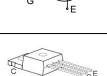


Low Loss IGBT : IGBT in TRENCHSTOP[™] and Fieldstop technology

Features:

- Very low V_{CE(sat)} 1.5V (typ.) •
- Maximum Junction Temperature 175°C
- Short circuit withstand time 5µs •
- Designed for : •
 - Frequency Converters
 - Uninterrupted Power Supply
- TRENCHSTOP[™] and Fieldstop technology for 600V applications offers :
 - very tight parameter distribution
 - high ruggedness, temperature stable behavior
 - very high switching speed
 - low V_{CE(sat)}
- Positive temperature coefficient in $V_{CE(sat)}$
- Low EMI •
- Low Gate Charge •
- Qualified according to JEDEC¹ for target applications
- Pb-free lead plating; RoHS compliant •
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/


Туре	V _{CE}	I _C	V _{CE(sat),Tj=25℃}	T _{j,max}	Marking	Package
IGP50N60T	600 V	50 A	1.5 V	175 °C	G50T60	PG-TO220-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage, $T_j \ge 25^{\circ}C$	V _{CE}	600	V
DC collector current, limited by T_{jmax}			
$T_{\rm C}$ = 25°C, value limited by bondwire	I _C	90	^
$T_{\rm C} = 100^{\circ}{\rm C}$		64	A
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	150	
Turn off safe operating area, $V_{CE} = 600V$, $T_j = 175^{\circ}C$, $t_p = 1\mu s$	-	150	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²⁾	4	5	
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 400$ V, $T_{\rm j} \le 150^{\circ}$ C	t _{sc}	5	μs
Power dissipation $T_{\rm C} = 25^{\circ}{\rm C}$	P _{tot}	333	W
Operating junction temperature	Tj	-40+175	
Storage temperature	T _{stg}	-55+150	°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

¹ J-STD-020 and JESD-022

²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

PG-TO220-3

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		0.45	K/W
junction – case				
Thermal resistance,	R _{thJA}		62	
junction - ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Devemeter	Sumbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{GE}=0V, I_{C}=0.2mA$	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 V, I_{\rm C} = 50 A$				
		T _j =25°C	-	1.5	2.0	
		<i>T</i> _j =175°C	-	1.9	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}=0.8$ mA, $V_{\rm CE}=V_{\rm GE}$	4.1	4.9	5.7	
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μA
		T _j =25°C	-	-	40	
		<i>T</i> _j =175°C	-	-	3500	
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 \text{V}, V_{\rm GE} = 20 \text{V}$	-	-	100	nA
Transconductance	g fs	$V_{\rm CE} = 20 V, I_{\rm C} = 50 A$	-	31	-	S
Integrated gate resistor	R _{Gint}			-		Ω

Dynamic Characteristic

-						
Input capacitance	Ciss	V _{CE} =25V,	-	3140	-	pF
Output capacitance	Coss	$V_{\rm GE}=0V$,	-	200	-	
Reverse transfer capacitance	Crss	f=1MHz	-	93	-	
Gate charge	Q _{Gate}	$V_{\rm CC} = 480 \text{V}, I_{\rm C} = 50 \text{A}$	-	310	-	nC
		$V_{GE}=15V$				
Internal emitter inductance	LE	PG-TO-220-3-1	-	7	-	nH
measured 5mm (0.197 in.) from case		PG-TO-247-3-21	-	13	-	
Short circuit collector current ¹⁾	I _{C(SC)}	$V_{GE} = 15V, t_{SC} \le 5\mu s$ $V_{CC} = 400V,$	-	458.3	-	A
		$T_{\rm j} \leq 150^{\circ}{ m C}$				

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

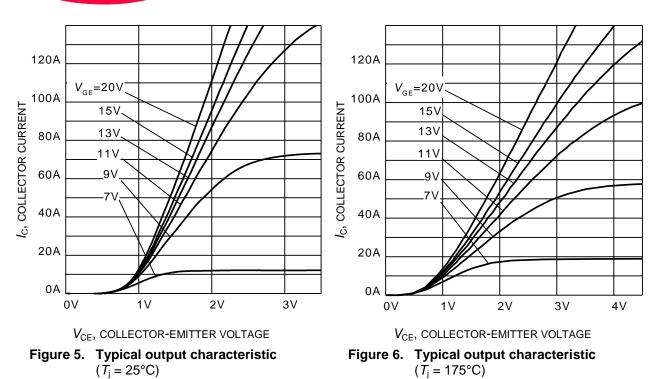
IGP50N60T

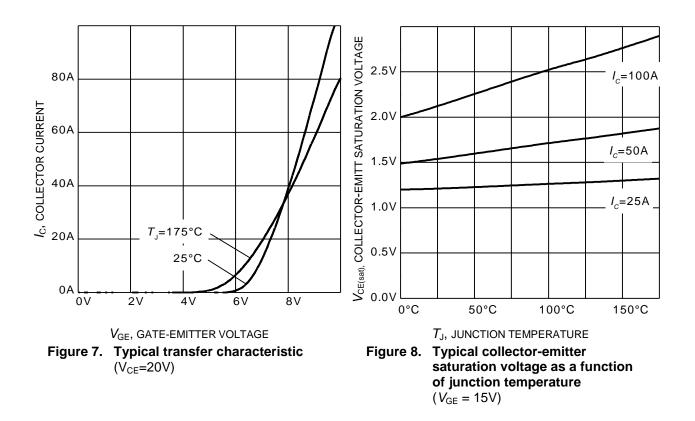
Switching Characteristic, Inductive Load, at $T_j=25$ °C

Parameter	Symbol	Conditions	Value			11
			min.	Тур.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	$T_{j}=25^{\circ}C,$	-	26	-	ns
Rise time	t _r	V _{CC} =400V, I _C =50A, V _{GE} =0/15V, r _G =7Ω,	-	29	-	
Turn-off delay time	$t_{d(off)}$	L_{σ} =103nH, C_{σ} =39pF	-	299	-	
Fall time	t _f	L_{σ} , C_{σ} from Fig. E Energy losses include "tail" and diode reverse recovery. Diode from IKW50N60T	-	29	-	
Turn-on energy	Eon		-	1.2	-	mJ
Turn-off energy	E _{off}		-	1.4	-	
Total switching energy	Ets		-	2.6	-	

Switching Characteristic, Inductive Load, at T_j =150 °C

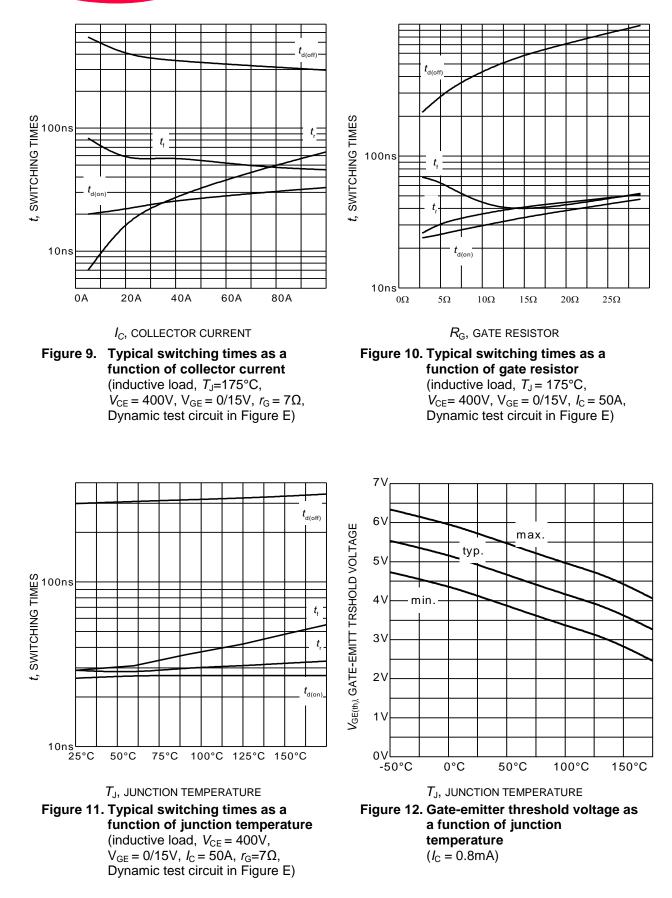
Parameter	Symbol	Conditions	Value			Unit
			min.	Тур.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	$T_{j}=175^{\circ}C,$	-	27	-	ns
Rise time	t _r	$V_{CC}=400V, I_{C}=50A,$ $V_{GE}=0/15V, r_{G}=7\Omega,$ $L_{\sigma}=103nH, C_{\sigma}=39pF$ L_{σ}, C_{σ} from Fig. E Energy losses include "tail" and diode reverse recovery. Diode from IKW50N60T	-	33	-	
Turn-off delay time	$t_{d(off)}$		-	341	-	
Fall time	t _f		-	55	-	
Turn-on energy	Eon		-	1.8	-	mJ
Turn-off energy	E _{off}		-	1.8	-	
Total switching energy	Ets		-	3.6	-	




IGP50N60T

=2115 140A 100A 120A *l*_c, COLLECTOR CURRENT 909 V 00 V V V V V 10µs (c, COLLECTOR CURRENT =80°C 7 10A 50µs $T_c = 110^{\circ}C$ I_c Ħ 1ms ш 20A l_c 1A DC 10ms 0A 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 1. Collector current as a function of Figure 2. Safe operating area switching frequency $(D = 0, T_{\rm C} = 25^{\circ}{\rm C}, T_{\rm i} \le 175^{\circ}{\rm C};$ $({\it T}_i \le 175^{\circ}C, \ {\it D}=0.5, \ {\it V}_{CE}=400V,$ $V_{GE} = 0/15V$ $V_{\rm GE} = 0/15 {\rm V}, r_{\rm G} = 7 {\Omega}$ 90A 300W 80A 70A POWER DISSIPATION 250W COLLECTOR CURRENT 60A 200W 50A 150W 40A 30A ۇ 100W Ú, 20A 50W 10A I_{cmax} max. current limited by bondwire 0A 0₩<u></u> 25°C 75°C 100°C 125°C 150°C 50°C 75°C 100°C 125°C 150°C 25°C 50°C $T_{\rm C}$, CASE TEMPERATURE $T_{\rm C}$, CASE TEMPERATURE Figure 3. Power dissipation as a function Figure 4. Collector current as a function of of case temperature case temperature $(T_{i} \le 175^{\circ}C)$ $(V_{GE} \ge 15V, T_j \le 175^{\circ}C)$

IGP50N60T



IGP50N60T

TRENCHSTOP™ Series

IGP50N60T TRENCHSTOP[™] Series

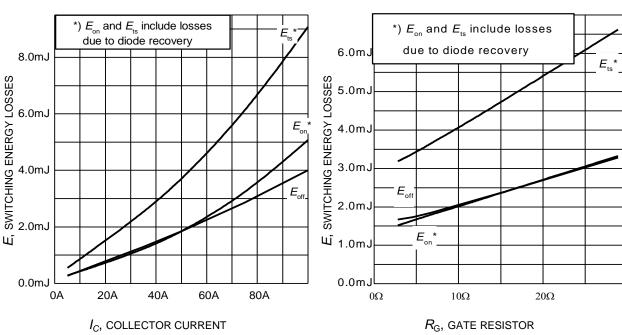
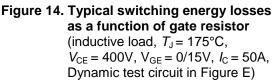
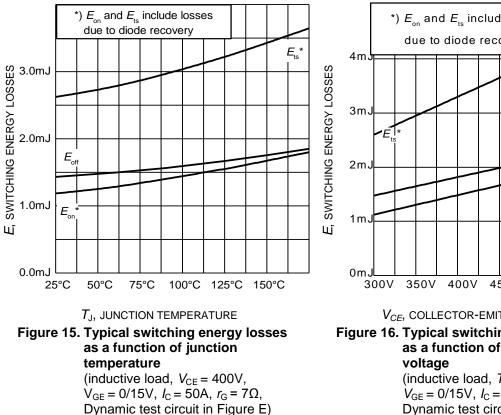
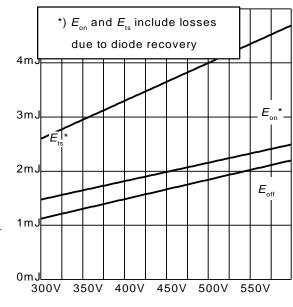
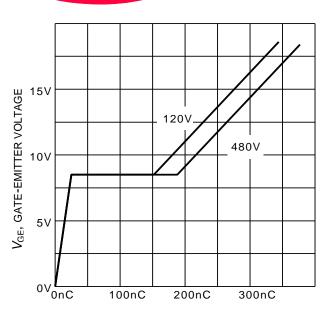
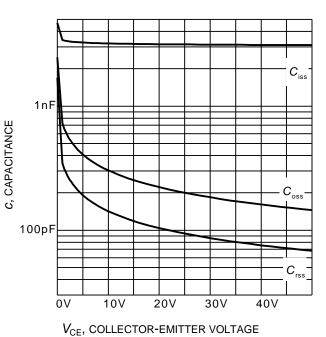
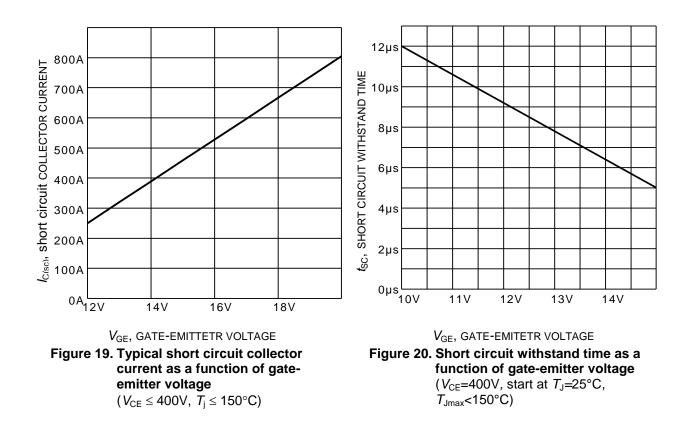





Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_J = 175^{\circ}C$, $V_{\rm CE} = 400$ V, $V_{\rm GE} = 0/15$ V, $r_{\rm G} = 7\Omega$, Dynamic test circuit in Figure E)

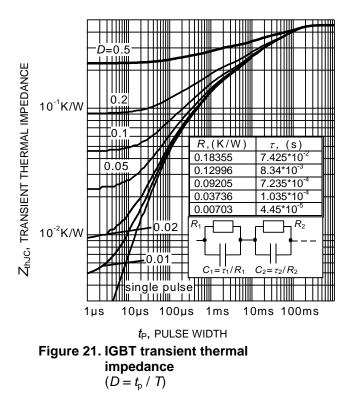



 V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter (inductive load, $T_J = 175^{\circ}$ C,

 $V_{\rm GE} = 0/15 \text{V}, I_{\rm C} = 50 \text{A}, r_{\rm G} = 7 \Omega,$ Dynamic test circuit in Figure E)

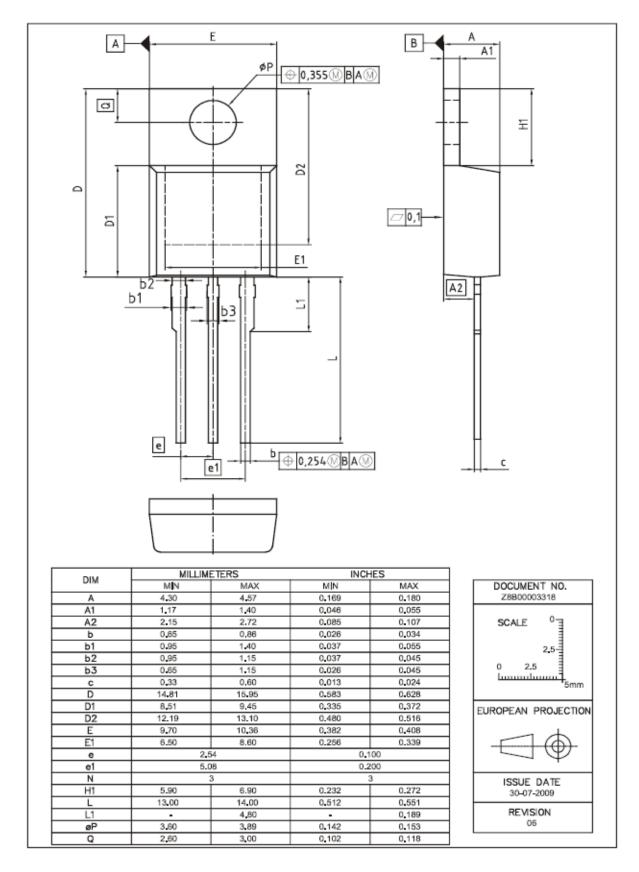


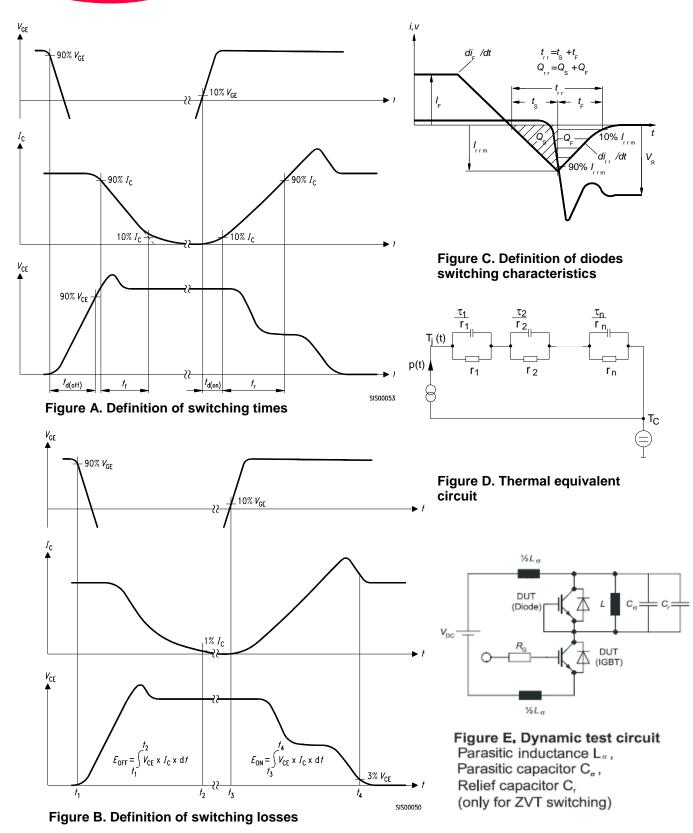
 Q_{GE} , GATE CHARGE Figure 17. Typical gate charge $(I_C=50 \text{ A})$



IGP50N60T

Figure 18. Typical capacitance as a function of collector-emitter voltage $(V_{GE}=0V, f = 1 \text{ MHz})$




TRENCHSTOP[™] Series

PG-TO220-3

IGP50N60T

Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon(英飞凌)