

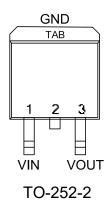
3-Terminal 1 A Positive Voltage Regulator

Description

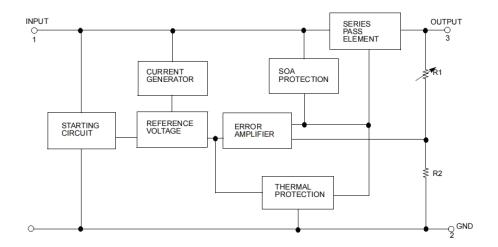
The LM78MxxA series of three-terminal positive regulators are available in the TO-252-2 package with several fixed output voltages making it useful in a wide range of applications.

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area (SOA)Protection



Ordering Information


DEVICE	Package Type	MARKING	Packing	Packing Qty
LM78M05ADT/TR	TO-252-2	78M05A	REEL	2500pcs/reel
LM78M06ADT/TR	TO-252-2	78M06A	REEL	2500pcs/reel
LM78M08ADT/TR	TO-252-2	78M08A	REEL	2500pcs/reel
LM78M12ADT/TR	TO-252-2	78M12A	REEL	2500pcs/reel
LM78M15ADT/TR	TO-252-2	78M15A	REEL	2500pcs/reel
LM78M18ADT/TR	TO-252-2	78M18A	REEL	2500pcs/reel
LM78M24ADT/TR	TO-252-2	78M24A	REEL	2500pcs/reel

Pin Configuration

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for VO = 5V to 18V)	VI	35	V
(for VO = 24V)	VI	40	V
Thermal Resistance Junction-Case TO-252-2 (Tc = +25 $^{\circ}$ C)	RθJC	2.5	°C/W
Thermal Resistance Junction-Air TO-252-2 (Ta = +25 $^{\circ}$ C)	RθJA	92	°C/W
Operating Junction Temperature Range	TOPR	0 ~ +125	$^{\circ}$
Storage Temperature Range	TSTG	-65 ~ +150	℃
Lead Temperature (Soldering, 10 seconds)	T∟	245	$^{\circ}$

Electrical Characteristics (LM78M05A)

(Refer to the test circuits, -40< TJ < +85 $^{\circ}$ C, IO=1A, VI=10V, unless otherwise specified, CI = 0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Cond	Min.	Тур.	Max.	Unit	
Output Valle as	\/0	TJ = +25℃		4.8	5	5.2	
Output Voltage	Vo	IO=5mA to 1A VI=7V to 20V		4.75	5	5.25	V
1: D 1: (N 1.0)	41/0	IO = 200mA	V _I = 7V to 25V	-	-	100	.,
Line Regulation (Note3)	ΔVO	TJ =+25℃	V _I = 8V to 25V	-	-	50	mV
1 15 15 (11.1.0)	11/0	IO = 5mA to 0.5	A, TJ =+25℃	-	-	100	.,
Load Regulation (Note3)	ΔVΟ	IO = 5mA to 200	mA, TJ =+25℃	-	-	50	mV
Quiescent Current	IQ	TJ =+25℃		-	4.0	6.0	mA
0	410	IO = 5mA to 350mA		-	-	0.5	1
Quiescent Current Change	ΔlQ	IO = 200mA VI	= 8V to 25V	-	-	0.8	mA
Output Valtage Drift	43.//A.T	IO = 5mA			0.5		\//°C
Output Voltage Drift	ΔV/ΔΤ	TJ = -40 to +85°	C	-	-0.5	-	mV/℃
Output Noise Voltage	VN	f = 10Hz to 100k	Hz	-	40	-	μV/Vo
Diants Delication	DD	f = 120Hz, IO = 3	300mA		00		-ID
Ripple Rejection	tipple Rejection RR VI = 8V to 18V,		ΓJ =+25℃	-	80	-	dB
Dropout Voltage	VD	TJ =+25℃, IO = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ =+25℃, VI = 35V		-	300	-	mA
Peak Current	IPK	TJ =+25℃		-	700	-	mA

Note:

Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M06A) (Continued)

(Refer to the test circuits, -40 < TJ < +85 °C, IO=1A, VI =11V, unless otherwise specified, CI=0.33μF, CO=0.1μF)

Parameter	Symbol	Co	Min.	Тур.	Max.	Unit	
Output Voltage	Vo	TJ = +25℃		5.75	6	6.25	V
Output voltage	0	IO = 5mA to 1.	AVI = 8V to 21V	5.7	6	6.3	
Line Degulation (Note1)	ΔVΟ	IO = 200mA	V _I = 8V to 25V	-	-	100	m)/
Line Regulation (Note1)	ΔνΟ	TJ = +25℃	V _I = 9V to 25V	-	-	50	mV
Load Regulation (Note1)	ΔVΟ	IO = 5mA to 0	.5A, TJ = +25℃	-	-	120	mV
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 2	00mA, TJ = +25℃	-	-	60	IIIV
Quiescent Current	IQ	TJ = +25℃		-	4.0	6.0	mA
Quiescent Current Change	410	IO = 5mA to 350mA		-	-	0.5	mΛ
Quiescent Current Change	ΔlQ	IO = 200mA	O = 200mA VI = 9V to 25V		-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		_	-0.5	_	mV/℃
Cutput Voltage Dilit	AVIAI	TJ = -40 to +8	5℃		-0.0		11107 0
Output Noise Voltage	VN	f = 10Hz to 10	0kHz	-	45	-	μV/Vo
Dinale Deientien	DD	f = 120Hz, IO	= 300mA		00		40
Ripple Rejection	RR	V _I = 9V to 19V, T _J =+25℃		-	80	-	dB
Dropout Voltage	VD	TJ =+25℃, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25℃, VI= 35V		-	300	-	mA
Peak Current	IPK	TJ =+25℃		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M08A) (Continued)

(Refer to the test circuits, -40 < TJ < +85 $^{\circ}$ C, IO=1A, VI=14V, unless otherwise specified, CI = 0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Coi	Min.	Тур.	Max.	Unit	
Output Voltage	Vo	TJ =+25℃		7.7	8	8.3	V
Output Voltage		IO = 5mA to 1A	V _I = 10.5V to 23V	7.6	8	8.4	V
Line Degulation (Note1)	ΔVΟ	IO = 200mA	V _I = 10.5V to 25V	-	-	100	mV
Line Regulation (Note1)	ΔνΟ	TJ =+25℃	V _I = 11V to 25V	-	-	50	IIIV
Load Danislation (Noted)	ΔVΟ	IO = 5mA to 0.5A	O = 5mA to 0.5A, TJ =+25℃		-	160	\/
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 200	mA, TJ =+25℃	-	-	80	mV
Quiescent Current	IQ	TJ = +25℃		-	4.0	6.0	mA
		IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change	ΔlQ	IO = 200mA VI = 10.5V to 25V		-	-	0.8	mA
Output Voltage Drift	RR	IO = 5mA TJ = -40 to +85°		-	0.5	-	mV/℃
Output Noise Voltage	VN	f = 10Hz to 100k	Hz	-	52	-	V/Vo
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 11.5V to 21.5V, TJ =+25°C		-	80	-	dB
Dropout Voltage	VD	TJ = +25℃, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25℃, VI = 35V		-	300	-	mA
Peak Current	IPK	TJ = +25℃		-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M12A) (Continued)

(Refer to the test circuits, -40 < TJ < +85 $^{\circ}$ C, IO=1A, VI=19V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Coi	Min.	Тур.	Max.	Unit	
Output Voltage	Vo	TJ = +25°C		11.5	12	12.5	V
Output Voltage	VO	IO = 5mA to 1A	IO = 5mA to 1A VI = 14.5V to 27V		12	12.6	V
Line Regulation (Note1)	ΔVΟ	IO = 200mA	VI = 14.5V to 30V	-	-	100	mV
Line Regulation (Note I)	ΔνΟ	TJ = +25°C	VI = 16V to 30V	-	-	50	IIIV
Load Population (Note1)	ΔVΟ	IO = 5mA to 0.5A	IO = 5mA to 0.5A, TJ = +25°C		-	240	mV
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 200	$mA, TJ = +25^{\circ}C$	-	-	120	IIIV
Quiescent Current	IQ	TJ =+25°C		-	4.1	6.0	mA
		IO = 5mA to 350	mA	-	-	0.5	
Quiescent Current Change	ΔlQ	IO = 200mA		_	_	0.8	mA
		VI = 14.5V to 30	V		_	0.0	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		_	-0.5	_	mV/°C
Output Vollago Britt	AV/A1	TJ = -40 to +85°	2		0.0		111 77 9
Output Noise Voltage	VN	f = 10Hz to 100k	Hz	-	75	-	μV/Vo
Dinale Deigotion	DD	f = 120Hz, IO = 3	300mA		00		40
Ripple Rejection	RR	VI = 15V to 25V, TJ =+25°C		-	80	-	dB
Dropout Voltage	VD	TJ =+25°C, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI = 35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C		-	700	-	mA

Note:

Electrical Characteristics (LM78M15A) (Continued)

(Refer to the test circuits, -40 < TJ < +85°C, IO=1A, VI=23V, unless otherwise specified, CI =0.33μF, CO=0.1μF)

Parameter	Symbol	Co	Min.	Тур.	Max.	Unit	
Output Voltage	Vo	TJ = +25°C		14.4	15	15.6	V
Output Voltage	•0	IO = 5mA to 1A V _I = 17.5V to 30V		14.25	15	15.75	V
Line Regulation (Note1)	ΔVO	IO = 200mA	VI = 17.5V to 30V	-	-	100	mV
Line Regulation (Note1)	AVO	TJ =+25°C	V _I = 20V to 30V	-	-	50	IIIV
Load Degulation (Nata1)	ΔVO	IO = 5mA to 0	.5A, TJ =+25°C	-	-	300	m)/
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 2	00mA, TJ =+25°C	-	-	150	mV
Quiescent Current	IQ	TJ = +25°C		-	4.1	6.0	mA
			IO = 5mA to 350mA		-	0.5	
Quiescent Current Change	Δ IQ	IO = 200mA				0.0	mA
		V _I = 17.5V to	30V	-	-	8.0	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA			-1	_	mV/°C
Output Voltage Drift	Δν/Δι	TJ = -40 to +8	85℃	-	-1	-	IIIV/ C
Output Noise Voltage	VN	f = 10Hz to 10	00kHz	-	100	-	V/Vo
Dinale Deientien	DD	f = 120Hz, IO	= 300mA		70		5
Ripple Rejection	RR	V _I = 18.5V to 28.5V, T _J =+25°C		-	70	-	dB
Dropout Voltage	VD	TJ =+25°C, IO = 500mA		-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI = 35V		-	300	-	mA
Peak Current	IPK	TJ = +25°C	_	-	700	-	mA

Note:

1. Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (LM78M18A) (Continued)

(Refer to the test circuits, -40 < TJ < +85 $^{\circ}$ C, IO=1A, VI=26V, unless otherwise specified, CI =0.33 μ F, CO=0.1 μ F)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Outrout Valtage		TJ = +25°C		18	18.7	V
Output Voltage	Vo	IO = 5mA to 1A VI = 20.5V to 33V	17.1	18	18.9	V
Line Degulation (Note1)	ΔVO	IO = 200mA V _I = 21V to 33V	-	-	100	m\/
Line Regulation (Note1)	ΔνΟ	TJ = +25°C VI = 24V to 33V	-	-	50	mV
Load Pagulation (Note1)	ΔVΟ	IO = 5mA to 0.5A, TJ = $+25^{\circ}$ C	_	-	360	m\/
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 200mA, TJ = +25°C	-	-	180	mV
Quiescent Current	IQ	TJ = +25°C	-	4.2	6.0	mA
		IO = 5mA to 350mA		-	0.5	
Quiescent Current Change	ΔIQ	IO = 200mA			0.8	mA
		V _I = 21V to 33V	_		0.6	
Output Voltage Drift	ΔV/ΔΤ	$IO = 5mATJ = -40 \text{ to } 85^{\circ}C$	-	-1.1	-	mV/℃
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	100	-	V/Vo
Dipple Dejection	DD	f = 120Hz, IO= 300mA,		70		dB
Ripple Rejection RR		VI = 22V to 32VTJ =+25°C		70	-	иь
Dropout Voltage	VD	TJ = +25°C, IO = 500mA		2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI = 35V		300	-	mA
Peak Current	IPK	TJ = +25°C	-	700	-	mA

Note:

Electrical Characteristics (LM78M24A) (Continued)

(Refer to the test circuits, -40 < TJ < +85°C, IO=350mA, VI=33V, unless otherwise specified, CI =0.33μF, CO=0.1μF)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage	Vo	TJ =+25°C	23	24	25	V
Output Voltage	VO	IO = 5mA to 1AVI = 27V to 38V	22.8	24	25.2	V
Line Regulation (Note1)	ΔVΟ	IO = 200mA VI = 27V to 38V	•	-	100	mV
Line Regulation (Note1)	ΔνΟ	TJ =+25°C VI = 28V to 38V	•	-	50	IIIV
Load Degulation (Note1)	ΔVΟ	IO = 5mA to 0.5A, TJ =+25 $^{\circ}$ C	•	-	480	m\/
Load Regulation (Note1)	ΔνΟ	IO = 5mA to 200mA, TJ =+25°C	-	-	240	mV
Quiescent Current	IQ	TJ = +25°C	•	4.2	6.0	mA
		IO = 5mA to 350mA	•	-	0.5	
Quiescent Current Change	Δ lQ	IO = 200mA			0.8	mA
		VI = 27V to 38V	ı	-	0.6	
Outrout Valtage Duift	A) //AT	IO = 5mA		4.0		\//°C
Output Voltage Drift	ΔV/ΔΤ	TJ = -40 to +85°C	-	-1.2	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100kHz	-	170	-	μV/Vo
D: 1 D : 1:	55	f = 120Hz, IO = 300mA		70		ID.
Ripple Rejection	RR	V _I = 28V to 38V, T _J =+25°C	-	70	-	dB
Dropout Voltage	VD	TJ = +25°C, IO = 500mA	-	2	-	V
Short Circuit Current	ISC	TJ = +25°C, VI = 35V	-	300	-	mA
Peak Current	IPK	TJ = +25°C	-	700	-	mA

Note:

1.Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{1.} Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

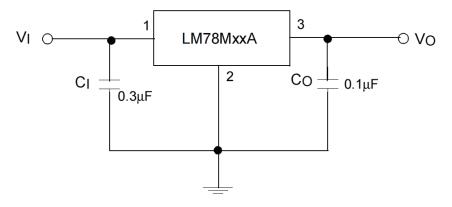


Figure 1. Fixed Output Regulator

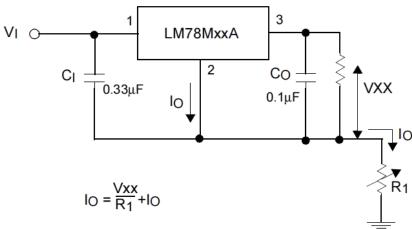


Figure 2. Constant Current Regulator

Notes:

- 1. To specify an output voltage, substitute voltage value for "XX"
- 2. Although no output capacitor is needed for stability, it does improve transient response.
- 3. CI is required if regulator is located an appreciable distance from power Supply filter

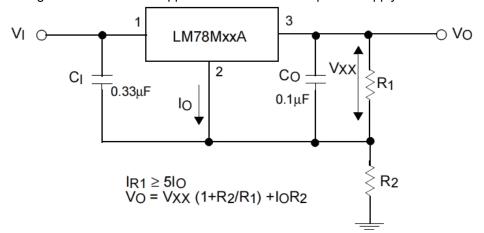


Figure 3. Circuit for Increasing Output Voltage

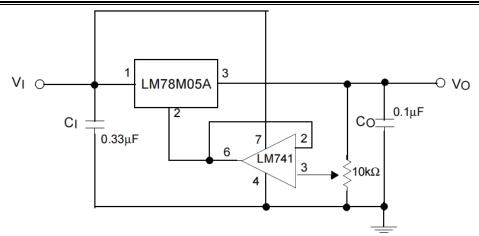


Figure 4. Adjustable Output Regulator (7 to 30V)

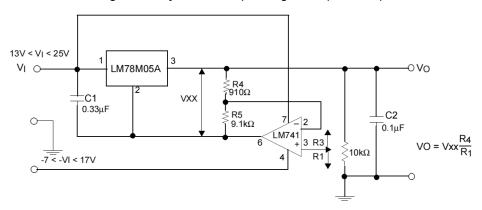
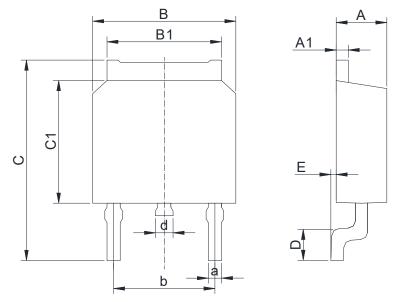



Figure 5. 0.5 to 10V Regulator

Physical Dimensions

TO-252-2

Dimensions In Millimeters(TO-252-2)											
Symbol:	А	A1	В	B1	С	C1	D	Е	а	b	d
Min:	2.10	0.45	6.30	5.10	9.20	5.30	0.90	0	0.50	4.45	0.70
Max:	2.50	0.70	6.75	5.50	10.6	6.30	1.75	0.23	0.80	4.75	1.20

Revision History

DATE	REVISION	PAGE
2018-8-5	New	1-11
2023-7-24	Update encapsulation type、Update Lead Temperature	1、2

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)