

BGT24ATR11

Silicon Germanium 24 GHz Transceiver MMIC

Data Sheet

Revision 3.0, 2013-09-10

RF & Protection Devices

Downloaded From Oneyac.com

Edition 2013-09-10

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGT24ATR11 Silicon Germanium 24 GHz Transceiver MMIC

Revision History: 2013-09-10, Revision 3.0

Previous Revision: 2012-02-08, Revision 2.4

Page	Subjects (major changes since last revision)
all	Update parameter

Trademarks of Infineon Technologies AG

AURIXTM, BlueMoonTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, COMNEONTM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, ISOFACETM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OmniTuneTM, OptiMOSTM, ORIGATM, PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SMARTiTM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM, X-GOLDTM, X-PMUTM, XMMTM, XPOSYSTM.

Other Trademarks

Advance Design System[™] (ADS) of Agilent Technologies, AMBA[™], ARM[™], MULTI-ICE[™], KEIL[™], PRIMECELL[™], REALVIEW[™], THUMB[™], µVision[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS[™] of Trimble Navigation Ltd. EMV[™] of EMVCo, LLC (Visa Holdings Inc.). EPCOS[™] of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO[™] of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB[™] of MathWorks, Inc. MAXIM[™] of Maxim Integrated Products, Inc. MICROTEC[™], NUCLEUS[™] of Mentor Graphics Corporation. Mifare[™] of NXP. MIPI[™] of MIPI Alliance, Inc. MIPS[™] of MIPS Technologies, Inc., USA. muRata[™] of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision[™] of OmniVision Technologies, Inc. Openwave[™] Openwave Systems Inc. RED HAT[™] Red Hat, Inc. RFMD[™] RF Micro Devices, Inc. SIRIUS[™] of Sirius Satellite Radio Inc. SOLARIS[™] of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX[™] of X/Open Company Limited. VERILOG[™], PALLADIUM[™] of Cadence Design Systems, Inc. VLYNQ[™] of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of **Diodes Zetex Limited.**

Last Trademarks Update 2010-10-26

3

Table of Contents

Table of Contents

	Table of Contents	4
	List of Figures	5
	List of Tables	6
1	Features	7
2	Electrical Characteristics	9
2.1	Absolute Maximum Ratings	9
2.2	Thermal Resistance 1	0
2.3	ESD Integrity 1	0
2.4	Measured RF Characteristics 1	1
2.4.1	Power Supply	1
2.4.2	TX Section	1
2.4.3	RX Section	4
2.5	Temperature Sensor 1	5
2.6	Power Detector	5
3	Application Circuit and Block Diagram 1	6
3.1	Application Circuit Schematic 1	6
3.2	Pin Description 1	7
3.3	SPI 1	8
3.4	Application Board and Reflow Profile	!1
3.5	Equivalent Circuit Diagram of MMIC Interfaces	3
4	Physical Characteristics 2	24
4.1	Package Footprint	24
4.2	Reflow Profile	25
4.3	Package Dimensions	:6

List of Figures

List of Figures

Figure 1	BGT24ATR11 Block Diagram.	. 8
Figure 2	VCO Tuning Window	12
Figure 3	Application Circuit with Chip Outline (Top View)	16
Figure 4	Timing Diagram of the SPI	19
Figure 5	Cross-Section View of Application Board	21
Figure 6	Detail of Compensation Structure (valid for appl. board mat. Ro4350B, 0.254mm acc. to Fig. 5).	21
Figure 7	Application Board Layout	22
Figure 8	Equivalent Circuit Diagram of MMIC Interfaces	23
Figure 9	Recommended Footprint and Stencil Layout for the VQFN32-9 Package	24
Figure 10	Reflow Profile for BGT24ATR11 (VQFN32-9)	25
Figure 11	Package Outline (Top, Side and Bottom View) of VQFN32-9	26
Figure 12	Marking Layout VQFN32-9	26
Figure 13	Tape of VQFN32-9	27

List of Tables

List of Tables

Table 1	Absolute Maximum Ratings	9
Table 2	Thermal Resistance	10
Table 3	ESD Integrity	10
Table 4	Typical Characteristics $T_A = -40 125 \text{ °C}$, SPI-Bit 4 = high	11
Table 5	Typical Characteristics $T_A = -40 \dots 125$ °C, f = 24.0 $\dots 24.25$ GHz, SPI-Bit 4 = high $\dots \dots \dots$	11
Table 6	Typical Characteristics $T_A = -40 \dots 125$ °C, f = 24.0 $\dots 24.25$ GHz, SPI-Bit 4 = high $\dots \dots \dots$	12
Table 7	Typical Characteristics $T_A = -40 \dots 125$ °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 125 °C, f = 24.0 \ldots 24.25 GHz, SPI-Bit 4 = high \ldots 24.25 GHz, SPI-Bi	14
Table 8	Typical Characteristics Temperature Sensor $T_A = -40 \dots 125 \text{ °C} \dots \dots \dots \dots \dots \dots \dots \dots$	15
Table 9	Typical Characteristics Power Detector $T_A = -40 125 \text{ °C}, V_{CC} = 3.3 \text{ V}$	15
Table 10	Bill of Materials	16
Table 11	Pin Definition and Function	17
Table 12	SPI Data Bit Description	18
Table 13	SPI Timing and Logic Levels	19
Table 14	Truth Table AMUX	19

Silicon Germanium 24 GHz Transceiver MMIC

BGT24ATR11

1 Features

- 24 GHz ISM band transceiver MMIC
- Qualified according AEC-Q100
- Fully integrated low phase noise VCO
- Switchable prescaler with 1.5 GHz and 23 kHz output
- On chip power and temperature sensors
- Gilbert based homodyne quadrature receiver
- Single ended RF and LO terminals
- Low noise figure NF_{SSB}: 12 dB
- High conversion gain: 26 dB
- High 1 dB input compression point: -12 dBm
- Single supply voltage 3.3 V
- Low power consumption 500 mW
- 200 GHz bipolar SiGe:C technology b7hf200
- Fully ESD protected device
- VQFN-32-9 leadless plastic package incl. LTI feature
- Pb-free (RoHS compliant) package

Description

The BGT24ATR11 is a Silicon Germanium MMIC for signal generation and reception, operating in the 24 GHz ISM band from 24.00 to 24.25 GHz. It is based on a 24 GHz fundamental voltage controlled oscillator. Switchable frequency prescalers are included with output frequencies of 1.5 GHz and 23 kHz. The main RF output delivers typ. 11dBm signal power to feed an antenna and an auxiliary LO output is available to provide LO signal to separate receiver components.

A LNA provides low noise figure and a RC polyphase filter (PPF) is used for LO quadrature phase generation of the homodyne quadrature downconversion mixer. Output power sensors as well as a temperature sensor are implemented for monitoring purposes. The device is controlled via SPI and is manufactured in a 0.18µm SiGe:C technology offering a cutoff frequency of 200 GHz. The MMIC is packaged in a 32 pin leadless RoHs compliant VQFN package.

Product Name	Package	Chip	Marking
BGT24ATR11	VQFN32-9	T1524	BGT24ATR11

Features

8

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

 $T_A = -40$ °C to 125 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)¹⁾

Table 1 Absolute Maximum Ratings

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min. Typ.		Max.			
Supply voltage	V _{CC} / V _{CCTEMP}	-0.3	-	3.6	V	-	
DC voltage at RF Pins TX, TXX, LO, RFIN1, RFIN2	<i>VDC</i> _{RF}	0	-	0	V	MMIC provides short circuit to GND for all RF pins	
DC voltage at Pins IFI, IFIX, IFQ, IFQX	<i>VDC</i> _{IF}	0	_	Vcc	V	_	
DC current into Pins IFI, IFIX, IFQ, IFQX	I _{IF}	-8.5	_	3.5	mA	Max. values indicate current due to short circuit to GND and Vcc resp.	
DC voltage at Pin ANA	<i>VDC</i> _{ANA}	-0.3	_	3.6	V	-	
DC current into Pin ANA (Sink)	I _{ANA SINK}	125	350	500	μA	Max. values indicate current due to short circuit to GND and Vcc resp.	
DC current into Pin ANA (Source)	I _{ANA SOURCE}	-7	_	-	mA	-	
DC current into Pin VCCTEMP	I _{VCCTEMP}	-	_	3.5	mA	Max. values indicate current due to short circuit to GND and Vcc resp.	
DC voltage at Pin TEMP	VDC _{TEMP}	0	-	Vcc	V	-	
DC current into Pin TEMP	I _{TEMP}	-1	_	1.5	mA	Max. values indicate current due to short circuit to GND and Vcc resp.	
DC voltage at Pins Q1, Q1N	VDC _{Q1x}	Vcc-0.3	-	Vcc	V	-	
DC current into Pins Q1, Q1N	I _{Q1x}	-8	-	12	mA	-	
DC voltage at Pin Q2	VDC _{Q2}	-0.3	_	3.6	V	-	
DC current into Pin Q2 enabled	I _{Q2EN}	-3	_	3	mA	-	
DC current into Pin Q2 disabled	I _{Q2DIS}	-10	-	10	μA	-	
DC voltage at SPI input Pins SI, CLK, CS	VDC _{SPIIN}	-0.3	-	3.6	V	-	
DC current into SPI input Pins SI, CLK, \overline{CS}	I _{SPIIN}	-	-	3	mA	-	
RF input power into Pin RFIN	P _{RF}	_	_	0	dBm	-	

¹⁾ Not subject to production test, specified by design

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
DC voltage at Pins Fine, Coarse	V _F , V _C	0	-	5	V	-	
DC current into Pins Fine, Coarse	I _F , I _C	-110	-	110	μA	Positive currents if $V_{TUNE} > V_{CC}$; Negative currents if $0V \le V_F, V_C \le V_{CC}$	
DC voltage at Pin TXOFF	VDC _{TXOFF}	-0.3	-	3.6	V	-	
Total power dissipation	P _{DISS}	-	-	750	mW	With BIST deactivated	
Junction temperature	TJ	-40	-	155	°C	-	
Ambient temperature range	T _A	-40	-	125	°C	T_A = temperature at package soldering point	
Storage temperature range	T _{STG}	-40	_	150	°C	-	

Table 1 Absolute Maximum Ratings (cont'd)

Attention: Stresses exceeding the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

2.2 Thermal Resistance

Table 2Thermal Resistance

Parameter	Symbol	Values		Values		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.					
Junction - soldering point ¹⁾	R _{thJS}	_	_	40	K/W	-			

1) For calculation of R_{thJA} please refer to application note thermal resistance

2.3 ESD Integrity

Table 3ESD Integrity

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
ESD robustness, HBM ¹⁾	$V_{\rm ESD-HBM}$	-1	-	1	kV	All pins	
ESD robustness, CDM ²⁾	$V_{\rm ESD-CDM}$	-500	_	500	V	All pins	

 According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kΩ, C = 100pF) for Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM)-Component Level

2) According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components

2.4 Measured RF Characteristics

2.4.1 Power Supply

Table 4Typical Characteristics $T_A = -40 \dots 125 \text{ °C}$, SPI-Bit 4 = high

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{CC}	3.135	3.3	3.465	V	-
Supply current	I _{CC}	110	150	190	mA	-
Supply voltage temperature sensor	$V_{\rm CCTemp}$	3.135	3.3	3.465	V	
Supply current temperature sensor	I _{CCTemp}	1.3	2.2	3	mA	-

2.4.2 TX Section

Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
VCO frequency range	f _{vco}	24.0	-	24.25	GHz	-	
VCO fine tuning voltage ²⁾	V _F	0.8 ³⁾	-	3.0	V	$\begin{array}{l} 0.8V \leq V_{F} \leq 1.25V \text{ for} \\ V_{CMIN} = 0.75V, \\ 1.25V \leq V_{F} \leq 3.0V \text{ for} \\ V_{CMIN} = 0.75V + 1.7V^{*}(\\ V_{F} - 1.25V)/1.75V, \\ \text{see Figure 2 on} \\ \text{Page 12} \end{array}$	
VCO coarse tuning voltage ²⁾	V _C	0.75 ³⁾	_	3.0	V	$\begin{array}{l} 0.75 V{\leq} V_{C}{\leq} 1.35 V \text{for} \\ V_{\text{FMIN}}{=} 0.8 V, \\ 1.35 V{\leq} V_{C}{\leq} 3.0 V \text{for} \\ V_{\text{FMIN}}{=} V_{C}{-} 0.55 V, \\ \text{see Figure 2 on} \\ \text{Page 12} \end{array}$	
VCO tuning slope FINE	$\Delta f / \Delta V_{F}$	200	-	1000	MHz/V	24GHz≤f≤24.25GHz see Figure 2 on Page 12	
VCO tuning slope COARSE	$\Delta f / \Delta V_{\rm C}$	400	-	2000	MHz/V	24GHz≤f≤24.25GHz see Figure 2 on Page 12	
VCO temperature drift	$\Delta f / \Delta T$	-10	-6	0	MHz/K	Min @ T = -40°C	
VCO pushing	$\Delta f/\Delta V_{\rm CC}$	-350	60	350	MHz/V	Absolute values	

Table 5 Typical Characteristics $T_A = -40 \dots 125$ °C, f = 24.0 $\dots 24.25$ GHz, SPI-Bit 4 = high¹)

1) Performance based on Application Circuit Figure 3 on Page 16, Cross Section of Application Board, Compensation Structures and Application Board Layout Figure 5 on Page 21ff and Footprint Figure 9 on Page 24

- 2) At tuning pins chipinternal pull-up of $60k\Omega \pm 20\%$ to VCC; max.- and min. temperature tuning voltage limits are chosen in a way that they can be linearly interpolated within operating temperature range
- 3) Specified min. value for temperature \leq 25°C; min. value for temperatures >25°C is based on following formular V_{CMIN} = V_{FMIN} = 0.8V + 0.4V * (T [°C] 25°C) / 100°C

Figure 2 VCO Tuning Window

Table 6 Typical Characteristics $T_A = -40 \dots 125$ °C, f = 24.0 $\dots 24.25$ GHz, SPI-Bit 4 = high¹)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
VCO phase noise	P _N	-	-85	-75	dBc/Hz	@ 100kHz offset, $V_F = V_C$
TX/TXX load impedance	Z _{TX} Z _{TXX}	-	19.8-j20.9 18-j17.3	-	Ω	Typical value at 24.125GHz and VSWR ≤ 2:1
Max. TX output power	P _{TX}	6	11	15	dBm	-
Max. TX output power for V_{CC} = 3.3V \pm 50mV	P _{TX}	6.5	11	14.5	dBm	-
TX ouput power adjustable range	a _{TX}	3	9	-	dB	Adjustable via SPI
TX output power in "off" mode ²⁾	P _{TXoff}	-	-	-30	dBm	Parameter based on IFX eval board design

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
LO load impedance	Z _{LO}	-	24.4-j25.8	-	Ω	Typical value at 24.125GHz and VSWR ≤ 2:1
LO output power ³⁾	$P_{\rm LO}$	-8	0	6	dBm	SPI-Bit 4 = high
Q1 Prescaler division ratio	D_{Q1}	-	2 ⁴	-	-	-
Q1 Prescaler output power	P _{Q1}	-13	-9	-5	dBm	Q1 loaded with 100 Ohm (AC- coupled)
Q1 load impedance	Z _{Q1}	-	100	-	Ω	-
Q2 Prescaler division ratio	D_{Q2}	-	2 ²⁰	-	-	–
Q2 Prescaler max. output voltage	V _{maxQ2}	2.4	-	-	V	Test condition: Q2 loaded with high impedance probe (1 MOhm,13 pF)
Q2 Prescaler min. output voltage	V _{minQ2}	_	-	0.8	V	Test condition: Q2 loaded with high impedance probe (1 MOhm, 13 pF)
Q2 Prescaler max. output source current	I _{maxsource Q2}	1.2	-	-	mA	Test condition: Q2 loaded with 50 Ohm to Vcc
Q2 Prescaler max. output sink current	I _{maxsink Q2}	1.2	-	-	mA	Test condition: Q2 loaded with 50 Ohm to Vcc
Q2 Prescaler output resistance in disable mode	R _{Q2,DIS}	100	-	-	kΩ	-
Voltage at Txoff for disabeling TX output power	$V_{TX,OFF}$	1.5	-	-	V	-
Voltage at Txoff for enabeling TX output power	V _{TX,ON}	-	-	0.5	V	-
TXon/off switching time	t _{ON/OFF}	_	_	500	ns	-

Table 6Typical Characteristics $T_A = -40 \dots 125 \text{ °C}$, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = high¹ (cont'd)

1) Performance based on Application Circuit Figure 3 on Page 16, Cross Section of Application Board, Compensation Structures and Application Board Layout Figure 5 on Page 21ff and Footprint Figure 9 on Page 24

2) Guaranteed by device design

3) High LO buffer output power in "high" mode otherwise typ. 4dB reduced LO-output power

2.4.3 RX Section

Table 7Typical Characteristics $T_A = -40 \dots 125 \ ^\circ C$, f = 24.0 ... 24.25 GHz, SPI-Bit 4 = high¹⁾

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
RFIN frequency range	f_{RFIN}	24.0	-	24.25	GHz	-
RFIN port impedance ²⁾	Z _{RFIN}	-	22.9-j14.9	-	Ω	Typical value at 24.125GHz and VSWR \leq 2:1
RFIN VSWR	VSWR	-	-	2:1	-	At load port of off- chip compensation network as pro- posed
IF frequency range	f_{IF}	0	-	10	MHz	-
IF output impedance	Z _{IF}	850	1000	1150	Ω	-
Leakage LO to RFIN	L _{LO=>RFIN}	-	-	-30	dBm	Parameter based on IFX eval board design
Voltage conversion gain ³⁾	G _C	19	26	31	dB	$R_{LOAD,IF} > 10 \text{ k}\Omega$
LNA gain reduction	ΔG_{CLG}	3	5	8	dB	-
SSB noise figure	N _{SSB}	-	12	20	dB	Single sideband at f _{IF} = 100 kHz
IF 1/f corner frequency	f_{c}	-	10	20	kHz	-
Input compression point	IP _{1dB}	-17	-12	-	dBm	-
Input 3'rd order intercept point	IIP3	-8	-4	_	dBm	-
Quadrat. phase imbalance	ε _p	-10	-	10	deg	-
Quadrat. amplitude imbalance	ε _A	-1	-	1	dB	-

 Performance based on Application Circuit Figure 3 on Page 16, Cross Section of Application Board, Compensation Structures and Application Board Layout Figure 5 on Page 21ff and Footprint Figure 9 on Page 24

2) Guaranteed by device design

3) Lowest gain at high temperature, highest gain at low temperature

2.5 Temperature Sensor

Monitoring of the chip temperature is provided by the on-chip temperature sensor which delivers temperatureproportional voltage to the TEMP output. The temp. sensor can be independently biased through VCCTEMP. Thereby the chip temperature can be monitored while the main supply of the transceiver is switched off.

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Temperature range	T _{TSENS}	-40	_	125	°C	-
Output temperature voltage	$V_{\rm OUT,TEMP}$	-	1.50	-	V	@ 25°C
Sensitivity	STSENS	-	4.5	-	mV/K	-
Overall accuracy error	Err _{TSENS}	-	-	±15	К	-

Table 8	Typical Characteristics	Temperature Sensor	$T_{\rm A} = -40 \dots 125 \ {}^{\circ}{\rm C}^{1)}$
	Typical onalacteristics		

1) all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

2.6 Power Detector

For RF output power indication, peak voltage detectors are connected to the output of the TX power amplifier and to the LO medium power amplifier. To eliminate temperature and supply voltage variations, a reference output voltage VREF is available through the ANA output for the TX and LO power sensor. The compensated detector output voltage is given by the difference between Vout and VREF for both power sensors respectively. This voltage is proportional to the RF voltage swing at the individual amplifier outputs, its characteristic is non-directional.

Table 9	Typical Characteristics Power Detector	$T_{\rm A} = -40 \dots 125 ^{\circ}{\rm C}, V_{\rm CC} = 3.3 ^{1}{\rm V}^{1}$

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Power range	P _{PSENS}	-10	_	15	dBm	-
TX power sensor output	V _{OUT,TX} - V _{REF,TX}	-	550	-	mV	@ P _{TX} = 11 dBm
LO power sensor output	V _{OUT,LO} - V _{REF,LO}	-	50	-	mV	@ P _{LO} = 0 dBm

1) all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

15

3 Application Circuit and Block Diagram

3.1 Application Circuit Schematic

Figure 3 Application Circuit with Chip Outline (Top View)

Table 10 Bill of Materials

Part Number	Part Type	Manufacturer	Size	Comment
C1 C5	Chip capacitor	Various	Various	-
R1 R2	Chip resistor	Various	0402	-

3.2 Pin Description

Table 11 **Pin Definition and Function** Pin No. Name **Function** Q1N 1 Complementary prescaler output 1.5GHz 2 Q2 Prescaler output 23kHz VEE 3 Ground FINE VCO fine tuning input 4 5 COARSE VCO coarse tuning input 6 VCC Supply voltage; Total current divided equal on both VCC pins 7 RFIN RF input downconverter VEE 8 Ground 9 VEE Ground 10 IFQX Complementary quadrature phase IF output downconverter 11 VEE Ground IFQ 12 Quadrature phase IF output downconverter 13 IFI In phase IF output downconverter IFIX 14 Complementary in phase IF output downconverter TEST PIN Test pin; DC coupled pin 15 16 TEST PIN Test pin; DC coupled pin VCC Supply voltage; Total current divided equal on both VCC pins 17 CS 18 Chip select input SPI (inverted) CLK Clock input SPI interface 19 SI 20 Data input SPI interface VEE Ground 21 ТΧ 22 Transmit output 23 TXX Complementary transmit output 24 VEE Ground 25 ANA Analog output TXOFF 26 Pulsable Pin / Please connect to VEE in case TXOFF function is controlled via SPI 27 n.c. Not connected LO 28 LO output 29 VCCTEMP Temperature sensor supply voltage 30 TEMP Temperature sensor output

Q1

VEE

31

32

Prescaler output 1.5GHz

Ground

3.3 SPI

1.) Three signals control the serial peripheral interface of the BGT24ATR11:

SI (Data); CLK (Clock); CS (Chip select)

2.) The data bits SI (MSB first) are read in the shift with falling edge of the CLK signal.

Please make sure, that the data is present at least 10 ns before and at least 10 ns after the falling edge of the clock signal.

3.) The CLK and \overline{CS} signals are combined internally.

At least 20 ns before first rising edge of the first CLK signal CS needs to be in "low" state.

While the Data is read, \overline{CS} has to remain in "low" state.

4.) When Data read in is finished, the shift register content will be written in the latch at the rising edge of the \overline{CS} signal. The time between the last falling edge of the CLK signal and the rising edge of the \overline{CS} must be at least 20 ns.

Data Bit	Name	Description (Logic High)	Power ON State
15 (MSB)	GS	LNA Gain reduction	low
1413	-	Not used	low
12	DIS_PA	TX power disabled, in case TXon/off function is controlled via TXOFF pin, this bit needs to be set in low state	high
11	AMUX2	Analog multiplexer control bit 2	high
10	Test Bit	Test bit, must be low otherwise malfunction	low
9	Test Bit	Test bit, must be low otherwise malfunction	low
8	AMUX1	Analog multiplexer control bit 1	low
7	AMUX0	Analog multiplexer control bit 0	low
6	DIS_DIV64k	Disable 64k divider	low
5	DIS_DIV16	Disable 16 divider	low
4	PC2_BUF	High LO buffer output power in "high" mode otherwise typ. 4dB reduced LO-output power	low
3	PC1_BUF	High TX buffer output power	low
2	PC2_PA	TX power reduction bit 2	high
1	PC1_PA	TX power reduction bit 1	high
0	PC0_PA	TX power reduction bit 0	high

 Table 12
 SPI Data Bit Description

Figure 4 Timing Diagram of the SPI

Table 13 SPI Timing and Logic Levels

Parameter	Symbol	Values			Unit
		Min.	Тур.	Max.	
Serial clock frequency	f _{sclk}	0	_	50	MHz
Serial clock high time	f _{sclk(H)}	10	_	-	ns
Serial clock low time	t _{SCLK(L)}	10	_	-	ns
Chip select lead time	t _{CS(lead)}	20	_	-	ns
Chip select lag time	t _{CS(lag)}	20	_	-	ns
Data setup time	t _{SI(su)}	10	_	-	ns
Data hold time	t _{SI(h)}	10	_	-	ns
Low level (SI, CLK, CS)	V _{IN(L)}	0	_	0.8	V
High level (SI, CLK, CS)	V _{IN(H)}	2.0	_	V _{CC}	V
Input capacitance (SI, CLK, CS)	C _{IN}	_	-	2	pF
Input current (SI, CLK, CS)	I _{IN}	-150	-	150	μA

Table 14Truth Table AMUX

Output signal ANA	AMUX2	AMUX1	AMUX0
V _{OUT,TX}	low	low	low
V _{REF,TX}	low	low	high
V _{OUT,LO}	low	high	low
V _{REF,LO}	low	high	high
V _{TEMP}	high	low	low
Test_Signal1	high	low	high

Table 14Truth Table AMUX (cont'd)

Output signal ANA	AMUX2	AMUX1	AMUX0
Test_Signal2	high	high	low
Test_Signal2	high	high	high

3.4 Application Board and Reflow Profile

Figure 5 Cross-Section View of Application Board

Figure 6 Detail of Compensation Structure (valid for appl. board mat. Ro4350B, 0.254mm acc. to Fig. 5)

21

Figure 7 Application Board Layout

Note: In order to achieve the same performance as given in this datasheet please follow the suggested PCBlayout. The compensation structure is critical for RF performance. Via holes as recommended on one of next pages (not shown above).

Equivalent Circuit Diagram of MMIC Interfaces 3.5

Physical Characteristics 4

4.1 **Package Footprint**

4.2 Reflow Profile

Soldering process qualified during qualification with "Preconditioning MSL-3: 30°C. 60%r.h., 192h, according to JEDEC JSTD20".

Figure 10 Reflow Profile for BGT24ATR11 (VQFN32-9)

4.3 Package Dimensions

Figure 13 Tape of VQFN32-9

www.infineon.com

Published by Infineon Technologies AG

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon(英飞凌)