BGM681L11

GPS Front-End with high Out-of-Band Attenuation

Small Signal Discretes

Edition 2008-10-09

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2008. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Oct. 2008

Revision History: GPS Front-End with high Out-of-Band Attenuation, Rev.2.2

Page	Subjects (major changes since last revision)					
4	Updated Figure 1					
8	Updated Figure 2					
7	Updated Footnote 3)					
7	Updated Gain Switch Control Voltage Max. value					
5	Updated Product Description					

GPS Front-End with high Out-of-Band Attenuation

BGM681L11

1 GPS Front-End with high Out-of-Band Attenuation

Features

- Operating frequency: 1575.42 +/- 10 MHz
- · High Gain: 17.5 dB
- · Low Noise Figure: 1.9 dB
- Power down function
- Input compression point in GSM bands: 24 dBm
- · Input compression point in WLAN bands: 24 dBm
- Supply voltage: 2.4 V to 3.6 V
- · Tiny TSLP-11-1 leadless package
- · RF internally pre-matched
- RF output internally matched to 50 Ω
- RF input to antenna has 1 kV HBM ESD protection
- · Minimum need of only 5 external SMD parts
- Attenuation in GSM & UMTS bands > 50 dB
- RoHS compliant package

TSLP-11 Topview TSLP11_v2.vsd

TSLP-11-1 Topview (2.5 x 2.5 x 0.6 mm³)

Application

• 1575.42 MHz GPS

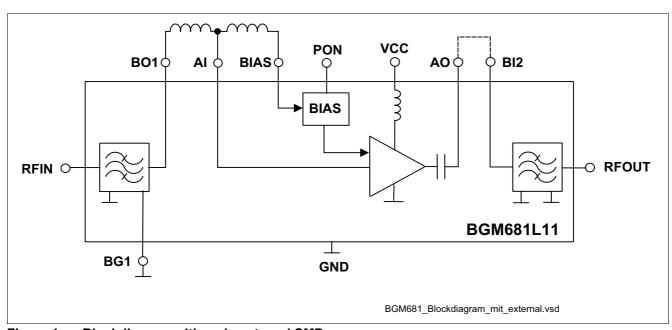


Figure 1 Blockdiagram with main external SMDs

Description

2 Description

The BGM681L11 is a combination of a low-insertion-loss input filter with Infineon's high performance low noise amplifier BGA615L7 and a high-attenuation output filter for Global Positioning System (GPS) applications. Through the low insertion loss of the filters, the BGM681L11 provides 17.5 dB gain, 1.9 dB noise figure and high linearity performance. In addition BGM681 provides very high out-of-band attenuation in conjunction with a high input compression point. Its current consumption is as low as 5.6 mA. It operates over the 2.4 V to 3.6 V supply voltage range.

Туре	Package	Marking
BGM681L11	TSLP-11-1	M681

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Symbol	Function	
1	BI2	Output-Filter Input	
2	PON	Power On	
3	VCC	Power Supply	
4	AO	LNA Output	
5	RFIN	RF Input	
6	BG1	Input-Filter GND	
7	BO1	Input-Filter Output	
8	Al	LNA Input	
9	BIAS	BIAS	
10	RFOUT	RF Output	
11	GND	Package Middle Island	

Maximum Ratings

Table 2 Maximum Ratings

Parameter ¹⁾	Symbol	Value	Unit
Voltage at pin BI2 to GND	V_{Bl2}	-1010	V
Voltage at pin PON to GND	V_{PON}	-0.33.6	V
Voltage at pin VCC to GND	$V_{\sf cc}$	-0.33.6	V
Voltage at pin AO to GND	V_{AO}	-0.3V _{CC} + 0.3	V
Voltage at pin RFIN to GND	V_{RFIN}	-1010	V
Voltage at pin BG1 to GND	V_{BG1}	-1010	V
Voltage at pin B01 to GND	V_{BO1}	-1010	V
Voltage at pin AI to GND	V_{AI}	-0.30.9	V
Voltage at pin BIAS to GND	V_{BIAS}	-0.30.9	V
Voltage at pin RFOUT to GND	V_{RFOUT}	-1010	V
Current into pin VCC	$I_{\sf VCC}$	25	mA
RF input power @ 1575 MHz	P_{IN}	10	dBm
Total power dissipation	P_{tot}	90	mW

Description

Table 2 Maximum Ratings (cont'd)

Parameter ¹⁾	Symbol	Value	Unit
Junction temperature	T_{J}	150	°C
Ambient temperature range	T_{A}	-30 85	°C
Storage temperature range	T_{STG}	-65 150	°C
ESD capability (HBM: JESD22A-114) of all pins except pins 6, 7 and 10	V_{ESD1}	1000	V
ESD capability (HBM: JESD22A-114) of pins 7 and 10, with pin 6 and GND Middle Island pin 11 tied together	V_{ESD2}	500	V

¹⁾ All voltages refer pin-to-pin.

Electrical Characteristics

3 Electrical Characteristics

For out of band P 1dB Compression Point and IP3, please refer to Infineon Application Note AN162

Table 3 Electrical Characteristics: T_A = 25 °C, V_{CC} = 2.8 V, $V_{PON,ON}$ = 2.8 V, $V_{PON,OFF}$ = 0 V¹⁾

		, cc , ron,on			FUN,UFF
Symbol	Values			Unit	Note / Test Condition
	Min.	Тур.	Max.		
$V_{\sf CC}$	2.4	2.8	3.6	V	
I_{CC}	-	5.6	6.3	mA	ON-Mode
	-	0.2	3	μΑ	OFF-Mode
V_{pon}	2.1	-	3.6	V	ON-Mode
	0	-	0.5	V	OFF-Mode
I_{pon}	-	1.5	3.0	μΑ	ON-Mode
·	-	0	1	μΑ	OFF-Mode
$t_{\rm S}$	-	5	-	μs	OFF- to ON-Mode
	-	5	-	μs	ON- to OFF-mode
$ S_{21} ^2$	15	17.5	19	dB	High-Gain Mode
NF	-	1.9	-	dB	$Z_{\rm S}$ = 50 Ω
RL_{in}	-	10	-	dB	
RL_{out}	-	10	-	dB	
$1/ S_{12} ^2$	-	25	-	dB	
IIP_3	-	-3	-	dBm	f_1 = 1575 MHz, f_2 = f_1 +/- 1 MHz
IP_{1dB}	-	-10	-	dBm	f = 1575 MHz
$Attn_{900M}$	-	60	-	dB	f = 806 MHz - 928 MHz
	-	50	-	dB	f = 1710 MHz - 1980 MHz
$Attn_{2400M}$	-	40	-	dB	f = 2400 MHz - 2500 MHz
	-	30	-	dB	f = 2500 MHz - 6000 MHz
k	-	>1	-		f = 10 MHz - 10 GHz
	$Symbol$ V_{CC} I_{CC} V_{pon} I_{pon} t_{S} $ S_{21} ^{2}$ NF RL_{in} RL_{out} $1/ S_{12} ^{2}$ IIP_{3} IP_{1dB} $Attn_{900M}$ $Attn_{2400M}$ $Attn_{>2500M}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \textbf{Symbol} & \textbf{Values} & \textbf{Unit} \\ \hline \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} \\ \hline \textbf{V}_{\text{CC}} & 2.4 & 2.8 & 3.6 & \lor \\ \hline \textbf{I}_{\text{CC}} & - & 5.6 & 6.3 & \text{mA} \\ \hline - & 0.2 & 3 & \mu \text{A} \\ \hline \textbf{V}_{\text{pon}} & 2.1 & - & 3.6 & \lor \\ \hline \textbf{0} & - & 0.5 & \lor \\ \hline \textbf{I}_{\text{pon}} & - & 1.5 & 3.0 & \mu \text{A} \\ \hline - & 0 & 1 & \mu \text{A} \\ \hline \textbf{t}_{\text{S}} & - & 5 & - & \mu \text{s} \\ \hline - & 5 & - & \mu \text{s} \\ \hline \textbf{NF} & - & 1.9 & - & \text{dB} \\ \hline \textbf{RL}_{\text{in}} & - & 10 & - & \text{dB} \\ \hline \textbf{RL}_{\text{out}} & - & 10 & - & \text{dB} \\ \hline \textbf{IIP}_{3} & - & -3 & - & \text{dBm} \\ \hline \textbf{IIP}_{1\text{dB}} & - & -10 & - & \text{dB} \\ \hline \textbf{Attn}_{900M} & - & 60 & - & \text{dB} \\ \hline \textbf{Attn}_{1800M} & - & 50 & - & \text{dB} \\ \hline \textbf{Attn}_{2400M} & - & 40 & - & \text{dB} \\ \hline \textbf{Attn}_{2500M} & - & 30 & - & \text{dB} \\ \hline \end{array} $

¹⁾ Measured on BGM681L11 application board including PCB losses (unless noted otherwise)

²⁾ Within 1 dB of the final gain

³⁾ PCB losses subtracted, verified on AQL base

⁴⁾ Due to high in-band to out-of-band dynamic range, the out-of-band attenuation value depends strongly on the grounding of the PCB

Application Information

4 Application Information

4.1 Application Circuit

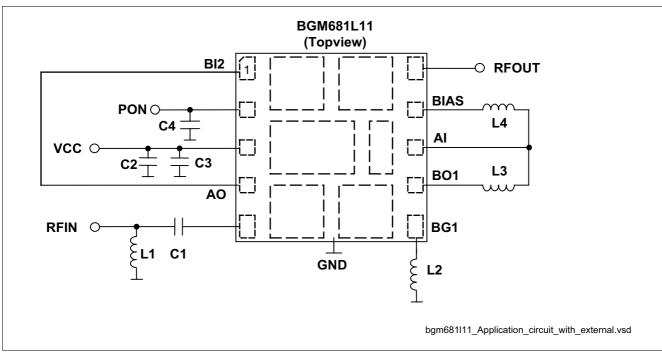


Figure 2 Application Circuit with external components

Table 4 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1	2.2 pF	0402	Various	Input matching
C2	2.2 nF	0402	Various	Supply voltage filtering (optional)
C3	100 pF	0402	Various	Supply voltage filtering
C4	10 pF	0402	Various	Control voltage filtering
L1	4.7 nH	0402	muRata LQW15A	Input matching / ESD protection
L2	3.3 nH	0402	muRata LQW15A	Attenuation and Linearity improvement at 1710 - 1980 MHz (optional)
L3	2.9 nH	0402	muRata LQW15A	Input matching
L4	68 nH	0402	muRata LQW15A	Bias
N1	BGM681L11	TSLP-11-1	Infineon	GPS FE System

Application Information

4.2 Application Board

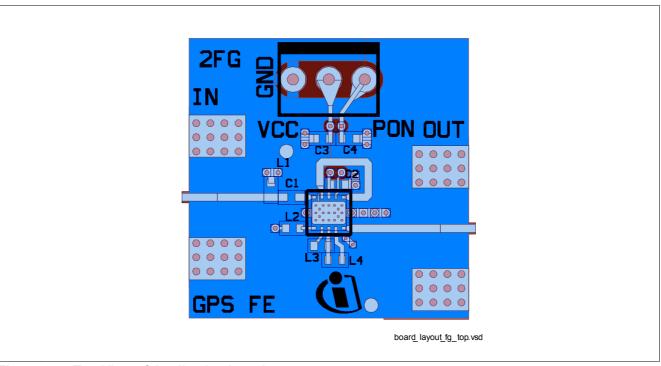


Figure 3 Top View of Application board

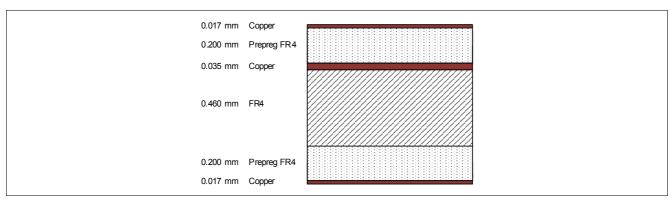


Figure 4 Cross section View of Application board

Package Information

5 Package Information

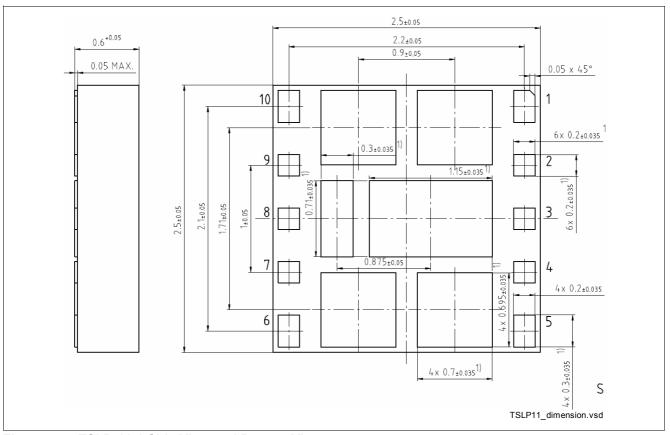


Figure 5 TSLP-11-1 Side View and Bottom View

Package Information

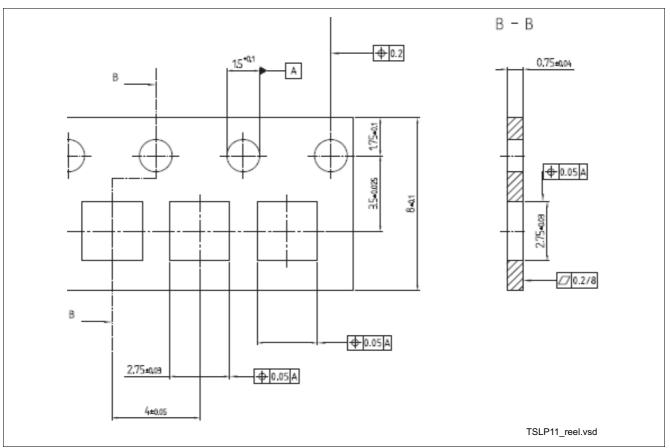


Figure 6 TSLP-11-1 tape

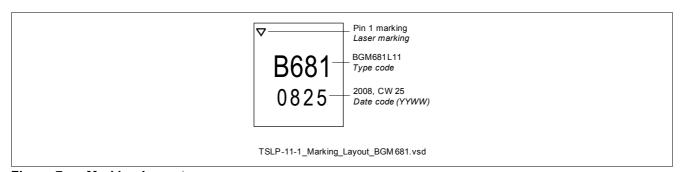


Figure 7 Marking Layout

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon(英飞凌)