CSHV SERIES

DESCRIPTION

The CSHV Series are open loop current sensors that use Hall-effect sensing and patented Honeywell technology to bring the best combination of performance and reliability for current sensing applications.

These products are non-intrusive and electrically isolated from the monitored circuit. This ensures a simple sensing method. They are rated for a primary current measurement range of ±100 A to ±1500 A dc.

The CSHV Series is AEC-Q100 qualified to meet higher quality and reliability. For motor control applications, the current measurement is directly proportional to the motor torque. Current measurement can also be used to determine the speed at which the motor is turning. Such speed information can be calculated by understanding how the control algorithm affects the current level.

CUSTOMIZATION

The CSHV Series may be customized to best meet specific application needs. Solutions may be tailored to exact specifications for improved time to market, lower total system costs, and enhanced reliability.

Honeywell provides global technical assistance and engineering/service support.

DIFFERENTIATION

- Accuracy: Hall-effect sensing and stable amplification circuitry for improved accuracy over the full operating temperature range.
- **Magnetic immunity:** Optimized magnetic circuit allows for excellent performance in diverse magnetic environments.
- **Flexible:** Customizable to meet specific application requirements.

VALUE TO CUSTOMERS

- Accurate: Designed to enable precise battery state measurement for improved user experience. Accurate current sensing enables precise and smooth motor control
- Fast Response Time: Fast response time allows fault detection and asset protection before catastrophic failure.
- **Ease of use:** Magnetic immunity allows for easy integration into different magnetic environments.
- **Easy system integration:** Analog voltage output may be used by battery management system.

FEATURES

- Active open loop current sensing using Hall-effect technology
- High accuracy and low temperature drift
- Operating temperature of -40°C to 125°C [-40°F to 257°F]
- Analog voltage output
- CE and UKCA certification; REACH and RoHS compliant
- AEC-Q100 qualified for higher reliability

APPLICATIONS

- Current measurement for battery management systems in electrified vehicles (EV, HEV, PHEV, BEV)
- Current leakage detection and fault isolation in battery charging systems
- Current measurement in energy storage systems
- Fault detection in heavy industrial equipment

PORTFOLIO

Honeywell offers a variety of current sensors for potential use in many applications. To view the entire product portfolio, click here.

Honeywell

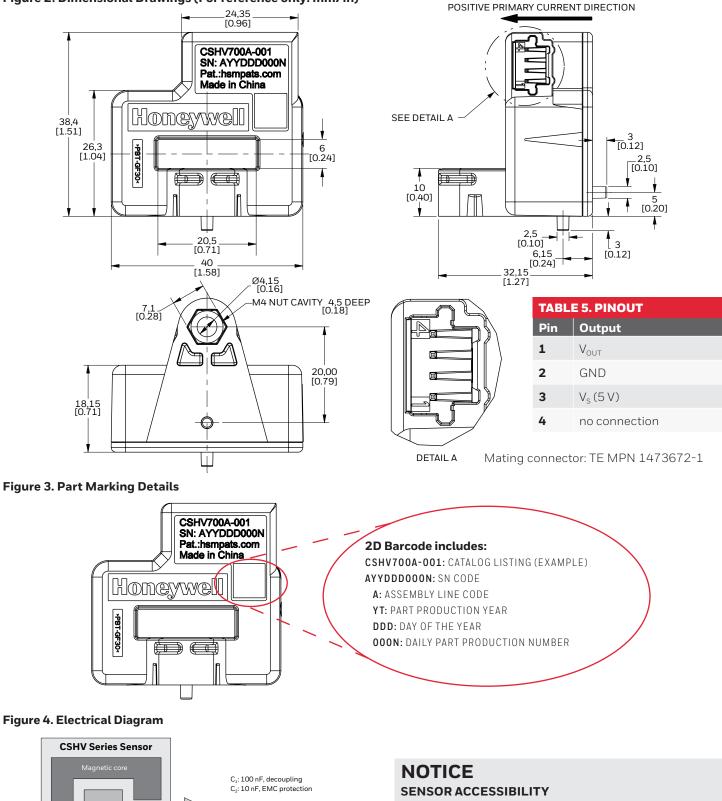
005999 Issue 5

TABLE 1. ABSOLUTE MAXIMUM RATINGS (not operating)						
Characteristic	Symbol	Unit	Parameter			Condition
			Min.	Тур.	Max.	Condition
Supply voltage max.	V _{S max.}	V	—	_	10	-
Reverse supply voltage max.	V _{R max.}	V	-0.3	_	_	-
Output voltage max.	V _{OUT max.}	V	-0.3	-	10	V_{OUT} reverse/forward voltage
Output current max.	I _{OUT max.}	mA	-10	-	10	-
Ambient storage temperature	_	°C	-40	-	125	-
Electrostatic discharge voltage	V_{ESD}	kV	-	-	8	-
RMS voltage for AC isolation test	V_{DWV}	kV	-	-	2.5	50 Hz, 1 min
Creepage distance	d _{Cp}	mm	4.9	-	-	-
Clearance	d _{Cl}	mm	4.9	-	-	-
Comparative tracking index	CTI	-	PLC3	-	_	-

TABLE 2. OPERATING CHARACTERISTICS IN NOMINAL RANGE (I _{PN})						
				Parameter	C	
Characteristic	Symbol Unit		Min.	Тур.	Max.	Condition
Primary current, nominal DC	I _{PN}	А	-I _{PN}	_	I _{PN}	-
Supply voltage	Vs	V	4.5	5	5.5	-
Output voltage	V _{OUT}	V	$V_{OUT} = \frac{1}{12}$	$V_{OUT} = \frac{V_S}{5} (G * I_P + V_{OS}) \qquad I_P = (V_{OS})$		$I_{P} = (V_{OUT} * \frac{5}{V_{S}} - V_{OS}) / G$
Output voltage (at I _P = 0)	V _{os}	V	_	2.500	_	-
Electrical offset voltage	$V_{\rm OS,\; ELECT}$	mV	-	±3	-	$T_{A} = 25^{\circ}C, V_{S} = 5 V$
Magnetic offset voltage	$V_{\rm OS,MAG}$	mV	-	±2	-	$T_{A} = 25^{\circ}C, V_{S} = 5 V$
Current consumption	I _{SUPPLY}	mA	_	13 —		T _A = 25°C, V _S = 5 V —
Load resistance	RL	Ohm	10k	-	-	-
Output impedance	R _{out}	Ohm		1	10	T _A = 25°C T = -40°C to 125°C
Ratiometric error	ε _r	%	-	±0.5	-	-
Sensitivity	G	mV/A	-	2000/I _{PN}	_	T _A = 25°C
Sensitivity error: ±100 A to ±1200 A ±1500 A	ε _g	%	_	±0.6 ±0.8		T _A = 25°C, V _S = 5 V T _A = 25°C, V _S = 5 V
Linearity error	ε	%	-1	-	1	% of full scale output
Ambient operating temperature	-	°C	-40	-	125	-
Average temperature coefficient	$V_{\rm OS,\; ELECT}$	mV/°C	-	±0.04	-	-
Average temperature coefficient of G	-	%/°C	-	±0.02	-	-
Step response time (10 % to 90 %)	t,	μs	-	2	6	-
Frequency bandwidth	BW	kHz	45	-	-	-3 dB
Output RMS noise (RMS)	-	mV	-	-	2	-

¹ See Table 4 for catalog listing specifics.

TABLE 3. MECHANICAL CHARACTERISTICS			
Characteristic	Description		
Housing material	PBT + GF30 %		
Mounting screw	M4, 2,5 N m torque max.		
Mating electrical connector	TE MPN 1473672-1		
Weight	58 g		


TABLE 4. ORDER GUIDE

	Measure					
Catalog Listing Range '		Sensitivity (mV/A at V _s = 5 V)			Accuracy (% at V _s = 5 V)	
	(A)	(1107A at v _s - 5 v)	25°C	-40°C to 85°C	25°C	-40°C to 85°C
CSHV100A-001	±100	20	±7 mV	±25 mV	±1 %	±2 %
CSHV200A-001	±200	10	±7 mV	±15 mV	±1 %	±2 %
			25°C	-40°C to 125°C	25°C	-40°C to 125°C
CSHV300A-001	±300	6.667	±7 mV	±18 mV	±1 %	±2 %
CSHV400A-001	±400	5	±7 mV	±13 mV	±1 %	±2 %
CSHV500A-001	±500	4	±7 mV	±10 mV	±1 %	±2 %
CSHV600A-001	±600	3.333	±7 mV	±10 mV	±1 %	±2 %
CSHV700A-001	±700	2.857	±7 mV	±10 mV	±1 %	±2 %
CSHV800A-001	±800	2.5	±7 mV	±10 mV	±1 %	±2 %
CSHV900A-001	±900	2.222	±7 mV	±10 mV	±1 %	±2 %
CSHV1000A-001	±1000	2	±7 mV	±10 mV	±1 %	±2 %
CSHV1100A-001	±1100	1.818	±7 mV	±10 mV	±1 %	±2 %
CSHV1200A-001	±1200	1.667	±7 mV	±10 mV	±1 %	±2 %
CSHV1500A-001	±1500	1.333	±7 mV	±10 mV	±2 %	±3 %

Figure 1. Nomenclature

cs	н	V	15	00	A	001
Туре	Principle	Use	Rated	Current	Output Configuration	Version
Current Sensor	Hall based	V Designed for vehicle applications	100 200 300 400	100 A 200 A 300 A 400 A	A One channel	001 ASIC 1
			500 600 700	500 A 600 A 700 A		
			800 900	800 A 900 A		
			1000 1100 1200	1000 A 1100 A 1200 A		
			1500	1500 A		

Figure 2. Dimensional Drawings (For reference only: mm/in)

• Ensure that the current sensor is installed in a suitable electrical enclosure which is only accessible with the use of special tools.

Vou

GND

Vs

Busbar/

primary

conducto

Halleffect elemer

Amplificatio

는 는 는

TABLE 6. EMC TEST SPECIFICATIONS					
Test	Standard	Procedure			
CISPR 25 Conducted RF Emissions - Voltage	CISPR25	According to CISPR 25:2008 Commission Form of Testing			
CISPR 25 Conducted RF Emissions - Current	CISPR25	According to CISPR 25:2008 Commission Form of Testing			
CISPR 25 Radiated Emissions	CISPR25	According to CISPR 25:2008 Commission Form of Testing			
Bulk Current Injection (BCI) Test	ISO 11452-4	According to ISO 11452-4			
RF Radiated Immunity - ALSE	IEC 61000-4-3	According to ISO IEC 61000-4-3			
Electrostatic Discharge	ISO 10605	Unpowered direct contact discharge: ±8 kV Unpowered air discharge: ±15 kV Powered-up direct contact discharge: ±4 kV Powered-up air discharge: ±8 kV			
Fast Transients Burst Immunity Test	IEC 61000-4-4	2 kV Power port, 1 kV signal port			
Magnetic Field Emission Test	IEC 61000-4-8	20 kHz to 200 kHz			
Conducted/Coupled Immunity	ISO 11452-4	According to ISO 11452-4, test CCC and ICC			

TABLE 7. ELECTRICAL TEST SPECIFICATIONS					
Test	Standard	Procedure			
Single line Open Circuit Tests	ISO16750-2-4.9	Connect sensor to 5V power supply and power on the sensor. Disconnect Us, GND, Us & GND for twice. Each open circuit time :60 ±1 second & 10 ± 1 second			
Short Circuit Protection	ISO 16750-2-4.10	Connect sensor to power supply and power on the sensor by 5 V. Apply short circuit between Vout & GND, Vout & Us. Each hold for 60 seconds			
Insulation Resistance Test	ISO 16750-2-4.12	500 Vdc ±10 Vdc for 60 s; Resistance criteria: ≥100 MOhm			
dc & ac Voltage Insulation Test		Test voltage: 2500 Vdc & 2500 Vac. Frequency: dc & 50~60 Hz. Test duration: 60 seconds			

TABLE 8. ENVIRONMENT	TAL TEST SPECIFICA	TIONS
Test	Standard	Procedure
High Temperature Operating Test	ISO16750-4	48 hour, 85°C. Performance test before and after test from -40°C to 85°C
Low Temperature Operating Test	ISO16750-4	120 hour, -40°C. Performance test before and after test from -40°C to 85°C
Thermal Cycle Test	ISO16750-4	30 cycles,one cycle contains -40°C (90 minute soak) & 85°C (120 minute soak). Transition time = 270 minutes. Performance test before and after test from -40°C to 85°C
Vibration	IEC60068-2-64	10 Hz to 200 Hz, 10.95 hour/axis, 3 axis. Performance test before and after test from -40°C to 85°C
Mechanical Shock	ISO16750-3	500 m/s, 20 each direction (60 total), half sine pulse. Performance test before and after test from –40 °C to 85 °C
Handling Drop	ISO 16750-3	1^{st} fall of each DUT at a different dimensional axis, 2^{nd} fall with the given DUT at the same dimensional axis but on the opposite side of the housing, from 1 m on concrete floor. Performance test before and after test from -40° C to 85° C
High Temperature Durability Test	ISO16750-4	3000 hour, $85^{o}\text{C}.$ Performance test before and after test from –40°C to 85^{o}C

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective.

The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

WARNING PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

WARNING MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

For more information

Honeywell Sensing & Safety Technologies services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor,

visit our website or call:

USA/Canada	+1 302 613 4491
Latin America	+1 305 805 8188
Europe	+44 1344 238258
Japan	+81 (0) 3-6730-7152
Singapore	+65 6355 2828
Greater China	+86 4006396841

Honeywell Sensing & Safety Technologies

830 East Arapaho Road Richardson, TX 75081 www.honeywell.com

Honeywell

单击下面可查看定价,库存,交付和生命周期等信息

>>Honeywe11(霍尼韦尔)