

PD-94640 RevI IRAMS10UP60A *MOTION*[™] Series 10A, 600V

Plug N Drive[™] Integrated Power Module for Appliance Motor Drive

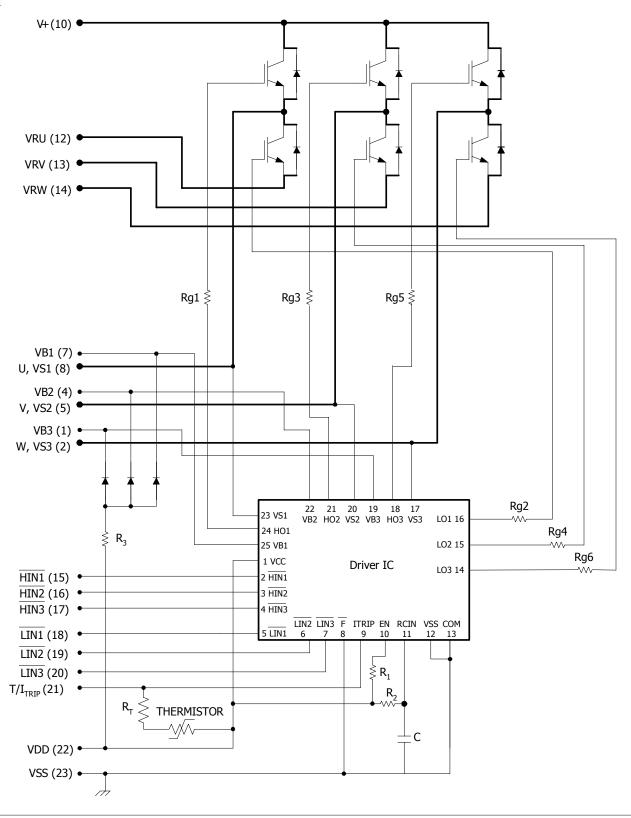
Description

International Rectifier's IRAMS10UP60A is an Integrated Power Module developed and optimized for electronic motor control in appliance applications such as washing machines and refrigerators. Plug N Drive technology offers an extremely compact, high performance AC motor-driver in a single isolated package for a very simple design.

A built-in temperature monitor and over-temperature/over-current protection, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation.

The integration of the bootstrap diodes for the high-side driver section, and the single polarity power supply required to drive the internal circuitry, simplify the utilization of the module and deliver further cost reduction advantages.

Features


- Integrated Gate Drivers and Bootstrap Diodes.
- Temperature Monitor
- Temperature and Overcurrent shutdown
- Fully Isolated Package.
- Low VCE (on) Non Punch Through IGBT Technology
- Under-voltage lockout for all channels
- Matched propagation delay for all channels
- Low side IGBT emitter pins for current conrol
- Schmitt-triggered input logic
- Cross-conduction prevention logic
- Lower di/dt gate driver for better noise immunity
- Recognized by UL (E252584), RoHS Compliant

Absolute Maximum Ratings

Parameter	Description	Max. Value	Units
V _{CES}	Maximum IGBT Blocking Voltage	600	V
V ⁺	Positive Bus Input Voltage	450	v
I ₀ @ T _C = 25°C	RMS Phase Current	10	
I _o @T _c =100°C	RMS Phase Current	5	Α
I _{pk}	Maximum Peak Phase Current (tp<100ms)	15	
F _p	Maximum PWM Carrier Frequency	20	kHz
P _d	Maximum Power dissipation per Phase	20	W
V _{iso}	Isolation Voltage (1min)	2000	V _{RMS}
T _{J (IGBT & Diodes)}	Operating Junction temperature Range	-40 to +150	00
T _{J (Driver IC)}	Operating Junction temperature Range	-40 to +150	°C
Т	Mounting torque Range (M3 screw)	0.8 to 1.0	Nm

Internal Electrical Schematic - IRAMS10UP60A

Inverter Section Electrical Characteristics @ $T_J = 25^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V_{IN} =0V, I _C =20µA
$\Delta V_{(BR)CES} / \Delta T$	Temperature Coeff. Of Breakdown Voltage		0.57		V/°C	V _{IN} =0V, I _C =1.0mA (25°C - 150°C)
M	Collector-to-Emitter Saturation		1.7	2.0	v	$I_{C}=5A$ $T_{J}=25^{\circ}C$, $V_{DD}=15V$
V _{CE(ON)}	Voltage		2.0	2.4	v	$I_C=5A$ $T_J=150^{\circ}C$
т	Zero Gate Voltage Collector		5	15		V _{IN} =5V, V ⁺ =600V
I _{CES}	Current-to-Emitter		10	40	μA	V _{IN} =5V, V ⁺ =600V, T _J =150°C
$I_{\text{lk}_{\text{module}}}$	Zero Gate Phase-to-Phase Current			50	μA	V _{IN} =5V, V ⁺ =600V
V _{FM}	Diada Fanward Valtaga Drop		1.8	2.35	v	I _C =5A
	Diode Forward Voltage Drop		1.3	1.7	- V	I _C =5A, T _J =150°C

Inverter Section Switching Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
Eon	Turn-On Switching Loss		200	235		I _C =5A, V ⁺ =400V
E _{off}	Turn-Off Switching Loss		75	100	μJ	V_{DD} =15V, L=1mH
E _{tot}	Total Switching Loss		275	335		See CT1
Eon	Turn-on Swtiching Loss		300	360		T _J =150°C
E _{off}	Turn-off Switching Loss		135	165	μJ	Energy losses include "tail" and
E _{tot}	Total Switching Loss		435	525		diode reverse recovery
Erec	Diode Reverse Recovery energy		30	40	μJ	$T_J=150^{\circ}C, V^+=400V V_{DD}=15V,$
t _{rr}	Diode Reverse Recovery time		100	145	ns	I _F =5A, L=1mH
RBSOA	Reverse Bias Safe Operating Area	FL	JLL SQUA	RE		T_J =150°C, I_C =5A, V_P =600V V ⁺ =480V, V_{DD} =+15V to 0V See CT3
SCSOA	Short Circuit Safe Operating Area	10			μs	$\begin{array}{ll} T_{\rm J}{=}150^{\circ}{\rm C}, \ V_{\rm P}{=}600V, \\ V^{+}{=}360V, \\ V_{\rm DD}{=}{+}15V \ to \ 0V \qquad \ \ {\rm See \ CT2} \end{array}$

Thermal Resistance

Symbol	Parameter	Min	Тур	Max	Units	Conditions
R _{th(J-C)}	Junction to case thermal resistance, each IGBT under inverter operation.		4.2	4.7	°C/W	
R _{th(J-C)}	Junction to case thermal resistance, each Diode under inverter operation.		5.5	6.5	°C/W	Flat, greased surface. Heatsink compound thermal conductivity - 1W/mK
R _{th(C-S)}	Thermal Resistance case to sink		0.1		°C/W	

International

Absolute Maximum Ratings Driver Function

Absolute Maximum Ratings indicate substaines limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{SS} (Note 1)

Symbol	Definition	Min	Max	Units
V _{S1,2,3}	High Side offset voltage	-0.3	600	V
V _{B1,2,3}	High Side floating supply voltage	-0.3	20	V
V _{DD}	Low Side and logic fixed supply voltage	-0.3	20	V
V _{IN}	Input voltage LIN, HIN, T/I _{TRIP}	-0.3	7	V
Tj	Juction Temperature	-40	150	°C

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to V_{SS} . The V_S offset is tested with all supplies biased at 15V differential (Note 1). All input pin (V_{IN}) and I_{TRIP} are clamped with a 5.2V zener diode and pull-up resistor to V_{DD}

Symbol	Definition	Min	Max	Units
V _{B1,2,3}	High side floating supply voltage	V _s +12	V _s +20	V
V _{S1,2,3}	High side floating supply offset voltage	Note 2	450	v
V _{DD}	Low side and logic fixed supply voltage	12	20	V
V _{ITRIP}	T/I _{TRIP} input voltage	V _{SS}	V _{ss} +5	v
V _{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{ss} +5	V

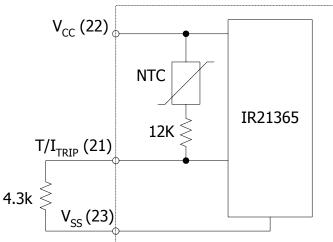
Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC}, $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. (Note 1)

Symbol	Definition	Min	Тур	Max	Units
V _{IN,th+}	Positive going input threshold	3.0			V
V _{IN,th} -	Negative going input threshold			0.8	V
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage Positive going threshold	10.6	11.1	11.6	V
V _{CCUV-} V _{CC} and V _{BS} supply undervoltage V _{BSUV-} Negative going threshold		10.4	10.9	11.4	V
V _{CCUVH} V _{BSUVH}	V_{CC} and V_{BS} supply undervoltage $\mathbf{I}_{lockout}$ hysteresis	0.2			v
I _{QBS}	Quiescent V _{BS} supply current	70 120 µ		μA	
I _{QCC}	Quiscent V _{cc} supply current		1.6	2.3	mA
I _{LK}	Offset Supply Leakage Current			50	μA
I _{IN+}	Input bias current (OUT=LO)		100	220	μA
I _{IN+}	Input bias current (OUT=HI) 20		200	300	μA
V(I _{TRIP})	I _{TRIP} threshold Voltage (OUT=HI or OUT=LO)	3.85	4.3	4.75	V

Dynamic Electrical Characteristics

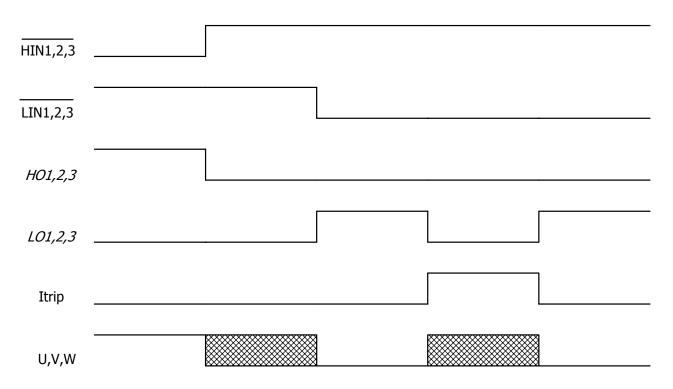
 $V_{DD}=V_{BS}=V_{BIAS}=15V, I_{o}=1A, V_{D}=9V, PWM_{IN}=2kHz, V_{IN_ON}=V_{IN_th+}, V_{IN_OFF}=V_{IN_th+}, V_{IN_th+}, V_{IN_OFF}=V_{IN_th+}, V_{IN_th+}, V$

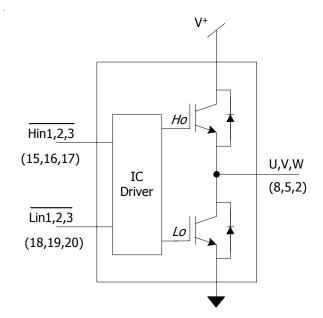

Symbol	Definition	Min	Тур	Max	Units
T _{ON}	Input to output propagation turn-on delay time (see fig. 11)	-	470	-	ns
T _{OFF}	Input to output propagation turn-off delay time (see fig. 11)	-	615	-	ns
D _T	Dead Time	-	300	-	ns
I/T _{Trip}	T/I_{Trip} to six switch to turn-off propagation delay (see fig. 2)	-	750	-	ns
T _{FCLTRL}	Post I_{Trip} to six switch to turn-off clear time (see fig. 2)	-	9	-	ms

Internal NTC - Thermistor Characteristics

Para	meter	Тур	Units	Conditions
R ₂₅	Resistance	100 +/- 5%	kΩ	T _c = 25°C
R ₁₂₅	Resistance	2.522 + 17.3 % /- 14.9%	kΩ	T _c = 125°C
В	B-Constant (25-50°C)	4250 +/- 3%	k	$R_2 = R_1 e^{[B(1/T2 - 1/T1)]}$
Temperature Range		-40 / 125	°C	
Typ. Dissipation constant		1	mW/°C	T _c = 25°C

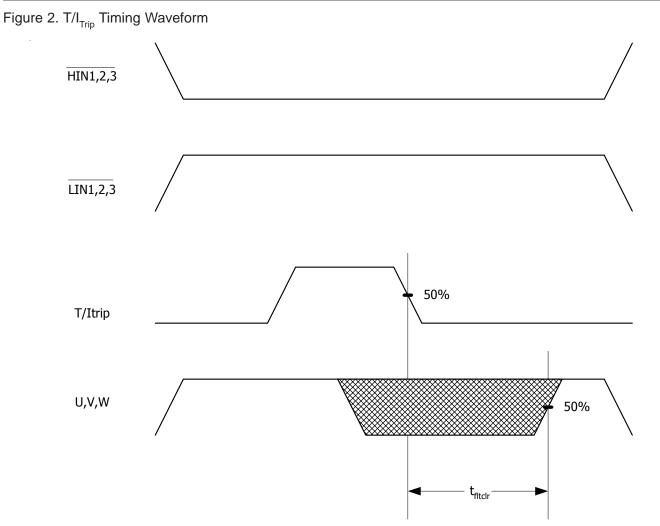
Note 1: For more details, see IR21365 data sheet


Note 2: Logic operational for V_s from V⁻-5V to V⁻+600V. Logic stata held for V_S from V⁻-5V to V⁻-V_{BS}. (Please refer to DT97-3 for more details)


Thermistor Built-in IRAMS10UP60A

Note 3: The Maximum recommended sense voltage at the T/I_{TRIP} terminal under normal operating conditions is 3.3V.

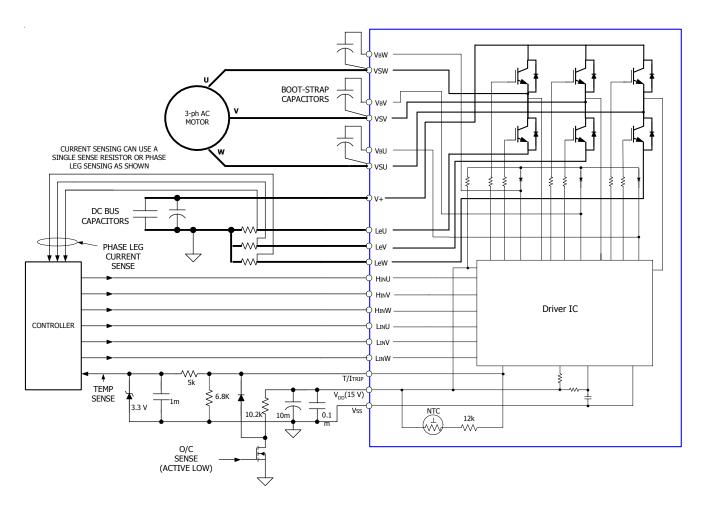
Figure1. Input/Output Timing Diagram


Note 4: The shaded area indicates that both high-side and low-side switches are off and therefore the halfbridge output voltage would be determined by the direction of current flow in the load.

Itrip	HIN1,2,3	LIN1,2,3	U,V,W
0	0	1	Vbus
0	1	0	0
0	1	1	Х
1	Х	Х	Х

International **IOR** Rectifier

IRAMS10UP60A



Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the halfbridge output voltage would be determined by the direction of current flow in the load.

Module Pin-Out Description

Pin	Name	Description
1	VB3	High Side Floating Supply Voltage 3
2	W,VS3	Output 3 - High Side Floating Supply Offset Voltage
3	na	none
4	VB2	High Side Floating Supply voltage 2
5	V,VS2	Output 2 - High Side Floating Supply Offset Voltage
6	na	none
7	VB1	High Side Floating Supply voltage 1
8	U,VS1	Output 1 - High Side Floating Supply Offset Voltage
9	na	none
10	V+	Positive Bus Input Voltage
11	na	none
12	LE1	Low Side Emitter Connection - Phase 1
13	LE2	Low Side Emitter Connection - Phase 2
14	LE3	Low Side Emitter Connection - Phase 3
15	HIN1	Logic Input High Side Gate Driver - Phase 1
16	HIN2	Logic Input High Side Gate Driver - Phase 2
17	HIN3	Logic Input High Side Gate Driver - Phase 3
18	LIN1	Logic Input Low Side Gate Driver - Phase 1
19	LIN2	Logic Input Low Side Gate Driver - Phase 2
20	LIN3	Logic Input Low Side Gate Driver - Phase 3
21	T/Itrip	Temperature Monitor and Shut-down Pin
22	VCC	+15V Main Supply
23	VSS	Negative Main Supply

Typical Application Connection IRAMS10UP60A

1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.

2. In order to provide good decoupling between V_{CC} -Gnd and V_B - V_{SS} terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically 0.1 μ F, are strongly recommended.

3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9.

4. Low inductance shunt resistors shuld be used for phase leg current sensing. Similarly, the length of the traces between pins 12, 13 and 14 to the corrisponding shunt resistors should be kept as small as possible.

5. Over-current sense signal can be obtained from external hardware detecting excessive instantaneous current in inverter.

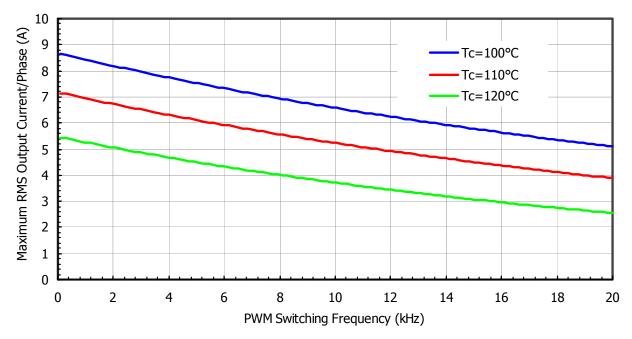


Figure 3. Maximum sinusoidal phase current as function of switching frequency $V_{BUS}{=}400V,\,T_j{=}150^{\circ}\text{C},\,\text{Modulation Depth}{=}0.8,\,\text{PF}{=}0.6$

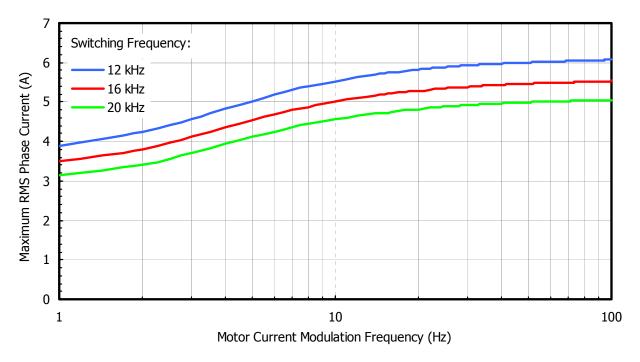


Figure 4. Maximum sinusoidal phase current as function of modulation frequency V_{BUS}=400V, T_j =150°C, T_c =100°C, Modulation Depth=0.8, PF=0.6

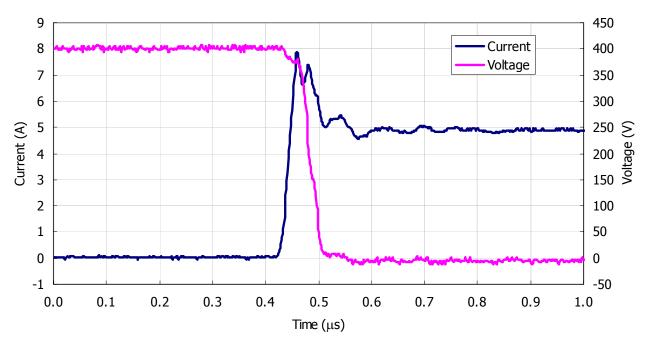


Figure 5. IGBT Turn-on. Typical turn-on waveform $@T_j=125^{\circ}C$, $V_{BUS}=400V$

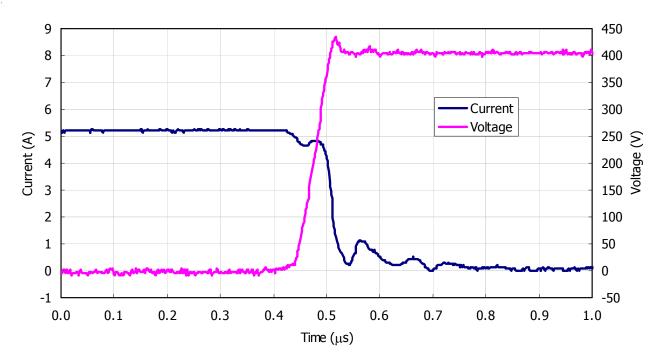


Figure 6. IGBT Turn-off. Typical turn-off waveform $@T_j=125^{\circ}C$, $V_{BUS}=400V$

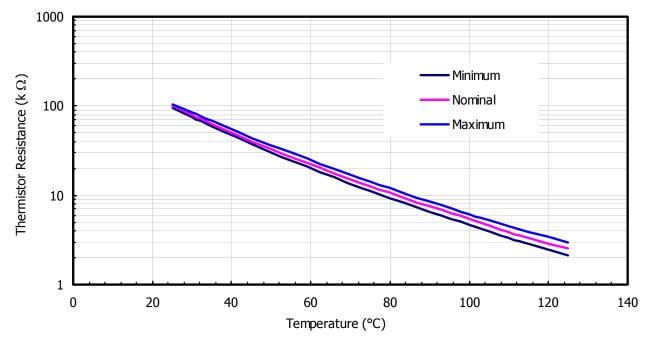


Figure 7. Variation of thermistor resistance with temperature

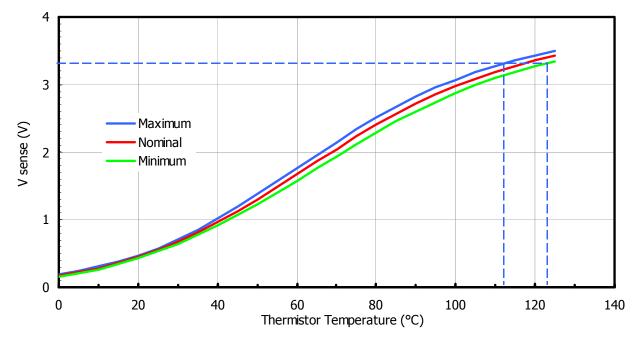


Figure 8. Variation of temperature sense voltage with thermistor temperature using external bias resistance of 4.3K $\Omega,$ V_{CC}=15V

International **IOR** Rectifier

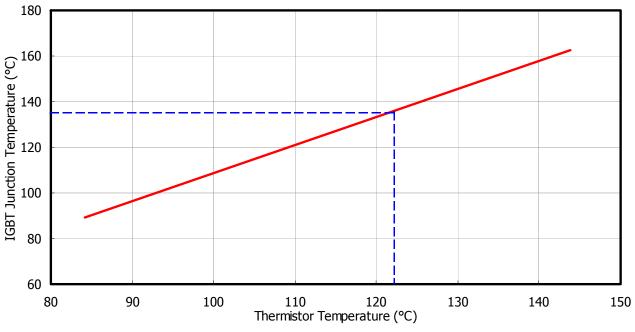
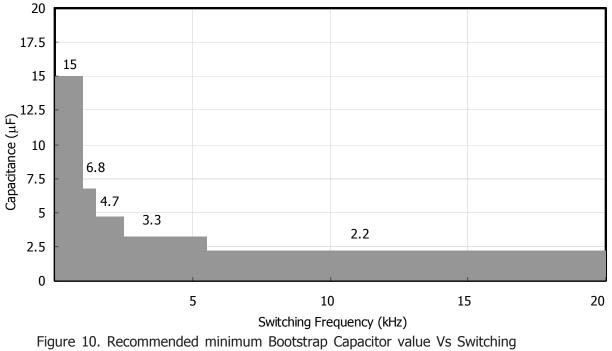



Figure 9. Estimated maximum IGBT junction temperature with thermistor temperature

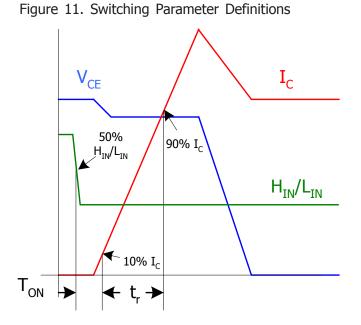


Figure 11a. Input to Output propagation turn-on delay time

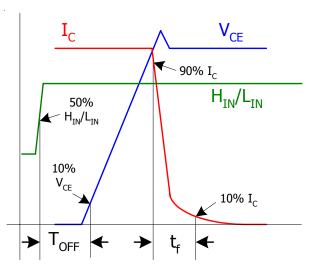
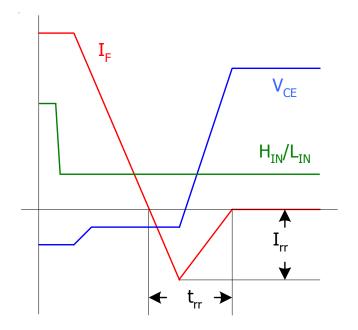
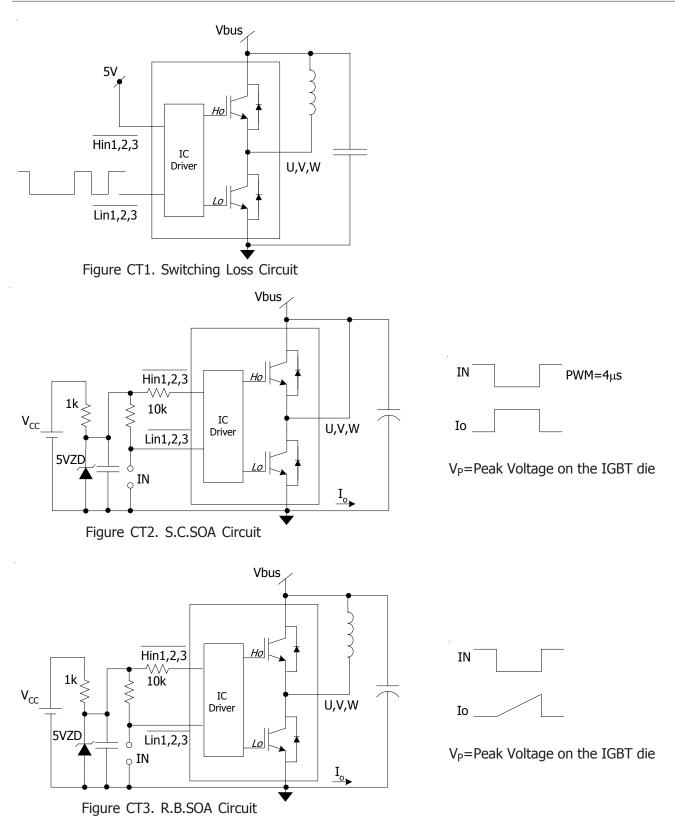
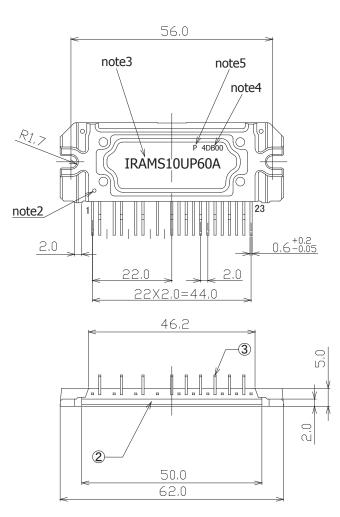


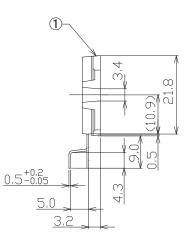
Figure 11b. Input to Output propagation turn-off delay timet


Figure 11c. Diode Reverse Recovery

International **IOR** Rectifier

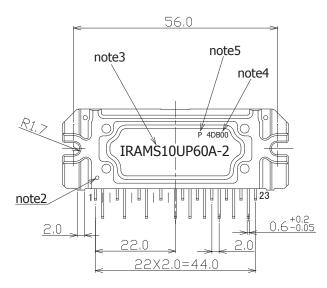
IRAMS10UP60A

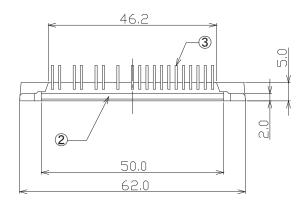


Package Outline IRAMS10UP60A

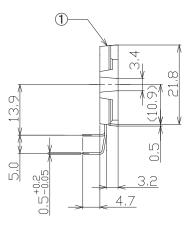
Dimensions in mm For mounting instruction see AN-1049

missing pin : 3,6,9,11




note1: Unit Tolerance is <u>+</u>0.5mm, Unless Otherwise Specified.

note2: Mirror Surface Mark indicates Pin1 Identification.


- note3: Part Number Marking. Characters Font in this drawing differs from Font shown on Module.
- note4: Lot Code Marking. Characters Font in this drawing differs from Font shown on Module.
- note5: "P" Character denotes Lead Free. Characters Font in this drawing differs from Font shown on Module.

Package Outline IRAMS10UP60A-2

Dimensions in mm For mounting instruction see AN-1049 missing pin: 3,6,9,11

- note1: Unit Tolerance is <u>+</u>0.5mm, Unless Otherwise Specified.
- note2: Mirror Surface Mark indicates Pin1 Identification.
- note3: Part Number Marking. Characters Font in this drawing differs from Font shown on Module.
- note4: Lot Code Marking. Characters Font in this drawing differs from Font shown on Module.
- note5: "P" Character denotes Lead Free. Characters Font in this drawing differs from Font shown on Module.

International

Data and Specifications are subject to change without notice **IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information 2012-12-19 单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon(英飞凌)