and 250-mA (TPS61041)** is ideal to generate output voltages up to ²⁸ ^V from ^a Internal **Switch Current**
 Internal Switching Frequency The part can also be used to generate standard

The part can also be used to generate standard The part can also be used to generate standard

1-µ**A** Typical Shutdown Current The TPS61040/41 operates with a switching frequency up to 1 MHz. This allows the use of small **• Internal Soft Start** external components using ceramic as well as
Available in SOT23-5, Packages *Packages Packages Packages Packages Packages Packages Packages Packages Packages Packages Packages* SON package, the TPS61040/41 gives a very small overall solution size. The TPS61040 has an internal **OVERTIGATIONS**
 APPLICATIONS
 ARPELICATIONS
 ARPELICATIONS
 ARPELICATIONS
 A 250-mA switch current limit, while the TPS61041 has a 250-mA switch current limit, offering lower output **• LCD Bias Supply** a 250-mA switch current limit, offering lower output **•• White-LED Supply for LCD Backlights** voltage ripple and allows the use of a smaller form
 ••• factor inductor for lower power applications. The low factor inductor for lower power applications. The low **• Digital Still Camera** quiescent current (typically ²⁸ ^mA) together with an **• PDAs, Organizers, and Handheld PCs** optimized control scheme, allows device operation at **very high efficiencies over the entire load current**

TYPICAL APPLICATION

Table 2. Terminal Functions

FUNCTIONAL BLOCK DIAGRAM

DETAILED DESCRIPTION

OPERATION

The TPS61040/41 operates with an input voltage range of 1.8 V to 6 V and can generate output voltages up to 28 V. The device operates in a pulse-frequency-modulation (PFM) scheme with constant peak current control. This control scheme maintains high efficiency over the entire load current range, and with a switching frequency up to 1 MHz, the device enables the use of very small external components.

The converter monitors the output voltage, and as soon as the feedback voltage falls below the reference voltage of typically 1.233 V, the internal switch turns on and the current ramps up. The switch turns off as soon as the inductor current reaches the internally set peak current of typically 400 mA (TPS61040) or 250 mA (TPS61041). See the Peak Current Control section for more information. The second criteria that turns off the switch is the maximum on-time of 6 μ s (typical). This is just to limit the maximum on-time of the converter to cover for extreme conditions. As the switch is turned off the external Schottky diode is forward biased delivering the current to the output. The switch remains off for a minimum of 400 ns (typical), or until the feedback voltage drops below the reference voltage again. Using this PFM peak current control scheme the converter operates in discontinuous conduction mode (DCM) where the switching frequency depends on the output current, which results in very high efficiency over the entire load current range. This regulation scheme is inherently stable, allowing a wider selection range for the inductor and output capacitor.

PEAK CURRENT CONTROL

 $\ddot{}$ The internal switch turns on until the inductor current reaches the typical dc current limit (I_{LIM}) of 400 mA (TPS61040) or 250 mA (TPS61041). Due to the internal propagation delay of typical 100 ns, the actual current exceeds the dc [current](#page-2-0) limit threshold by a small amount. The typical peak current limit can be calculated:

$$
I_{\text{peak(typ)}} = I_{\text{LIM}} + \frac{V_{\text{IN}}}{L} \times 100 \text{ ns}
$$

\n
$$
I_{\text{peak(typ)}} = 400 \text{ mA} + \frac{V_{\text{IN}}}{L} \times 100 \text{ ns for the TPS61040}
$$

\n
$$
I_{\text{peak(typ)}} = 250 \text{ mA} + \frac{V_{\text{IN}}}{L} \times 100 \text{ ns for the TPS61041}
$$

(1)

The higher the input voltage and the lower the inductor value, the greater the peak.

By selecting the TPS61040 or TPS61041, it is possible to tailor the design to the specific application current limit requirements. A lower current limit supports applications requiring lower output power and allows the use of an inductor with a lower current rating and a smaller form factor. A lower current limit usually has a lower output voltage ripple as well.

SOFT START

All inductive step-up converters exhibit high inrush current during start-up if no special precaution is made. This can cause voltage drops at the input rail during start up and may result in an unwanted or early system shut down.

I LIM The TPS61040/41 l[imit](#page-8-0)s this inrush current by increasing the current limit in two steps starting from 4 for 256

I LIM

2 cycles to $\overline{2}$ for the next 256 cycles, and then full current limit (see Figure 14).

ENABLE

Pulling the [enable](#page-13-0) (EN) to ground shuts down the device reducing the shutdown current to 1 μ A (typical). Because there is a conductive path from the input to the output through the inductor and Schottky diode, the output voltage is equal to the input voltage during shutdown. The enable pin needs to be terminated and should not be left floating. Using a small external transistor disconnects the input from the output during shutdown as shown in Figure 18.

UNDERVOLTAGE LOCKOUT

An undervoltage lockout prevents misoperation of the device at input voltages below typical 1.5 V. When the input voltage is below the undervoltage threshold, the main switch is turned off.

THERMAL SHUTDOWN

An internal thermal shutdown is implemented and turns off the internal MOSFETs when the typical junction temperature of 168°C is exceeded. The thermal shutdown has a hysteresis of typically 25°C. This data is based on statistical means and is not tested during the regular mass production of the IC.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted) (1)

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

RECOMMENDED OPERATING CONDITIONS

(1) See application section for further information.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 2.4 V, EN = V_{IN} , T_A = -40°C to 85°C, typical values are at T_A = 25°C (unless otherwise noted)

(1) The line and load regulation depend on the external component selection. See the application section for further information.

TYPICAL CHARACTERISTICS

Table 3. Table of Graphs

Figure 13. Load Transient Response Figure 14. Start-Up Behavior

APPLICATION INFORMATION

INDUCTOR SELECTION, MAXIMUM LOAD CURRENT

Because the PFM peak current control scheme is inherently stable, the inductor value does not affect the stability of the regulator. The selection of the inductor together with the nominal load current, input and output voltage of the application determines the switching frequency of the converter. Depending on the application, inductor values between 2.2 μ H and 47 μ H are recommended. The maximum inductor value is determined by the maximum on time of the switch, typically 6 μ s. The peak current limit of 400 mA/250 mA (typically) should be reached within this $6-\mu s$ period for proper operation.

The inductor value determines the maximum switching frequency of the converter. Therefore, select the inductor value that ensures the maximum switching frequency at the converter maximum load current is not exceeded. The maximum switching frequency is calculated by the following formula:

$$
fS_{\text{max}} = \frac{V_{\text{IN}(\text{min})} \times (V_{\text{OUT}} - V_{\text{IN})}}{I_{\text{P}} \times L \times V_{\text{OUT}}}
$$

Where:

 I_P = Peak current as described in the *Peak Current Control* section

 $L =$ Selected inductor value

 $V_{IN(rmin)}$ = The highest switching frequency occurs at the minimum input voltage (2)

If the selected inductor value does not exceed the maximum switching frequency of the converter, the next step is to calculate the switching frequency at the nominal load current using the following formula:

$$
fS(I_{load}) = \frac{2 \times I_{load} \times (V_{OUT} - V_{IN} + Vd)}{I_{P}^{2} \times L}
$$

Where:

 I_P = Peak current as described in the *Peak Current Control* section

 $L =$ Selected inductor value

 I_{load} = Nominal load current

Vd = Rectifier diode forward voltage (typically 0.3V) (3)

A smaller inductor [value](#page-5-0) gives a h[igher](#page-6-0) converter switching frequency, but lowers the efficiency.

The inductor value has less effect on the maximum available load current and is only of secondary order. The best way to calculate the maximum available load current under certain operating conditions is to estimate the expected converter efficiency at the maximum load current. This number can be taken out of the efficiency graphs shown in Figure 1 through Figure 4. The maximum load current can then be estimated as follows:

$$
I_{\text{load max}} = \eta \frac{I_{P}^{2} \times L \times fS_{\text{max}}}{2 \times (V_{\text{OUT}} - V_{\text{IN}})}
$$

Where:

 I_P = Peak current as described in the *Peak Current Control* section

 $L =$ Selected inductor value

 fS_{max} = Maximum switching frequency as calculated previously

 η = Expected converter efficiency. Typically 70% to 85% (4)

The maximum load current of the [converter](#page-2-0) is the current at the operation point where the converter starts to enter the continuous conduction mode. Usually the converter should always operate in discontinuous conduction mode.

Last, the selected i[nductor](#page-10-0) should have a saturation current that meets the maximum peak current of the converter (as calculated in the Peak Current Control section). Use the maximum value for I_{LIM} for this calculation.

Another important inductor parameter is the dc resistance. The lower the dc resistance, the [high](#page-12-0)er the efficiency of the converter. See Table 4 and the typical applications for the inductor selection.

DEVICE	INDUCTOR VALUE	COMPONENT SUPPLIER	COMMENTS
TPS61040	$10 \mu H$	Sumida CR32-100	High efficiency
	$10 \mu H$	Sumida CDRH3D16-100	High efficiency
	$10 \mu H$	Murata LQH4C100K04	High efficiency
	$4.7 \mu H$	Sumida CDRH3D16-4R7	Small solution size
	$4.7 \mu H$	Murata LQH3C4R7M24	Small solution size
TPS61041	$10 \mu H$	Murata LQH3C100K24	High efficiency Small solution size

Table 4. Recommended Inductor for Typical LCD Bias Supply (see Figure 15)

SETTING THE OUTPUT VOLTAGE

The output voltage is calculated as:

$$
V_{OUT} = 1.233 \text{ V} \times \left(1 + \frac{\text{R1}}{\text{R2}}\right)
$$

(5)

For battery-powered applications, a high-impedance voltage divider should be used with a typical value for R2 of ≤200 kΩ and a maximum value for R1 of 2.2 MΩ. Smaller values might be used to reduce the noise sensitivity of the feedback pin.

A feedforward capacitor across the upper feedback resistor R1 is required to provide sufficient overdrive for the error comparator. Without a feedforward capacitor, or one whose value is too small, the TPS61040/41 shows double pulses or a pulse burst instead of single pulses at the switch node (SW), causing higher output voltage ripple. If this higher output voltage ripple is acceptable, the feedforward capacitor can be left out.

The lower the switching frequency of the converter, the larger the feedforward capacitor value required. A good starting point is to use a 10-pF feedforward capacitor. As a first estimation, the required value for the feedforward capacitor at the operation point can also be calculated using the following formula:

$$
C_{\text{FF}} = \frac{1}{2 \times \pi \times \frac{fS}{20} \times R1}
$$

[Where:](#page-9-0)

R1 = Upper resistor of voltage divider

fS = Switching frequency of the converter at the nominal load current (See the Inductor Selection, Maximum Load Current section for calculating the switching frequency)

 C_{FF} = Choose a value that comes closest to the result of the calculation (6)

The larger the feedforward capacitor the worse the line regulation of the device. Therefore, when concern for line regulation is paramount, the selected feedforward capacitor should be as small as possible. See the following section for more information about line and load regulation.

LINE AND LOAD REGULATION

The line regulation of the TPS61040/41 depends on the voltage ripple on the feedback pin. Usually a 50 mV peak-to-peak voltage ripple on the feedback pin FB gives good results.

Some applications require a very tight line regulation and can only allow a small change in output voltage over a certain input voltage range. If no feedforward capacitor C_{FF} is used across the upper resistor of the voltage feedback divider, the device has the best line regulation. Without the feedforward capacitor the output voltage ripple is higher because the TPS61040/41 shows output voltage bursts instead of single pulses on the switch pin (SW), increasing the output voltage ripple. Increasing the output capacitor value reduces the output voltage ripple.

If a larger output capacitor value is not an option, a feedforward capacitor C_{FF} can be used as described in the previous section. The use of a feedforward capacitor increases the amount of voltage ripple present on the feedback pin (FB). The greater the voltage ripple on the feedback pin (≥50 mV), the worse the line regulation. There are two ways to improve the line regulation further:

- 1. Use a smaller inductor value to increase the switching frequency which will lower the output voltage ripple, as well as the voltage ripple on the feedback pin.
- 2. Add a small capacitor from the feedback pin (FB) to ground to reduce the voltage ripple on the feedback pin down to 50 mV again. As a starting point, the same capacitor value as selected for the feedforward capacitor C_{FF} can be used.

OUTPUT CAPACITOR SELECTION

For best output voltage filtering, a low ESR output capacitor is recommended. Ceramic capacitors have a low ESR value but tantalum capacitors can be used as well, depending on the application.

Assuming the converter does not show double pulses or pulse bursts on the switch node (SW), the output

voltage ripple can be calculated as:
\n
$$
\Delta V_{\text{out}} = \frac{I_{\text{out}}}{C_{\text{out}}} \times \left(\frac{1}{fS(\text{lout})} - \frac{I_P \times L}{V_{\text{out}} + Vd - V_{\text{in}}}\right) + I_P \times ESR
$$

where:

 I_P = Peak current as described in the *Peak Current Control* section

 $L =$ Selected inductor value

 I_{out} = Nominal load current

 $fS(I_{out})$ = Switching frequency at the nominal load current as calculated previously

Vd = Rectifier diode forward voltage (typically 0.3 V)

 C_{out} = Selected output capacitor

[ESR](#page-11-0) = Output capacitor ESR value (7)

See Table 5 and the *typical applications* section for choosing the output capacitor.

Table 5. Recommended Input and Output Capacitors

¹²http://[www.hgsemi.com.cn](http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVS413FF&partnum=TPS61041)

INPUT CAPACITOR SELECTION

For good input voltage filtering, low ESR ceramic capacitors are recommended. A 4.7 uF ceramic input capacitor is sufficient for most of the applications. For better input voltage filtering this value can be increased. See Table 5 and typical applications for input capacitor recommendations.

DIODE SELECTION

To achieve high efficiency a Schottky diode should be used. The current rating of the diode should meet the peak current rating of the converter as it is calculated in the Peak Current Control section. [Use](#page-12-0) the maximum value for I_{LM} for this calculation. See Table 6 and the typical applications for the selection of the Schottky diode.

DEVICE	REVERSE VOLTAGE	COMPONENT SUPPLIER	COMMENTS
	30V	ON Semiconductor MBR0530	
	20 V	ON Semiconductor MBR0520	
TPS61040/41	20 V	ON Semiconductor MBRM120L	High efficiency
	30 V	Toshiba CRS02	

Table 6. Recommended Schottky Diode for Typical LCD Bias Supply (see Figure 15)

LAYOUT CONSIDERATIONS

Typical for all switching power supplies, the layout is an important step in the design; especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might show noise problems and duty cycle jitter.

The input capacitor should be placed as close as possible to the input pin for good input voltage filtering. The inductor and diode should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits. Because the feedback pin and network is a high-i[mpedance](#page-12-0) circuit, the feedback network should be routed away from the inductor. The feedback pin and feedback network should be shielded with a ground plane or trace to minimize noise coupling into this circuit.

Wide traces should be used for connections in bold as shown in Figure 15. A star ground connection or ground plane minimizes ground shifts and noise.

Figure 15. Layout Diagram

L1: Sumida CR32-100 D1: Motorola MBR0530 C1: Tayo Yuden JMK212BY475MG C2: Tayo Yuden TMK316BJ105KL

Figure 18. LCD Bias Supply With Load Disconnect

Figure 22. White LED Supply With Adjustable Brightness Control Using a PWM Signal on the Enable Pin, Efficiency Approx. Equals 86% at V_{IN} = 3 V, I_{LED} = 15 mA

A. A smaller output capacitor value for C2 causes a larger LED ripple.

PACKAGE

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)