

CD4543B BCD-to-7-Segment Latch/Decoder/Driver for Liquid Crystals

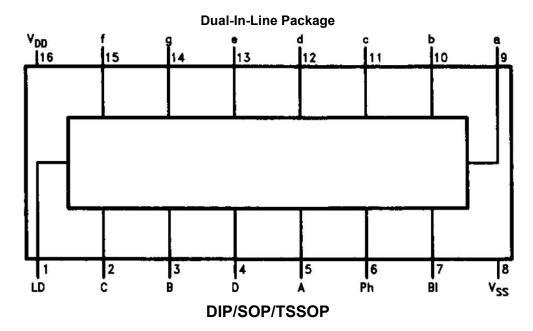
Features

- Wide supply voltage:3.0V to 18V
- range High noise immunity:0.45 V_{DD} (typ.)
- Low power TTL Compatibility:Fan out of 2 driving 74L or 1 driving 74LS
- Low power dissipation:50 nA/package (typ.) at VDD =5.0V
- Latch storage
- Blanking input
- Blank for all illegal inputs
- Direct-drive LCD, LED and VF displays
- Pin-for-pin replacement for CD4056B (with pin 7 tied to Vss)
- Pin-for-pin replacement for Motorola MC14543B

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty	
CD4543BE/	DIP-16	CD4543B	TUBE	1000pcs/box	
CD4543BN					
CD4543BM/TR	SOP-16	CD4543B	REEL	2500pcs/reel	
CD4543BMT/TR	TSSOP-16	CD4543B	REEL	2500pcs/reel	

General Description


The CD4543BM is a monolithic CMOS BCD-to-7-segment latch/decoder/driver for use with liguid crystal and other types of displavs. The circuit provides the func. tions of a 4-bit storage latch and an 8421 BCD-to-7-seg-ment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase(Ph),blanking (Bl) and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal(LC)readouts,a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display, and the out-puts of the circuit are connected directly to the segments of the LCreadout. For other types of readouts, such as light emitting diode (LED), incandescent, gas discharge, and flu- orescent readouts, connection diagrams are given on this data sheet.

All inputs are protected against static discharge by diode clamps to vop and Vss.

Applications

- Instrument (e.g., counter, DVM, etc.) display driver
- Computer/calculator display driver
- Cockput display driver
- Various clock, watch, and timer users

Connection Diagram and

Truth Table

		inputs					Outputs							
LD	BI	Ph*	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	1	0	Х	Χ	Χ	Х	0	0	0	0	0	0	0	Blank
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	Χ	Χ	Χ				* *				* *
+	†	1			+			In	vers	e of	Out	put		Display
ı		'			I		·				As Above			

X = Don't care

For common cathode LED readouts, select Ph = 0.

For common anode LED readouts, select Ph = 1.

Display Format

^{† =} Above combinations

^{* =}For tiquid crystal readouts, apply a square wave to Ph.

^{* * =}Depends upon the BCD code previously applied when LD = 1.

Absolute Maximum Ratings (Notes 1&2)

Con	dition	Min	Max	UNITS		
DC Supply Voltage(VDD)		-0.5	+18	V _{DC}		
Input Voltage (V _{IN})		-0.5	V _{DD} +0.5	V _{DC}		
Storage Temp. Range(Ts)		-65	+150	°C		
Davier Dissipation (D.)	Dual-In-Line	70	00	mW		
Power Dissipation (P _D)	Small Outline	50	00	mW		
Lead Temperature(T _L) (Soldering	ng,10 seconds)	24	245			

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

Recommended Operating Conditions (Note 2)

Condition	Min	Max	UNITS
DC Supply Voltage(V _{DD})	3	15	V _{DC}
Input Voltage (V _{IN})	0	V_{DD}	V _{DC}
Operating Temperature Range (T _A)	-40	+85	$^{\circ}$

DC Electrical Characteristics (Note 2)

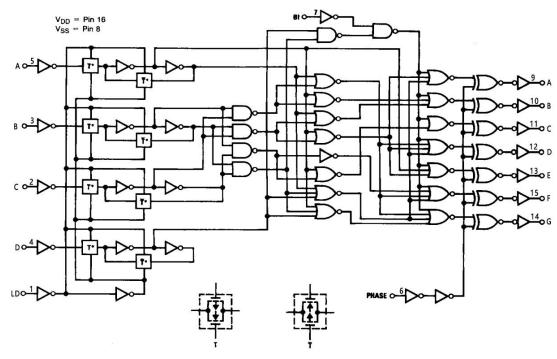
		0 1111	-40	$^{\circ}$		+25℃		+85℃		
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
	Quiescent Device	V _{DD} =5V, V _{IN} =V _{DD} or Vss		20	-	-	20	-	150	
I _{DD}		V _{DD} =10V, V _{IN} =V _{DD} or Vss	-	40	-	-	40	-	300	μΑ
	Current	V _{DD} =15V, V _{IN} =V _{DD} or Vss	-	80	-	-	80	-	600	
	Laurianal	$V_{DD} = 5V$	-	0.05	-	0	0.05	-	0.05	
V _{OL}	Low Level	V _{DD} =10V	-	0.05	-	0	0.05	-	0.05	V
	Output Voltage	V _{DD} =15V	-	0.05	-	0	0.05	-	0.05	
	Lliab Laval	V _{DD} = 5V	4.95	-	4.95	5	-	4.95	-	
V _{OH}	High Level Output Voltage	V _{DD} =10V	9.95	-	9.95	10	-	9.95	-	V
		V _{DD} =15V	14.95	-	14.95	15	-	14.59	-	
	11	V _{DD} =5V, Vo=0.5V or 4.5V	-	1.5	-	-	1.5	-	1.5	
VIL	Low Level	V _{DD} =10V, Vo=1V or 9V	-	3.0	-	-	3.0	-	3.0	V
	Input Voltage	V _{DD} =15V, Vo=1.5V or 13.5V	-	4.0	-	-	4.0	-	4.0	
	Lliab Laval	V _{DD} =5V, Vo=0.5V or 4.5V	3.5	-	3.5	-	-	3.5	-	
V _{IH}	High Level	V _{DD} =10V, Vo=1V or 9V	7.0	-	7.0	-	-	7.0	-	V
	Input Voltage	V _{DD} =15V, Vo=1.5V or 13.5V	11.0	-	11.0	-	-	11.0	-	
	Lavelaval Outret	V _{DD} =5V, Vo=0.4V	0.52	-	0.51	-	-	0.36	-	
loL	Low Leve! Output	V _{DD} =10V, Vo=0.5V	1.3	-	1.3	-	-	0.9	-	mA
	Current (Note 3)	V _{DD} =15V, Vo =1.5V	3.6	-	3.4	-	-	2.4	-	
	High Lavel Output	V _{DD} =5V, Vo=4.6V	-0.52	-	-0.44	-	-	-0.36	-	
Іон	High Level Output Current (Note 3)	V _{DD} =10V,Vo=9.5V	-1.3	-	-1.1	-	-	-0.9	-	mA
		V _{DD} =15V, Vo=13.5V	-3.6	-	-3.0			-2.4		
	Innest Comment	V _{DD} =15V,V _{IN} =0V	-	-0.3	-	-10 ⁻⁵	-0.3	-	-1.0	
I _{IN}	Input Current	V _{DD} =15V, V _{IN} =15V	-	0.3	-	10 ⁻⁵	0.3	-	1.0	μΑ

AC Electrical Characteristics*T_A=25°C,C_L= 50 pF,Vss = 0, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		VDD=5V		100	200	
t_{r}	Output Rise Time	VDD =10V	-	50	100	ns
		VDD=15V		40	80	
		VDD=5V		100	200	
t_f	Output Fall Time	VDo=10V	-	50	100	ns
		VDD-15V		40	80	
	Turn ON Propagation	VDD =5V		450	1100	
t_{PLH}	Turn-ON Propagation	VDD = 10V	-	170	440	ns
	Delay Time	VDD-15V		110	330	
	Turn OFF Brancostian	VDD =5V		500	1100	
t_{PHL}	Turn-OFF Propagation	VDD = 10V	-	180	440	ns
	Dolay Time	VDD-15V		120	330	
		VDD =5V		-5	80	
t _{SET-UP}	Set-Up Time	VDD = 10V	-	-2	30	ns
		VDD-15V		0	20	
		VDD =5V		30	120	
t _{HOLD}	Hold Time	VDD = 10V	_	20	45	ns
		VDD-15V		15	30	
	Latab Disable	VDD =5V		50	250	
PW_{LD}	Latch Disable	VDD = 10V	-	30	100	ns
	Pulse Width	VDD-15V		20	80	
C _{IN}	Input Capacitance	Per input	-	5	7.5	pF
C_{PD}	Power Dissipation Capacitance	See Cpo Measurement Waveforms (Note 4)	-	300	-	pF

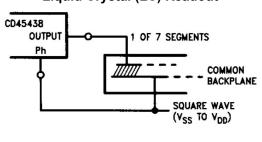
^{*} AC Parameters are guaranteed by DC correlated testing.

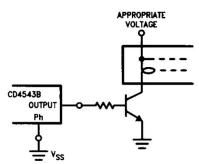
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and Electrical Characteristics "provide conditions for actual device operation.


Note 2: Vss = OV unless otherwise specified.

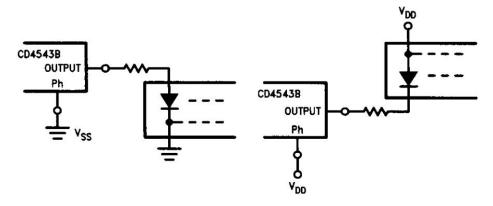
Note 3: I_{OH} and I_{OL} are tested one output at a time.

Note 4: C_{PD} determines the no load AC power consumption of a CMOS device. For a complete explanation, see "MM54C/74C Family Characteristics" Application Note AN-90.

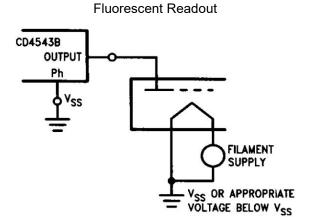

Logic Diagram

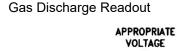

*Transmission gates

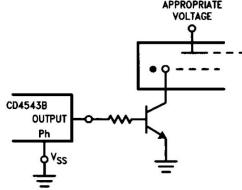
Typical Applications

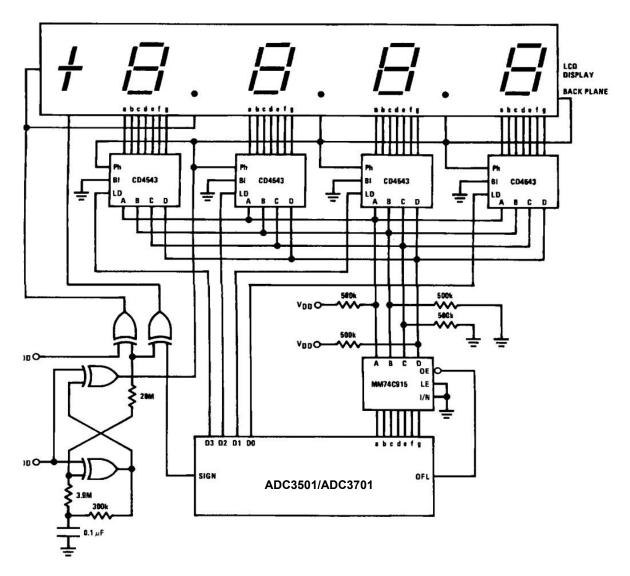


Incandescent Readout

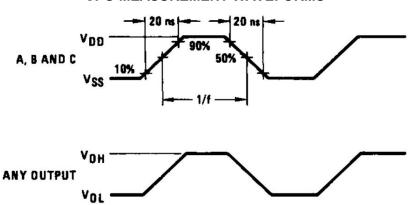

Light Emitting Diode (LED) Readout



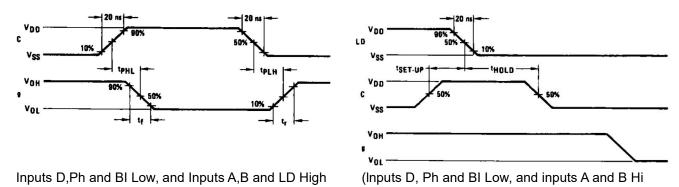

Note: Bipolar transitors may be added for gain (for $V_{DD} \le 10V$ or $I_{OUT} \ge 10$ mA)


Typical Applications(Continued)

3½-Digit DVM with LCD Display



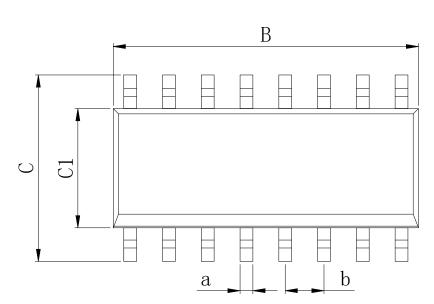
Display 9.999when overflowed. All digits can also be blanked at overflow by typing OFL to BI on the CD4543's.

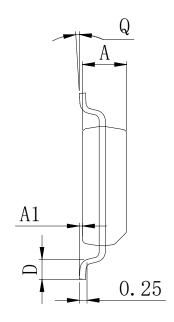

Switching Time Waveforms

CPO MEASUREMENT WAVEFORMS

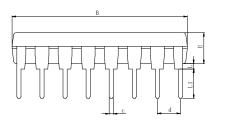
Inputs Bland Ph low, and inputs D and LD high. f in respect to a system clock. All outputs connected to respective C loads.

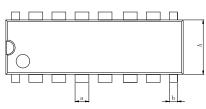
Dynamic Signal Waveforms


V_{0.0} V_{SS} 50%


Data DCBA Strobe into Latches

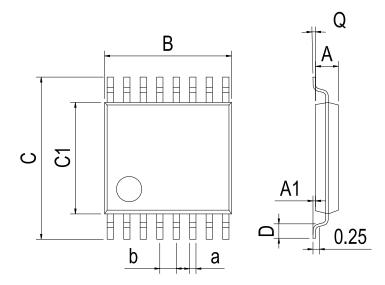
Physical Dimensions


SOP-16



Dimensions In Millimeters(SOP-16)											
Symbol:	А	A1	В	С	C1	D	Q	а	b		
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC		
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	1.27 630		

DIP-16



Dimensions In Millimeters(DIP-16)											
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.04 BSC

Physical Dimensions

TSSOP-16

Dimensions In Millimeters(TSSOP-16)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC	
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 BSC	

Revision History

DATE	REVISION	PAGE
2018-8-9	New	1-13
2023-11-15	Modify the package dimension diagram TSSOP-16、Update encapsulation type、Update Lead Temperature、Updated DIP-16 dimension、Add annotation for Maximum Ratings、Update DIP Package New Model	1、4、9、12

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)