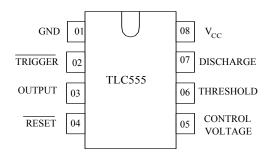


CMOS general purpose timer


The TLC555 is CMOS RC timers providing significantly improved performance over the standard SE/NE555 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.

Specifically, the TLC555 is stable controller capable of producing accurate time delays of frequencies.

- Exact equivalent in most cases for SE/NE555.
- Low Supply Current.
- High speed operation 500 kHz guaranteed.
- Wide operation supply voltage range 2 to 18 volts.
- Timing from microseconds through hours.
- Operates in both astable and monostable modes.
- Adjustable duty cycle.
- High output source/sink driver can drive TTL/CMOS

PIN ASSIGNMENT

TRUTH TABLE

THRESHOLD	TRIGGER	RESET OUTPUT		DISCHARGE
X	X	L	L	ON
$> 2/3 \cdot V_{CC}$	$> 1/3 \cdot V_{CC}$	Н	L	ON
< 2/3·V _{CC}	$> 1/3 \cdot V_{CC}$	Н	STABLE	STABLE
X	$< 1/3 \cdot V_{CC}$	Н	Н	OFF

MAXIMUM RATINGS AND RECOMMENDED OPERATING CONDITIONS

Parameter, unit	Symbol	Recommended operating conditions		Maximum ratings		
		Val	Value		Value	
		min	max	min	max	
Supply Voltage, V	V _{CC}	2.0	18.0	0	18.0	
Output Current, mA	I_{O}	-	20	-	100	
Input Voltage, V	$V_{TH,}V_{TRIG,}V_{RST}$	-	-	-0.3	V _{CC} +0.3	
Power Dissipation, mW	P _D	-	-	-	200	
Operating Temperature,°C	T_{OPR}	-20	70	-20	85	
Storage Temperature, °C	T_{STG}	-	-	-65	150	
Lead Temperature, 1 mm from Case for 10 Seconds, °C	T _{SOLDER}	-	-		260	

$\begin{picture}(200,0) \put(0,0){D} \put(0,0$

Parameter, units	Symbol	Test Condi	Test Conditions		Value		
		I_{OL}, I_{OH}	V _{CC,} B	min	max	rature, °C	
Threshold Voltage, V	V_{TH}		5.0	0.65 V _{CC}	0.70 V _{CC}	25±10	
				0.60 V _{CC}	0.80 V _{CC}	-20, 70	
Trigger voltage, V	V _{TRIG}		5.0	0.31 V _{CC}	0.36 V _{CC}	25±10	
				0.28 V _{CC}	0.40 V _{CC}	-20, 70	
			2.0	0.4	1.0	25±10	
Reset voltage, V	V_{RST}		18.0				
			2.0	0.2	1.5	-20, 70	
			18.0				
Control Voltage Lead, V	V_{CV}			0.65 V _{CC}	0.69 V _{CC}	25±10	
				0.60 V _{CC}	0.80 V _{CC}	-20, 70	
Output voltage Low, V	V_{OL}	$I_{OL} = 3.2 \text{ mA}$	5.0		0.4	25±10	
		$I_{OL} = 20 \text{ mA}$	15.0		1.0		
		$I_{OL} = 3.2 \text{ mA}$	5.0		0.6	-20, 70	
		$I_{OL} = 20 \text{ mA}$	15.0		1.5		
Output voltage High, V	V_{OH}		5.0	4.0		25±10	
		$I_{OH} = -0.8 \text{ mA}$	15.0	14.3			
			5.0	3.5		-20, 70	
			15.0	14.0			
			2.0		200	25±10	
Supply Current, µA	I_{CC}		18.0		300	1	
			2.0		400	-20, 70	
			18.0		600		

AC ELECTRICAL CHARACTERISTICS

Parameter, unit	Symbol	Test Conditions		Value		Tempe-
	25-22-01	R_L, C_L	V _{CC,}	Min	Max	rature, °C
Rise (Fall) Time of Output, ns	t_{THL}, t_{TLH}	$R_L = 10 \text{ M}\Omega, C_L = 10 \text{ pF}$	5.0	35	75	25±10
				70	150	-20, 70
Guaranteed Max Osc Freq, kHz	f_{MAX}	Astable Operation	2.0-	500		25±10
			18.0	200		-20, 70
Initial accuracy, %				5		
Drift with Temperature, %/°C	αf	D 1 1001 O	5.0		0.02	-20, 70
		$R_L = 1 - 100 \text{ k}\Omega$	10.0		0.03	
		$C_{L} = 0.1 \ \mu F$	15.0		0.06	
Drift with Supply Voltage,	Δf		5.0		3	25±10
%/B					6	-20, 70

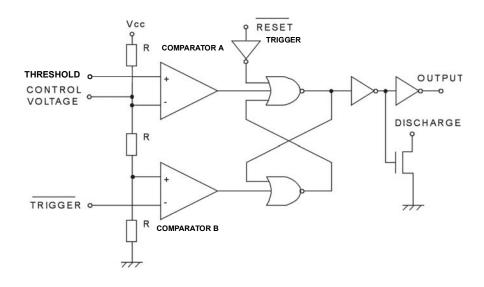


Figura 1. Block Diagram

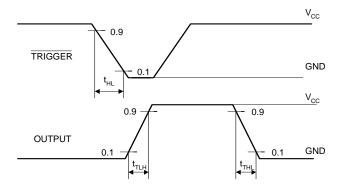


Figura 2. Switcing Waveforms

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)