

Multilayer Ceramic Chip Capacitors

江苏芯声微电子科技有限公司

Jiangsu Holy Ram Electronics Technology Limited

CA | Series (Automotive Grade)

Material	X7R	COG		
iviateriai	7/K	CUG	The state of the s	
Temp. Range	-55℃125℃	-55℃125℃		
		33 0 123 0	2 6 1 1	
Cap.Tolerance	±15%	±30ppm/°C	1 2 3 2	
	W201	I MAN		
	10			

PRECAUTIONS FOR USE

Please attach the purchase specification before using this product.

SAFETY INFORMATION

Please pay attention to safety precautions when using this product.

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

①Aircraft equipment ②Aerospace equipment ③Undersea equipment 4) Power plant control equipment

(5) Medical equipment (6)Transportation equipment(vehicles, trains, ships, etc.) 7)Traffic signal equipment

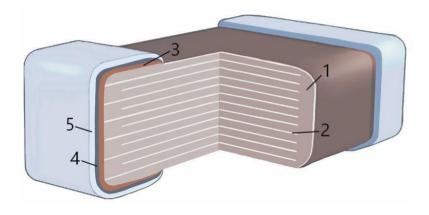
(9) Data-processing equipment (10) Application of similar complexity and/or (8) Disaster prevention / crime prevention equipment

Methods of transportation and storage

1.Transportation:

Packaged products suitable for modern transportation, in the process of transportation to prevent rain and acid and alkali corrosion, gravity throwing and force extrusion.

2.Storage:


The storage period to ensure good weldability of the product is one year from the date of production. Do not open the braid before use of the product (in the case of packaging and delivery). After the braid is opened, the product should be used within three months. storage temperature: 0°C~35°C

Storage relative humidity: <70%

Characteristic

- > complies with AEC-Q200 standard
- conforms to the MSL class :MSL 1
- > complies with vehicle regulation J-STD-020D
- > High reliability and equipment reliability
- Pass 100% six-sided photosynthesis test

Product Structure Diagram

Applicatiopn

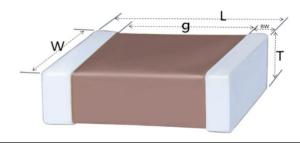
- car audio and video
- Body electronics
- High reliability
- Industrial applications

Serial number	Designation
1	Dielectric ceramics
2	Inner electrode (nickel)
3	Outer electrode (copper)
4	Nickel layer
5	Tin layer

CAI-A-2023-02

Product model naming rules

EX: $C_{(1)}$ $AI_{(2)}$ $O402_{(3)}$ $X7R_{(4)}$ $O402_{(5)}$ $O402_{(5)}$ $O402_{(6)}$ $O402_{(7)}$ $O402_{(8)}$ $O402_{(9)}$


(1)	C:MLCC				Cap. > =10pF:								
(2) Application	Al:Automotive	e		(5)	First Two×10^third								
	Coding	inch	Size(mm)		tance 104=10×10^4=100nF ue 123=12×10^3=12nF								
	00R4	008004	0201	Value									
	01R5	01005	0402		Cap. < 10pF: R30=0.3pF, 1R0=1pF								
	0201	0201	0603	` '	A: ±0.05pl	F B: ±0.	1pF	C: ±0	.25pF	D:	±0.5pF	F:	±1.0%
(3)	0402	0402	1005	Capacitance Tolerance	G: ±2%	J: ±5%	6	K: ±1	0%	M:	±20%	Z:	80/-20%
Size (L*W)	0603	0603	1608		2R5:2.5	4R0:4.0	6R3	:6.3	100:10		160:16	í	250:25
	0805	0805	2012	(7) Rate voltage	350:35	500:50	630	:63	800:80		101:100	â	201:200
	1206	1206	3216	Vdc	251:250	401:400	451	:450	501:500	0	631:630		102:1000
	1210	1210	3225		202:2000	252:2500	302	:3000	402:400	00			
	1808	1808	4520	(8)	A:0.10	B:0.13	C:0.	18	D:0.20		E:0.30	l	- :0.45
	1812	1812	4532	Thickness	G:0.50	H:0.60	J:0.8	30	K:0.85		L:1.15		M:1.25
(4)				(mm)	N:1.60	P:1.90	Q:2	.00	R:2.50			_	
Temperature Characteristic				(9) Packing	II: Finished product packaging (/" Reel)								

Size & Packing Specifications

Generally, a Φ180mm (7") tray is used for packing.

Each 5 disks is packed into a box, and each 12 boxes is a whole box.

1515		Size (r	nm)		Packing	g (7")
规格	Length	Width	Thickness	g	Number (star)	Method
0201	0.60±0.03	0.30±0.03	0.30±0.03	0.20	15,000	Paper tape
0402	1.00±0.05	0.50±0.05	0.50±0.05	0.30	10,000	Paper tape
0603	1.60±0.10	0.80±0.10	0.80±0.10	0.30	4,000	Paper tape
0805	2.00 - 0.20	1.25 + 0.20	0.85±0.20	0.50	4,000	Paper tape
	2.00±0.20	1.25±0.20	1.25±0.20	0.50	3,000/2,000	Plastic tape
			0.85±0.20		4,000	Paper tape
1206	3.20±0.20	1.60±0.20	1.25±0.20	1.00	3,000/2,000	Plastic tape
			1.60±0.20		2,000	Plastic tape
			1.25±0.30		3,000	
1210	3.20±0.40	2.50±0.30	1.60±0.30	1.00	2,000	Plastic tape
			2.50±0.30		1,000	

5

* Plz refer to the single specification for details

Capacitance Range [COG] 0402~0805

Size	Thick	RV	1pF			10pF						100p	F					1nF						10nF
(inch)	(Code)	(Vdc)	1R0	2R2	4R7	100	150	220	330	470	680	101	151	221	331	471	681	102	152	222	332	472	682	103
0402	0.50	25																						
0402	(G)	50																						
	0.80	25																						
0603		50																						
	(1)	100																						
	0.60	25																						
	(H)	50																						
0805	0.85	25																						
0803	(K)	50																						
	1.25	25																						
	(M)	50																						

[X7R] 0201~1210

Size	Thick	RV	150p	F			1nF				15nF			100n	F		1uF			10uF
(inch)	(Code)	(Vdc)			221	691		150	227		153					171		225	175	106
(incin)	0.30	16	131	221	221	001	102	132	332	002	133	333	4/3	104	224	4/4	103	223	4/3	100
0201																				
	(E)	25					i													
		6.3																		
0402	0.50	16																		
0402	(G)	25																		
		50									i			 						
		100					i							!						<u> </u>
		10																		
	0.80	16																		
0603	(n)	25															i			
	(-)	50																		
		100																		
		16																		
	0.85	25																		
	(K)	50																		
	(14)	100																		
		250																		
0805		6.3																		
0003		10																		
	1.25	16																		
	(M)	25																		
	(141)	50																		
		100																		
		250																		
	1.60	25																		
1206	(N)	50																		
	(14)	100																		
	2.00	50																		
1210	(Q)	100																		
1210	2.50	25																		
	(R)	50																		

No	Item	Specification		Test Metho	od(Ref.	Standard:AEC—Q200)			
1	Pre-and-Post- Stress Electrical Test								
		Appearance	No defects or abnormalities.	Mounting m	nethod	Solder the capacitor on t	he test substrate		
	High	Cap. Change	Plz refer to the single specification	Test Temperature		150+/-3℃			
2	Temperature Exposure (Storage)	Q or D.F.	Within the specified initial value	Test Time		1000+/-12h			
		I.R.	Within the specified initial value	Post-treatm	nent	Let sit for 24+/-2hours at room temperature, then measure.			
				Mounting method		Solder the capacitor on t	he test substrate		
		Appearance	No defects or abnormalities.	Pre-treatment		Perform a heat treatmen for 1hour and then let sit at room temperature, the	for 24+/-2hours		
				Cycles		1000 cycles			
		Cap. Change	Plz refer to the single specification	Temperatur	re Cycli	ng:			
3	Temperature Cycling			Step	Temp	erature (°C)	Time (min)		
	oyomig			1	Min. (Operating Temp.+0/-3	30+/-3		
		Q or D.F.	Within the specified initial value	2	Room	Temperature	1		
				3	Max.	Operating Temp.+3/-0	30+/-3		
				4	Room	n Temperature	1		
		I.R. Within the specified initial value		Post-treatment		Let sit for 24+/-2hours at temperature, then measu			

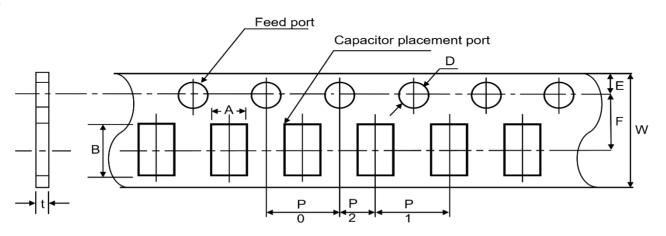
No	Item	Specification		Test Method(Ref.	Standard:AEC—Q200)				
4	DPA	Appearance	No defects or abnormalities.	Per EIA-469					
				Mounting method	Solder the capacitor on the test substrate				
		Appearance	No defects or abnormalities.	Test Temperature	+25℃ to +65℃				
				Test Humidity	80% to 98% R.H.				
		Cap. Change	Plz refer to the single specification	Test Time	Apply the 24h treatment shown below, 10 consecutive times.				
5	Moisture			Temperature and Humidity cycle:					
	Resistance	Q or D.F.	Within the specified initial value	95					
		I.R.	Within the specified initial value	0 2 4 6 8 Tine (10 One cycle 2-	4hours >				
		I.N.	within the specified initial value	Post-treatment	Let sit for 24+/-2hours at room temperature, then measure				
		Annogrange	No defects or abnormalities.	Mounting method	Solder the capacitor on the test substrate				
		Appearance	no defects of abhormalities.	Test Temperature	85+/-3℃				
		Can Changa	Diz refer to the single enesification	Test Humidity	80% to 85% R.H.				
		Cap. Change	Plz refer to the single specification	Test Time	1000+/-12h				
6	Biased Humidity	Q or D.F.	Within the specified initial value	Test Voltage	 Rated voltage (not exceeding 630V) Apply 1.5V (silver electrode) Connect the 100KΩ resistor 				
				Charge/discharge current	50mA max				
		I.R.	Within the specified initial value	Post-treatment	Let sit for 24+/-2hours at room temperature, then measure				

No	Item	Specification		Test Method(Ref.	Standard:AEC—Q200)			
		Appearance	No defects or abnormalities.	Mounting method	Solder the capacitor on the test substrate			
		Cap. Change	Plz refer to the single specification	Test Temperature	Maximum Operating Temperature +/-3℃			
		0 55	Medical control of	Test Time	1000+/-12h			
7	Operational Life	Q or D.F.	Within the specified initial value	Test Voltage (R.V.)	Plz refer to the single specification			
				Charge/discharge current	50mA max			
		I.R.	Within the specified initial value	Post-treatment	Let sit for 24+/-2hours at room temperature, then measure			
8	Appearance No defects or abnormalities		bnormalities.	Visual inspection				
9	Dimension	Shown in Dime	nsion.	Using Measuring ir	nstrument of dimension			
		Appearance	No defects or abnormalities.					
	Resistance to	Cap. Change	Within the specified initial value					
10	Solvents	Q or D.F.	Within the specified initial value	Per MIL-STD-202 Method 215 (Only for the Mark points				
		I.R.	Within the specified initial value					
			N. I. C. d. I.	Mounting method	Solder the capacitor on the test substrate			
		Appearance	No defects or abnormalities.	Waveform	Half-sine			
		Cap. Change	Within the specified initial value	Peak value	1500g			
11	Mechanical Shock	0 0 0 0 0	Within the appointed initial value	Holding Time	0.5ms			
		Q or D.F.	Within the specified initial value	Velocity change	4.7m/s			
		I.R.	Within the specified initial value	Shocks directions and times Three shocks in each direction should applied along 3 mutually perpendicula axes of the test specimen (18 shocks				

No	Item	Specification		Test Method(Ref.	Standard:AEC—Q200)				
		Appearance	No defects or abnormalities.	Mounting method	Solder the capacitor on the test substrate				
		Cap. Change	Within the specified initial value	Kind of Vibration	A 10Hz ~ 2000Hz ~ 10Hz				
12	Mechanical	Q or D.F.	Within the appoified initial value	Vibration Time	20min				
12	Vibration	Q OI D.F.	Within the specified initial value	Total amplitude	1.5mm				
		I.R.	Within the specified initial value	Vibration directions and time	This motion should be applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).				
		Appearance	No defects or abnormalities.	Test Method	Solder bath method				
		Cap. Change	Within the specified initial value	Kind of Solder	Sn-3.0Ag-0.5Cu(Lead Free Solder)				
13		Q or D.F.	Within the specified initial value	Test Temperature	260+/-5℃				
.0	to Soldering Heat			Test Time	10+/-1s				
		I.R.	Within the specified initial value	Post-treatment	Let sit for 24+/-2hours at room temperature, then measure.				
				Per AEC-Q200-00	02				
		Appearance	No defects or abnormalities.		FAIL PASS				
14	ESD	Cap. Change	Within the specified initial value	FAIL PASS	PASS FAIL PASS FAIL PASS				
14		Q or D.F.	Within the specified initial value	500 V DC 1 kV DC DC 1 kV DC 1 kV DC DC 1 kV DC 1	2 kV DC DC DC BkV DC 12 kV AD SkV AD				
		I.R.	Within the specified initial value	electrostatic volta component HBM	ed according to the highest level of ge under static test. Flow chart of passive anti-static test act discharge, AD = air discharge)				

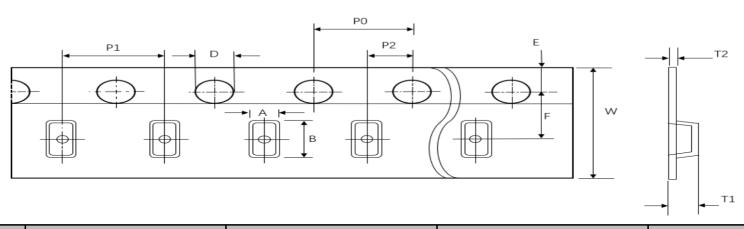
No	Item	Specification		Test Meth	od(Ref. Standa	rd:AEC—Q200)		
				Pre-treatm	ent P	erform a heat treatment at 155°C		
				Flux	S	olution of rosin ethanol 25(mass)%		
		050/ 6/1		Kind of So	lder S	n-3.0Ag-0.5Cu(Lead Free Solder)		
15	Solderability (a)	95% of the term continuously	ninations is to be soldered evenly and	Solder Ter		n-3.0Ag-0.5Cu solder solution at 45+/-5 $^{\circ}\mathrm{C}$		
				Immersion	time 5	+0/-0.5s		
				Immersion a	nd emersion rate 2	5+/-5mm/s		
		Capacitance	Shown in Rated value	Test Temp	perature	25 ℃		
		0 0 5		Test Frequ	iency	1.0+/-0.1MHz		
		Q or D.F.	Plz refer to the single specification	Test Volta	ge	1.0±0.2Vrms		
				Test Temp	erature	25 ℃		
		I.R.	Within the specified initial value	Test Volta	ge	Plz refer to the single specification		
		I.K.	within the specified initial value	Charging ⁻	Гіте	1min		
				Charge/dis	scharge current	50mA max		
	Floatrical			Material	Rate Voltage	Test Voltage		
16	Electrical Characterization				RV≤50V	300% RV		
					50V < RV≤10	0V 250% RV		
				C0G	100V < RV≤2	50V 200% RV		
		Voltage proof	No defects or abnormalities.		250V < RV≤5	00V 150% RV		
		Vollago proof	nte delecte of demonstance.		500V < RV≤10	00V 130% RV		
					RV≤100V	250% RV		
				X7R		50V 200%RV		
					250V < RV≤6	30V 150% RV		
					630V < RV≤10	/ 120% RV		

No	Item	Specification		Test Method(Re	ef. Standard:AEC—Q200)
				Mounting Method	Solder the capacitor on the test substrate
		Appearance	No defects or abnormalities.	Test Method	Apply force at 1mm/s to bend it, with a jig radius of 340mm
		Cap. Change	Plz refer to the single specification	Flexure	C0G:3mm X7R:2mm
17	Board Flex	Cap. Change	1 12 Telef to the single specimeation	Holding Time	60s
17	Board Flex	Q or D.F.	Within the specified initial value	b lit	- ф4.5 VISSCH47 尺寸 a b c 0201 0.3 0.9 0.3 0402 0.5 1.5 0.6 0603 0.6 2.2 0.9 0805 0.8 3 1.3
		I.R.	Within the specified initial value	a	1206 2 4.4 1.7
		Appearance	No defects or abnormalities.	Mounting method	dSolder the capacitor on the test substrate
		Can Changa	Within the appoified initial value		keep applying 17.7N (1.8Kg)
	Terminal	Cap. Change	Within the specified initial value		*0402 Apply 2N
18	Strength	Q or D.F.	Within the specified initial value	Applied Force	*0201 Apply 1N Note: Apply the force gradually so as not to impact the parts under test
		I.R.	Within the specified initial value	Holding Time	60+1s
				Speed supplied t	the Stress Load 0.1mm/s
		The tolerance s	should exceed the following values:	Placement diagra	am:
		Size L≤2.5mm	Size L≧3.2mm	[Size L≤2.5mm]	[Size L≧3.2mm]
19	Beam Load Test	Thickness > 0.5	5mm:20N Thickness ≥ 1.25mm:54N	n	
		Thickness≦0.5	5mm:8N Thickness<1.25mm:15N	V	0.6L Fig. d.


No	Item	Specification	Specification			Test Method(Ref. Standard:AEC—Q200)		
			The nominal value of the temperature	each spec	cified temp. sta	e should be measured after 5 min at age. reference is the value in "*" marked		
20	Temperature Characteristics o	Cap. Change	coefficient is shown in the rating. The change of capacitance at reference temperature is shown in Table A.	Cap. Cha		Tolerance changes are calculated by dividing the difference between the maximum and minimum values Less than 1.0Vrms (Refer to the individual data sheet)		
		C0G: ± 30ppm X7R: ± 15%	/°C	Temperat Step 1 2 3* 4	Min. Ope Ref. Tem Max. Ope	•		

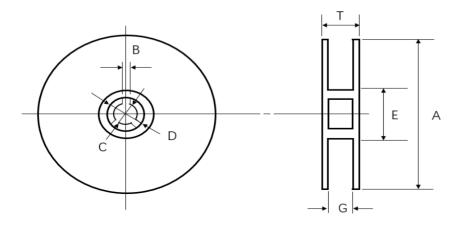
Product Packaging

At present, the most common way of packaging is to carry coil packaging. A coil with a diameter of 180mm (7") can contain 1000~20000 capacitors, or coil packaging can be carried out according to customer requirements.


1. Tape Size

	01005	0201	0402	0603	0805	1206	
	(0402)	(0603)	(1005)	(1608)	(2012)	(3216)	
P1	2.0	00±0.05(1.0 ±0.0)5)		4.00±0.10		
P0		4.00±0.10		4.00±0.10			
P2		2.00±0.05		2.00±0.05			
А	0.25±0.02	0.38±0.03	0.62±0.05	1.00±0.01	1.55±0.10	2.05±0.10	
В	0.46±0.02	0.68±0.03	1.12±0.05	1.90±0.10	2.30±0.10	3.60±0.10	
W	8.00±0.30			8.00±0.30			
E	E			1.75±0.10			
F		3.50±0.05		3.50±0.05			
D	φ1.50+0.10/-0.03		3	φ1.50+0.10/-0			
t	0.25±0.02	0.35±0.03	0.60±0.05		1.1Below		

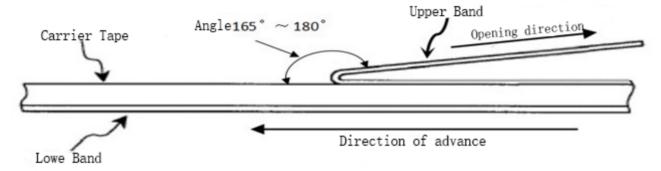
2. Plastic Size



	0603 (1608)	0805 (2012)	1206 (3216)	1210 (3225)
P1	4±0.1	4±0.1	4±0.1	4±0.1
P0	4±0.1	4±0.1	4±0.1	4±0.1
P2	2±0.05	2±0.05	2±0.05	2±0.05
А	1.2±0.2	1.45±0.2	1.9±0.2	2.8±0.2
В	2.0±0.2	2.3±0.2	3.5±0.2	3.6±0.2
W	8±0.3	8±0.2	8±0.2	8±0.2
E	1.75±0.1	1.75±0.1	1.75±0.1	1.75±0.1
F	3.5±0.05	3.5±0.05	3.5±0.05	3.5±0.05
D	1.5 (+0.1/-0.0)	1.5 (+0.1/-0.0)	1.5 (+0.1/-0.0)	1.5 (+0.1/-0.0)
T1	1.4 max	2.5 max.	2.5 max.	2.5 max.
T2	0.25±0.1	0.305±0.1	0.30±0.1	0.30±0.1

16

3. Disk Size



Disk Size	A	B	C	D	E	G	T
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
7"Reel	Ф178±2.0	2.0±0.5	Ф13±1.0	Φ21±0.8	Φ50 或更大	10±1.0	13±1.0

4. Instructions for use of reel tape

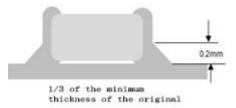
When the finished product is in use, the upper band (film) is at a speed of 300 ± 10 mm/min, an Angle of $165^{\circ} \sim 180^{\circ}$ (as shown below), and the peeling strength is $0.1N \sim 0.7N$ ($10g.f \le peeling force \le 70g.f$).

17

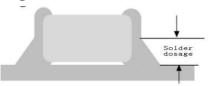
Precautions for use

Multi-layer Ceramic Chip Capacitors(MLCC) may have short circuit or open circuit under the harsh working environment beyond the use frequency described in this letter of admission or related instructions, or under the action of external mechanical force overpressure. Or it may smoke, burn or even explode, so when using, we should first consider to follow the relevant instructions in this acknowledgement, if there is anything unclear, please contact our technical department, Quality Control Department or production Department.

18

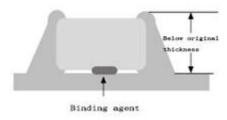

1. The amount of solder used in welding

A. Too much solder will cause capacitor damage due to excessive pressure at the capacitor end.

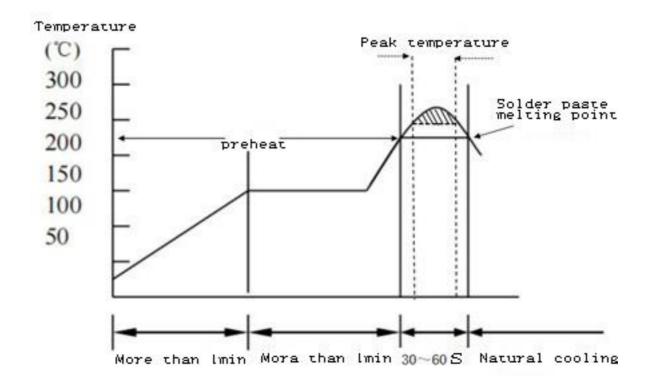


2. Recommended amount of solder:

A. Optimal amount of solder for reflow welding

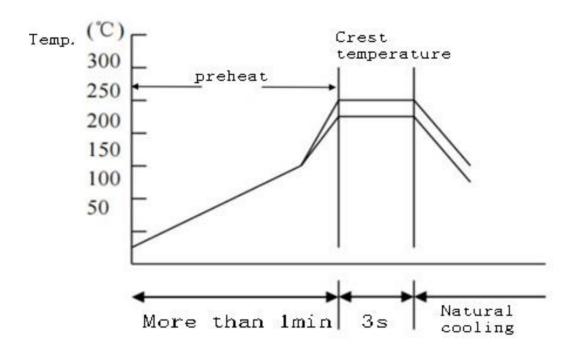

C. The optimal amount of solder used for repair with soldering iron

B.Too little solder fixed force is insufficient, may cause capacitor chip and line contact is poor.


B. Optimum amount of solder for wave soldering

3. Recommended welding temperature curve:

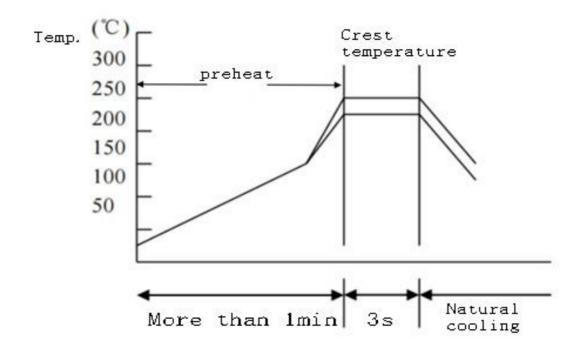
Reflow welding



Solder type	Pb-Sn welding	Lead-free welding		
Peak temperature	230°C ~ 250°C	240°C ~ 260°C		
Peak time	3s ~ 10s	3s ~ 10s		

19

Wave soldering



Solder type	Pb-Sn welding	Lead-free welding		
Peak temperature	230°C ~ 260°C	240℃~270℃		
Peak time	Within 3s	Within 3s		

Hand welding

Manual welding is easy to cause micro-cracking or partial cracking of porcelain because of uneven local heating of capacitor. Therefore, the use of electric iron manual welding should be carefully operated, and the choice of the tip of the electric branding iron and tip temperature control should be more careful.

Preheat	Temperature	Power	Diameter	Time	Tin paste	Notice
△≤130°C	≤350°C	≤20W	Recommended 1mm	≤3s	≤1/2 Capacitance height	Do not contact the iron head directly with the ceramic body

21

版本	修订日期	修订内容叙述
CAI-A-2023-01	2023/2/25	Initial issue
CAI-A-2023-02	2023/6/25	1. Update the tolerance range legend
		2. Update the packaging quantity
		3. Update the Feature content

22

单击下面可查看定价,库存,交付和生命周期等信息

>>HRE(芯声)