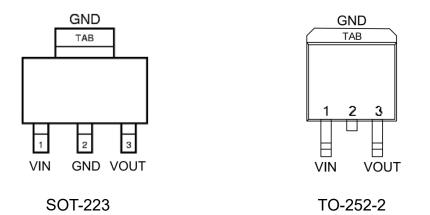


LM78Mxx Precision 500mA regulators

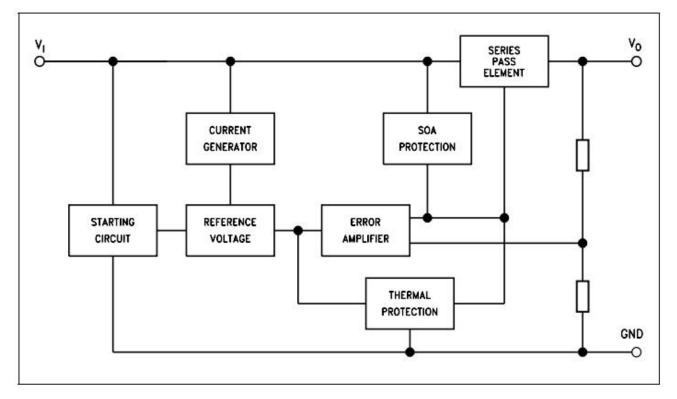
Features

- Output current to 0.5 A
- Output voltages of 5; 6; 8; 9; 10; 12; 15; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- ± 2 % output voltage tolerance
- Guaranteed in extended temperature range

Ordering Information


DEVICE	Package Type	MARKING	Packing	Packing Qty
LM78M05CDT/TR	TO-252-2	78M05	REEL	2500pcs/reel
LM78M06CDT/TR	TO-252-2	78M06	REEL	2500pcs/reel
LM78M08CDT/TR	TO-252-2	78M08	REEL	2500pcs/reel
LM78M12CDT/TR	TO-252-2	78M12	REEL	2500pcs/reel
LM78M15CDT/TR	TO-252-2	78M15	REEL	2500pcs/reel
LM78M18CDT/TR	TO-252-2	78M18	REEL	2500pcs/reel
LM78M24CDT/TR	TO-252-2	78M24	REEL	2500pcs/reel
LM78M05MP/TR	SOT-223	78M05	REEL	2500pcs/reel
LM78M06MP/TR	SOT-223	78M06	REEL	2500pcs/reel
LM78M08MP/TR	SOT-223	78M08	REEL	2500pcs/reel
LM78M12MP/TR	SOT-223	78M12	REEL	2500pcs/reel
LM78M15MP/TR	SOT-223	78M15	REEL	2500pcs/reel
LM78M18MP/TR	SOT-223	78M18	REEL	2500pcs/reel
LM78M24MP/TR	SOT-223	78M24	REEL	2500pcs/reel

Description

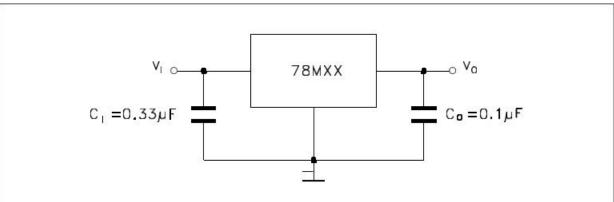

The LM78Mxx series of three-terminal positive regulators is available in DPAK .packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Pin Configuration

Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit
		for V_0 = 5 to 18 V	35	- V
Vi	DC input voltage	for V ₀ = 20, 24 V	40	
lo	Output current	Internally limited	mA	
PD	Power dissipation	Internally limited	mW	
T _{STG}	Storage temperature	range	-65 to 150	°C
T _{OP}	Operating junction temper	0 to 125	°C	
TL	Lead Temperature (Soldering	245	°C	


Note: Absolute maximum ratings are those values beyond which damage to the device may occur.

Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	DPAK	Unit
RthJC	Thermal resistance junction-case	8	°C/W
RthJA	Thermal resistance junction-ambient	100	°C/W

Figure 4. Application circuit

Electrical characteristics

Table 4.Electrical characteristics of LM78M05

Refer to the test circuits, V_I = 10 V, I_O = 350 mA, C_I = 0.33µF, C_O = 0.1µF, T_J = 0 to 125°C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VO	Output voltage	$T_J = 25^{\circ}C$	4.9	5	5.1	V
VO	Output voltage	$I_0 = 5 \text{ to } 350 \text{ mA}, V_1 = 7 \text{ to } 20 \text{ V}$ 4.8 5				V
	line regulation	V_{I} = 7 to 25 V, I_{O} = 200 mA, T_{J} = 25°C			100	
Δνο	Line regulation	V_1 = 8 to 25 V, I_0 = 200 mA, T_J = 25°C			50	mV
	l l	I _O = 5 to 500 mA, T _J = 25°C			100	
VO	Load regulation	$I_0 = 5 \text{ to } 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			50	mV
ld	Quiescent current	$T_J = 25^{\circ}C$			6	mA
A 1 -1	Quieseent europat ek en se	I ₀ = 5 to 350 mA			0.5	
Δld	Quiescent current change	$I_0 = 200 \text{ mA}, V_1 = 8 \text{ to } 25 \text{ V}$			0.8	mA
Δνο/Δτ	Output voltage drift	I ₀ = 5 mA		-0.5		mV/°C
	Cumply valte as rejection	V ₁ = 8 to 18 V, f = 120Hz,	60			
SVR	Supply voltage rejection	I _O = 300mA, T _J = 25°C	62			dB
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		40		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	$T_{J} = 25^{\circ}C, V_{I} = 35 V$		300		mA
Iscp	Short circuit peak current	T _J =25°C		700		mA

Table 5.Electrical characteristics of LM78M06

Refer to the test circuits, $V_I = 11 \text{ V}$, $I_O = 350 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, $T_J = 0$ to 125°C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	5.88	6	6.12	V
Vo	Output voltage	$I_0 = 5$ to 350 mA, V ₁ = 8 to 21 V	6	6.3	V	
A) (V_I = 8 to 25 V, I_O = 200 mA, T_J = 25°C			100	mV
ΔVo	Line regulation	V_{I} = 9 to 25 V, I_{O} = 200 mA, T_{J} = 25°C			30	
A) (I ₀ = 5 to 500 mA, T _J = 25°C			120	
ΔVo	Load regulation	$I_0 = 5 \text{ to } 200 \text{ mA}, \text{T}_{\text{J}} = 25^{\circ}\text{C}$			60	mV
ld	Quiescent current	T _J = 25°C			6	mA
A 1 -1		I ₀ = 5 to 350 mA			0.5	
Δld	Quiescent current change	I_0 = 200 mA, V_1 = 9 to 25 V			0.8	mA
Δνο/Δτ	Output voltage drift	I ₀ = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120Hz,	59			٩D
SVK	Supply voltage rejection	I _O = 300mA, T _J = 25°C	59			dB
eN	Output noise voltage	B =10Hz to 100kHz		45		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	$T_J = 25^{\circ}C, V_I = 35 V$		270		mA
Iscp	Short circuit peak current	T _J = 25°C		700		mA

Table 6. Electrical characteristics of LM78M08

Refer to the test circuits, $V_I = 14 \text{ V}$, $I_O = 350 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, $T_J = 0$ to 125°C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	7.84	8	8.16	V
Vo	Output voltage	$I_{\rm O}$ = 5 to 350 mA, V _I = 10.5 to 23 V	7.7	8	8.3	V
ΔVo		$V_{\rm I}$ = 10.5 to 25 V, $I_{\rm O}$ = 200 mA, $T_{\rm J}$ = 25°C			100	mV
2.00	Line regulation	V_1 = 11 to 25 V, I_0 = 200 mA, T_J = 25°C			30	
A\ /		$I_{\rm O}$ = 5 to 500 mA, $T_{\rm J}$ = 25°C			160	
ΔVo	Load regulation	$I_{\rm O}$ = 5 to 200 mA, $T_{\rm J}$ = 25°C			80	mV
ld	Quiescent current	$T_J = 25^{\circ}C$			6	mA
A 1.4		I _O = 5 to 350 mA			0.5	
Δld	Quiescent current change	I_0 = 200 mA, V_1 = 10.5 to 25 V			0.8	mA
ΔVΟ/ΔΤ	Output voltage drift	I ₀ = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V ₁ = 11.5 to 21.5 V, f = 120Hz	56			٩D
SVR	Supply voltage rejection	I _O = 300mA, T _J = 25°C	00			dB
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		52		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	$T_{J} = 25^{\circ}C, V_{I} = 35 V$		250		mA
Iscp	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Table 7. Electrical characteristics of LM78M09

Refer to the test circuits, V_I = 15 V, I_O = 350 mA, C_I = 0.33μ F, C_O = 0.1μ F,T_J = 0 to 125° C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	8.82	9	9.18	V
Vo	Output voltage	$I_{\rm O}$ = 5 to 350 mA, $V_{\rm I}$ = 11.5 to 24 V	8.64	9	9.36	V
ΔV_0 Line regu	Line regulation	V_{I} = 11.5 to 25 V, I_{O} = 200 mA, T_{J} = 25°C			100	mV
		V_1 = 12 to 25 V, I_0 = 200 mA, T_J = 25°C			30	
A) (Lood regulation	$I_{\rm O}$ = 5 to 500 mA, $T_{\rm J}$ = 25°C			180	mV
ΔVo	Load regulation	$I_{\rm O}$ = 5 to 200 mA, $T_{\rm J}$ = 25°C			90	
ld	Quiescent current	T _J = 25°C			6	mA
A Lei	Quiessent current change	I ₀ = 5 to 350 mA			0.5	mA
Δld	Quiescent current change	I ₀ = 200 mA, VI = 11.5 to 25 V			0.8	
ΔVΟ/ΔΤ	Output voltage drift	lo = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V ₁ = 12.5 to 23 V, f = 120Hz,	56			٩D
SVK	Supply voltage rejection	I _O = 300mA, T _J = 25°C	50			dB
eN	Output noise voltage	B =10Hz to 100kHz, TJ = 25°C		52		μV
Vd	Dropout voltage	T _J = 25°C		2		V
lsc	Short circuit current	V ₁ = 35 V, T _J = 25°C		250		mA
lscp	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Table 8. Electrical characteristics of LM78M010

Refer to the test circuits, $V_I = 16 \text{ V}$, $I_O = 350 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, $T_J = 0$ to 125°C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	9.8	10	10.2	V
Vo	Output voltage	I_0 = 5 to 350 mA, V ₁ = 12.5 to 25 V	9.6	10	10.4	V
ΔV_0 Line regulation		V_1 = 12.5 to 30 V, I_0 = 200 mA, T_J = 25°C			100	
		V_1 = 13 to 30 V, I_0 = 200 mA, T_J = 25°C			30	mV
A) /		$I_{\rm O}$ = 5 to 500 mA, $T_{\rm J}$ = 25°C			200	
ΔVo	Load regulation	$I_{\rm O}$ = 5 to 200 mA, $T_{\rm J}$ = 25°C			100	mV
ld	Quiescent current	$T_J = 25^{\circ}C$			6	mA
Ald		I ₀ = 5 to 350 mA			0.5	
Δld	Quiescent current change	I _o = 200 mA, V _I = 12.5 to 30 V			0.8	mA
ΔVΟ/ΔΤ	Output voltage drift	I ₀ = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 13.5 \text{ to } 24 \text{ V}, \text{ f} = 120 \text{Hz}, \text{ I}_0 = 300 \text{mA},$ $T_J = 25^{\circ}\text{C}$	56			dB
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		64		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	V _I = 35 V, T _J = 25°C		245		mA
lscp	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Table 9.Electrical characteristics of LM78M012

Refer to the test circuits, V_I = 19 V, I_O = 350 mA, C_I = 0.33µF, C_O = 0.1µF, T_J = 0 to 125°C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	11.75	12	12.25	V
Vo	Output voltage	$I_{\rm O}$ = 5 to 350 mA, V _I = 14.5 to 27 V	11.5	12	12.5	V
A) /		V_1 = 14.5 to 30 V, I_0 = 200 mA, T_J = 25°C			100	
ΔVo	Line regulation	V_1 = 16 to 30 V, I ₀ = 200 mA, T _J = 25°C			30	mV
A) /		$I_{\rm O}$ = 5 to 500 mA, T _J = 25°C			240	
ΔVo	Load regulation	$I_{\rm O}$ = 5 to 200 mA, T _J = 25°C			120	mV
ld	Quiescent current	$T_J = 25^{\circ}C$			6	mA
A 1-1		I ₀ = 5 to 350 mA			0.5	
Δld	Quiescent current change	$I_{\rm O}$ = 200 mA, V _I = 14.5 to 30 V			0.8	mA
ΔVΟ/ΔΤ	Output voltage drift	I ₀ = 5 mA		-1		mV/°C
SVR	Supply voltage rejection	V_1 = 15 to 25 V, f = 120Hz, I ₀ = 300mA,	55			dB
SVK	Supply voltage rejection	$T_J = 25^{\circ}C$	55			uБ
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		75		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	V ₁ = 35 V, T _J = 25°C		240		mA
lscp	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Table 10.Electrical characteristics of LM78M015

Refer to the test circuits, $V_I = 23 \text{ V}$, $I_O = 350 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$, $T_J = 0$ to 125°C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	14.7	15	15.3	V
Vo	Output voltage	$I_{\rm O}$ = 5 to 350 mA, $V_{\rm I}$ = 17.5 to 30 V	14.4	15	15.6	V
	Line regulation	$V_{\rm I}$ = 17.5 to 30 V, $I_{\rm O}$ = 200 mA, $T_{\rm J}$ = 25°C			100	
ΔVo		V_1 = 20 to 30 V, I_0 = 200 mA, T_J = 25°C			30	mV
۸\/.	Load regulation	$I_{\rm O}$ = 5 to 500 mA, $T_{\rm J}$ = 25°C			300	
ΔVo	Load regulation	$I_{\rm O}$ = 5 to 200 mA, $T_{\rm J}$ = 25°C			150	mV
ld	Quiescent current	$T_J = 25^{\circ}C$			6	mA
A 1-1	Quieseent eurrent ehenge	I _o = 5 to 350 mA			0.5	
Δld	Quiescent current change	I _O = 200 mA, VI = 17.5 to 30 V			0.8	mA
Δνο/Δτ	Output voltage drift	I ₀ = 5 mA		-1		mV/°C
SVR	Supply voltage rejection	V ₁ = 18.5 to 28.5 V, f = 120Hz,	54			dD
SVK	Supply voltage rejection	Io = 300mA, TJ = 25°C	54			dB
eN	Output noise voltage	B =10Hz to 100kHz, T _J = 25°C		90		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	V ₁ = 35 V, T _J = 25°C		240		mA
lscp	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Table 11. Electrical characteristics of LM78M024

Refer to the test circuits, V_I = 33 V, I_O = 350 mA, C_I = 0.33μ F, C_O = 0.1μ F,T_J = 0 to 125° C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	23.5	24	24.5	V
Vo	Output voltage	I_0 = 5 to 350 mA, V ₁ = 27 to 38 V	23	24	25	V
A) /	Line regulation	V_1 = 27 to 38 V, I_0 = 200 mA, T_J = 25°C			100	mV
ΔVo	Line regulation	V_1 = 28 to 38 V, I_0 = 200 mA, T_J = 25°C			30	
A) /	Lood regulation	I _O = 5 to 500 mA, T _J = 25°C			480	m)/
ΔVo	Load regulation	I ₀ = 5 to 200 mA, T _J = 25°C			240	mV
ld	Quiescent current	$T_J = 25^{\circ}C$			6	mA
A 1-1	Quiessent surrent shange	I ₀ = 5 to 350 mA			0.5	m (
Δld	Quiescent current change	I_0 = 200 mA, V ₁ = 27 to 38 V			0.8	mA
Δνο/Δτ	Output voltage drift	I ₀ = 5 mA		-1.2		mV/°C
SVR		V ₁ = 28 to 38 V, f = 120Hz,	50			dD
SVK	Supply voltage rejection	I _O = 300mA, T _J = 25°C	50			dB
eN	Output noise voltage	B =10Hz to 100kHz, T_J = 25°C		170		μV
Vd	Dropout voltage	$T_J = 25^{\circ}C$		2		V
lsc	Short circuit current	V ₁ = 35 V, T _J = 25°C		240		mA
lscp	Short circuit peak current	$T_J = 25^{\circ}C$		700		mA

Typical performance

Figure 8.Dropout voltage vs. junction temp.

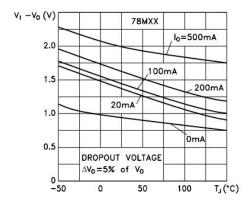


Figure 10. Peak output current vs. inputoutput differential voltage

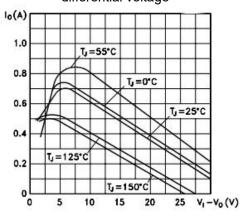


Figure 12. Supply voltage rejection vs. frequency

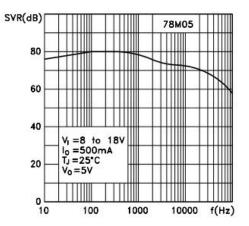


Figure 9.Dropout characteristics

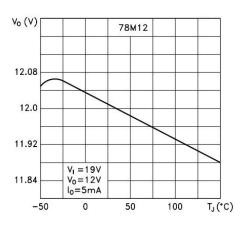
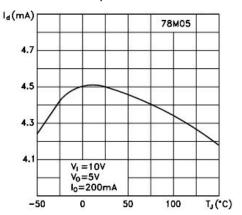



Figure 13. Quiescent current vs. junction temperature

Typical performance

Figure 14. Load transient response

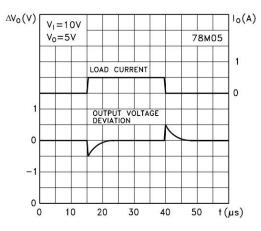
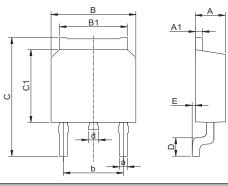
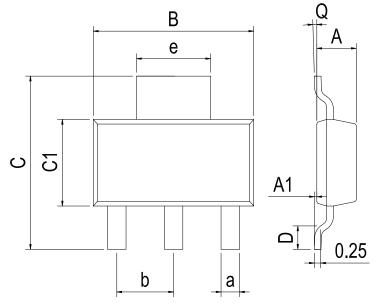



Figure 16. Quiescent current vs. input voltage

∆V₀ (mV) $V_1(V)$ INPUT VOLTAGE 78M05 15 20 10 10 5 OUTPUT VOLTAGE 0 0 -10 l₀=500mA $V_0 = 5V$ -20 2 4 6 8 10 t(µs) 0


Figure 15. Line transient response

http://www.hgsemi.com.cn


Physical Dimensions

TO-252-2

Dimensions In Millimeters(TO-252-2)											
Symbol:	A	A1	В	B1	С	C1	D	Е	а	b	d
Min:	2.10	0.45	6.30	5.10	9.20	5.30	0.90	0	0.50	4.45	0.70
Max:	2.50	0.70	6.75	5.50	10.6	6.30	1.75	0.23	0.80	4.75	1.20

SOT-223

Dimensions In Millimeters(SOT-223)											
Symbol:	A	A1	В	С	C1	D	Q	а	b	е	
Min:	1.50	0.05	6.30	6.70	3.30	0.65	0°	0.66	2.30 BSC	3.00 BSC	
Max:	1.70	0.20	6.70	7.30	3.70	1.10	8°	0.84			

Revision History

DATE	REVISION	PAGE
2014-6-8	New	1-12
2023-7-24	Update encapsulation type、Update Lead Temperature	1、3

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI(华冠)