

Microcontrollers

Never stop thinking.

Edition 2005-01

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2005.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XC164N

16-Bit Single-Chip Microcontroller with C166SV2 Core

Microcontrollers

Never stop thinking.

Revision History:		2005-01	V1.0
Previous Version:		None	
Page Subjects (ma		ajor changes since last revision)	

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

XC164N

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table of Contents

1	Summary of Features 1
2	General Device Information
2.1	Introduction
2.2	Pin Configuration and Definition 5
3	Functional Description 14
3.1	Memory Subsystem and Organization
3.2	External Bus Controller
3.3	Central Processing Unit (CPU)
3.4	Interrupt System
3.5	On-Chip Debug Support (OCDS)
3.6	Capture/Compare Units (CAPCOM1/2)
3.7	The Capture/Compare Unit CAPCOM6
3.8	General Purpose Timer (GPT12E) Unit
3.9	Real Time Clock
3.10	Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) 35
3.11	High Speed Synchronous Serial Channels (SSC0/SSC1) 36
3.12	Watchdog Timer 36
3.13	Clock Generation
3.14	Parallel Ports
3.15	Power Management
3.16	Instruction Set Summary
4	Electrical Parameters43
4.1	Absolute Maximum Ratings
4.2	Package Properties
4.3	Operating Conditions
4.4	Parameter Interpretation 45
4.5	DC Parameters
5	Timing Parameters52
5.1	Definition of Internal Timing
5.2	External Clock Drive XTAL1 55
5.3	Testing Waveforms
5.4	AC Characteristics
6	Packaging 63
	■ackaning A:

Summary of Features

1 Summary of Features

- High Performance 16-bit CPU with 5-Stage Pipeline
 - 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution)
 - 1-Cycle Multiplication (16 × 16 bit), Background Division (32 / 16 bit) in 21 Cycles
 - 1-Cycle Multiply-and-Accumulate (MAC) Instructions
 - Enhanced Boolean Bit Manipulation Facilities
 - Zero-Cycle Jump Execution
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Fast Context Switching Support with Two Additional Local Register Banks
 - 16 Mbytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible)
- 16-Priority-Level Interrupt System with up to 65 Sources, Sample-Rate down to 50 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space
- Clock Generation via on-chip PLL (factors 1:0.15 ... 1:10), or via Prescaler (factors 1:1 ... 60:1)
- On-Chip Memory Modules
 - 2 Kbytes On-Chip Dual-Port RAM (DPRAM)
 - 2 Kbytes On-Chip Data SRAM (DSRAM)
 - 2 Kbytes On-Chip Program/Data SRAM (PSRAM)
 - up to 128 Kbytes On-Chip Program Memory (Flash Memory)
- On-Chip Peripheral Modules
 - Two 16-Channel General Purpose Capture/Compare Units (12 Input/Output Pins)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6)
 (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 5 Timers
 - Two Synchronous/Asynchronous Serial Channels (USARTs)
 - Two High-Speed-Synchronous Serial Channels
 - On-Chip Real Time Clock
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 12 Mbytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses
 - Selectable Address Bus Width
 - 16-Bit or 8-Bit Data Bus Width
 - Four Programmable Chip-Select Signals
- Up to 79 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis
- On-Chip Bootstrap Loader

Summary of Features

- Supported by a Large Range of Development Tools like C-Compilers,
 Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers,
 Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Debug Support via JTAG Interface
- 100-Pin TQFP Package, 0.5 mm (19.7 mil) pitch

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the XC164N please refer to the "**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

This document describes several derivatives of the XC164 group. **Table 1** enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

For simplicity all versions are referred to by the term **XC164N** throughout this document.

Summary of Features

Table 1 XC164N Derivative Synopsis

Derivative ¹⁾	Program Memory	On-Chip RAM	Inter- faces	Clock
SAF-XC164N-16F40F	128 Kbytes Flash	2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1	40 MHz
SAF-XC164N-16F20F	128 Kbytes Flash	2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1	20 MHz
SAF-XC164N-8F40F	64 Kbytes Flash	2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1	40 MHz
SAF-XC164N-8F20F	64 Kbytes Flash	2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1	20 MHz

¹⁾ This Data Sheet is valid for devices starting with and including design step BA.

2 General Device Information

2.1 Introduction

The XC164N derivatives are high-performance members of the Infineon XC166 Family of full featured single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 40 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program Flash, program RAM, and data RAM.

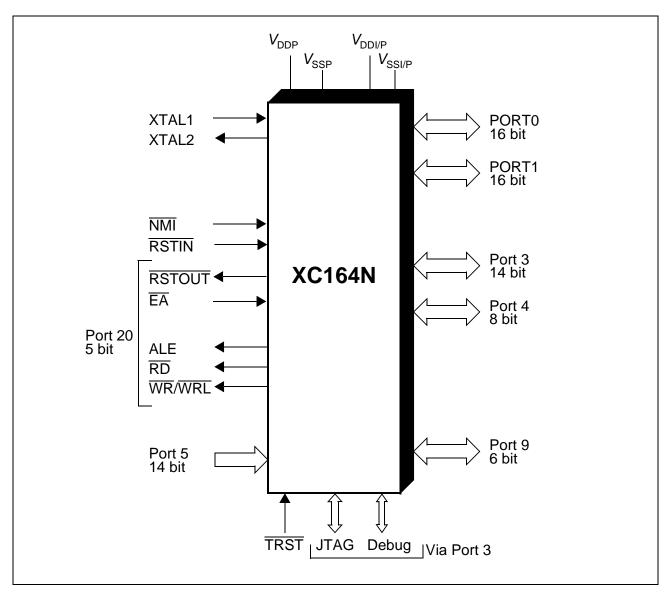


Figure 1 Logic Symbol

2.2 Pin Configuration and Definition

The pins of the XC164N are described in detail in **Table 2**, including all their alternate functions. **Figure 2** summarizes all pins in a condensed way, showing their location on the 4 sides of the package. E*) marks pins to be used as alternate external interrupt inputs.

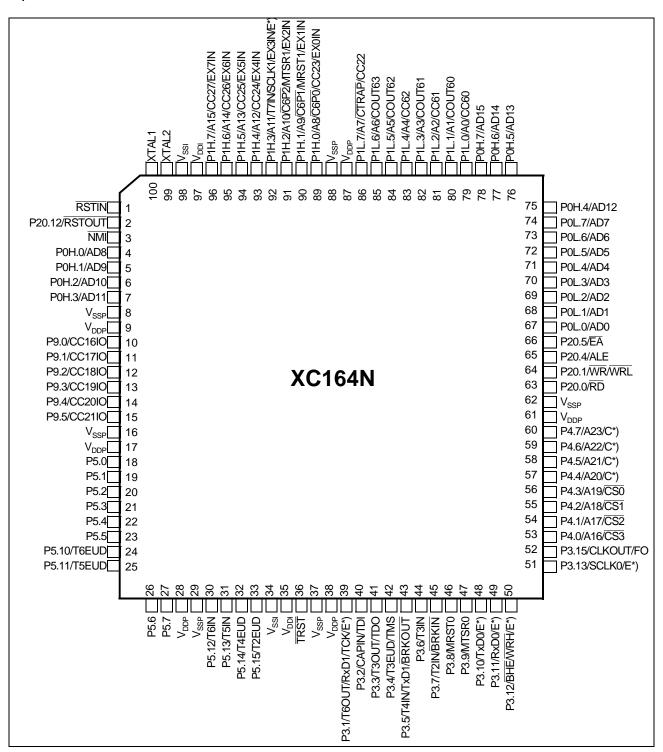


Figure 2 Pin Configuration (top view)

Table 2 Pin Definitions and Functions

Symbo I	Pin Num.	Input Outp.	Function
RSTIN	1	I	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the XC164N. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles.
			Note: The reset duration must be sufficient to let the hardware configuration signals settle. External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating range.
P20.12	2	Ю	For details, please refer to the description of P20.
NMI	3		Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the XC164N into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally.
P0H.0- P0H.3	47	Ю	For details, please refer to the description of PORT0.

 Table 2
 Pin Definitions and Functions (cont'd)

Table 2	Table 2 Fill Definitions and Functions (cont d)					
Symbo I	Pin Num.	Input Outp.	Function			
P9		Ю	Port 9 is a 6-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 9 is selectable (standard or special). The following Port 9 pins also serve for alternate functions:			
P9.0	10	I/O	CC16IO	CAPCOM2: CC16 Capture Inp./Compare Outp.,		
P9.1	11	I I/O	EX7IN CC17IO	Fast External Interrupt 7 Input (alternate pin B) CAPCOM2: CC17 Capture Inp./Compare Outp.,		
P9.2	12	I I/O	EX6IN CC18IO	Fast External Interrupt 6 Input (alternate pin B) CAPCOM2: CC18 Capture Inp./Compare Outp.,		
P9.3	13	I I/O	EX7IN CC19IO	Fast External Interrupt 7 Input (alternate pin A) CAPCOM2: CC19 Capture Inp./Compare Outp.,		
P9.4 P9.5	14 15	I I/O I/O	EX6IN CC20IO CC21IO	Fast External Interrupt 6 Input (alternate pin A) CAPCOM2: CC20 Capture Inp./Compare Outp. CAPCOM2: CC21 Capture Inp./Compare Outp.		
P5		I		14-bit input-only port. s of Port 5 serve as timer inputs:		
P5.0 P5.1 P5.2 P5.3 P5.4	18 19 20 21 22	 	No Alternate Function beside General Purpose Input			
P5.4 P5.5 P5.10 P5.11 P5.6	23 24 25 26	 	T6EUD T5EUD	ite Function beside General Purpose Input GPT2 Timer T6 Ext. Up/Down Ctrl. Inp. GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.		
P5.7 P5.12 P5.13 P5.14 P5.15	27 30 31 32 33	 	T6IN T5IN T4EUD T2EUD	GPT2 Timer T6 Count/Gate Input GPT2 Timer T5 Count/Gate Input GPT1 Timer T4 Ext. Up/Down Ctrl. Inp. GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.		

 Table 2
 Pin Definitions and Functions (cont'd)

Symbo I	Pin Num.	Input Outp.	Function			
TRST	36	I	Test-System Reset Input. A high level at this pin activates the XC164N's debug system. For normal system operation, pin TRST should be held low.			
P3		Ю	Port 3 is a 14-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 3 is selectable (standard or special).			
P3.1	39	O I/O I	The following Port 3 pins also serve for alternate functions T6OUT GPT2 Timer T6 Toggle Latch Output, RxD1 ASC1 Data Input (Async.) or Inp./Outp. (Sync. EX1IN Fast External Interrupt 1 Input (alternate pin A) TCK Debug System: JTAG Clock Input			
P3.2	40	I I	CAPIN GPT2 Register CAPREL Capture Input, TDI Debug System: JTAG Data In			
P3.3	41	0	T3OUT TDO	GPT1 Timer T3 Toggle Latch Output, Debug System: JTAG Data Out		
P3.4	42	I I	T3EUD TMS	GPT1 Timer T3 External Up/Down Control Input, Debug System: JTAG Test Mode Selection		
P3.5	43	I O O	TWS Debug System: 3TAG Test Mode Selection T4IN GPT1 Timer T4 Count/Gate/Reload/Capture Inp TxD1 ASC0 Clock/Data Output (Async./Sync.), Debug System: Break Out			
P3.6	44	ı	T3IN	GPT1 Timer T3 Count/Gate Input		
P3.7	45	i I	T2IN GPT1 Timer T3 Count/Gate/Input T2IN GPT1 Timer T3 Count/Gate/Reload/Capture Input BRKIN Debug System: Break In			
P3.8	46	I/O	MRST0	SSC0 Master-Receive/Slave-Transmit In/Out.		
P3.9	47	I/O	MTSR0	SSC0 Master-Transmit/Slave-Receive Out/In.		
P3.10	48	0	TxD0 EX2IN	ASC0 Clock/Data Output (Async./Sync.), Fast External Interrupt 2 Input (alternate pin B)		
P3.11	49	I/O I	RxD0 EX2IN	ASC0 Data Input (Async.) or Inp./Outp. (Sync.), Fast External Interrupt 2 Input (alternate pin A)		
P3.12	50	0 0 I	BHE WRH EX3IN	External Memory High Byte Enable Signal, External Memory High Byte Write Strobe, Fast External Interrupt 3 Input (alternate pin B)		
P3.13	51	I/O I	SCLK0 EX3IN	SSC0 Master Clock Output / Slave Clock Input., Fast External Interrupt 3 Input (alternate pin A)		
P3.15	52	0	CLKOUT FOUT	System Clock Output (=CPU Clock), Programmable Frequency Output		

 Table 2
 Pin Definitions and Functions (cont'd)

Symbo I	Pin Num.	Input Outp.	Function	Function			
P4		Ю	Port 4 is an 8-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 4 is selectable (standard or special). Port 4 can be used to output the segment address lines, the				
P4.0	53	0	optional chip select lines, and for serial interface lines: A16 Least Significant Segment Address Line, CS3 Chip Select 3 Output				
P4.1	54	0	A17 CS2	Segment Address Line, Chip Select 2 Output			
P4.2	55	0	A18 CS1	Segment Address Line, Chip Select 1 Output			
P4.3	56	0	A19 CS0	Segment Address Line, Chip Select 0 Output			
P4.4	57	0	A20	Segment Address Line,			
P4.5	58	I O	EX5IN A21	Fast External Interrupt 5 Input (alternate pin B) Segment Address Line,			
P4.6	59	0	EX4IN A22	Fast External Interrupt 4 Input (alternate pin B) Segment Address Line,			
P4.7	60	0	EX5IN A23	Fast External Interrupt 5 Input (alternate pin A) Most Significant Segment Address Line,			
		I	EX4IN	Fast External Interrupt 4 Input (alternate pin A)			

 Table 2
 Pin Definitions and Functions (cont'd)

Symbo I	Pin Num.	Input Outp.	Function			
P20		Ю	Port 20 is a 5-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output. The input threshold of Port 20 is selectable (standard or special). The following Port 20 pins also serve for alternate functions:			
P20.0	63	0	RD			
P20.1	64	O	WR/WRL	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus.		
P20.4	65	0	ALE	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.		
P20.5	66	I	EA	External Access Enable pin. A low level at this pin during and after Reset forces the XC164N to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the XC164N to latch the configuration from pins RD, ALE, and WR, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.		
P20.12	2	O	RSTOUT Note: Port 2	Internal Reset Indication Output. Is activated asynchronously with an external hardware reset. It may also be activated (selectable) synchronously with an internal software or watchdog reset. Is deactivated upon the execution of the EINIT instruction, optionally at the end of reset, or at any time (before EINIT) via user software. 20 pins may input configuration values (see EA).		

 Table 2
 Pin Definitions and Functions (cont'd)

Symbo	Pin	Input	Function				
1	Num.	Outp.					
PORT0		Ю	PORT0 consists of the two 8-bit bidirectional I/O ports P0L				
			and P0H. Each pin can be programmed for input (output				
P0L.0 -	67 -		driver in high-impedance state) or output.				
P0L.7	74		In case of an external bus configuration, PORT0 serves as				
5			the address (A) and address/data (AD) bus in multiplexed				
P0H.0 -			bus modes and as the data (D) bus in demultiplexed bus				
P0L.3	7		modes.				
DOLL 4	75		Demultiplexed bus modes:				
P0H.4 -			Data Path Width: 8-bit 16-bit				
P0L.7	78		P0L.0 – P0L.7: D0 – D7 D0 - D7 P0H.0 – P0H.7: I/O D8 - D15				
			Multiplexed bus modes:				
			Data Path Width: 8-bit 16-bit				
			P0L.0 – P0L.7: AD0 – AD7 AD0 - AD7				
			P0H.0 – P0H.7: A8 - A15 AD8 - AD15				
			Note: At the end of an external reset ($\overline{EA} = 0$) PORTO also				
			may input configuration values				
		10					
PORT1		IO	PORT1 consists of the two 8-bit bidirectional I/O ports P1L				
			and P1H. Each pin can be programmed for input (output				
			driver in high-impedance state) or output.				
			PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes (also after switching from a				
			demultiplexed to a multiplexed bus mode).				
			The following PORT1 pins also serve for alt. functions:				
P1L.0	79	I/O	CC60 CAPCOM6: Input / Output of Channel 0				
P1L.1	80	0	COUT60 CAPCOM6: Output of Channel 0				
P1L.2	81	I/O	CC61 CAPCOM6: Input / Output of Channel 1				
P1L.3	82	0	COUT61 CAPCOM6: Output of Channel 1				
P1L.4	83	I/O	CC62 CAPCOM6: Input / Output of Channel 2				
P1L.5	84	0	COUT62 CAPCOM6: Output of Channel 2				
P1L.6	85	0	COUT63 Output of 10-bit Compare Channel				
P1L.7	86	I	CTRAP CAPCOM6: Trap Input				
			CTRAP is an input pin with an internal pullup resistor. A low				
			level on this pin switches the CAPCOM6 compare outputs to				
		1/0	the logic level defined by software (if enabled).				
D4LL		I/O	CC22IO CAPCOM2: CC22 Capture Inp./Compare Outp.				
P1H	•••		continued				

 Table 2
 Pin Definitions and Functions (cont'd)

Symbo I	Pin Num.	Input Outp.	Function			
PORT1 (cont'd)		Ю	continued			
P1H.0	89	I I	CC6POS0 EX0IN	CAPCOM6: Position 0 Input, Fast External Interrupt 0 Input (default pin),		
P1H.1	90	I/O I	CC23IO CC6POS1 EX1IN	CAPCOM2: CC23 Capture Inp./Compare Outp. CAPCOM6: Position 1 Input, Fast External Interrupt 1 Input (default pin),		
P1H.2	91	I/O I I	EX2IN	SSC1 Master-Receive/Slave-Transmit In/Out. CAPCOM6: Position 2 Input, Fast External Interrupt 2 Input (default pin),		
P1H.3	92	I/O I I/O I	MTSR1 T7IN SCLK1 EX3IN EX0IN	SSC1 Master-Transmit/Slave-Receive Out/Inp. CAPCOM2: Timer T7 Count Input, SSC1 Master Clock Output / Slave Clock Input, Fast External Interrupt 3 Input (default pin), Fast External Interrupt 0 Input (alternate pin A)		
P1H.4	93	I/O I	CC24IO EX4IN	CAPCOM2: CC24 Capture Inp./Compare Outp., Fast External Interrupt 4 Input (default pin)		
P1H.5	94	I/O I	CC25IO EX5IN	CAPCOM2: CC25 Capture Inp./Compare Outp., Fast External Interrupt 5 Input (default pin)		
P1H.6	95	I/O I	CC26IO EX6IN	CAPCOM2: CC26 Capture Inp./Compare Outp., Fast External Interrupt 6 Input (default pin)		
P1H.7	96	I/O I	CC27IO EX7IN	CAPCOM2: CC27 Capture Inp./Compare Outp., Fast External Interrupt 7 Input (default pin)		
XTAL2 XTAL1	99 100	O	XTAL2: Output of the oscillator amplifier circuit XTAL1: Input to the oscillator amplifier and input to the internal clock generator To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.			
res	28	-	pin is reserv	ved and connected to V_{DDP}		
res	29	-	pin is reserv	ved and connected to $V_{\rm SSP}$		
$\overline{V_{DDI}}$	35, 97	-	Digital Core Supply Voltage (On-Chip Modules): +2.5 V during normal operation and idle mode. Please refer to the Operating Conditions			

 Table 2
 Pin Definitions and Functions (cont'd)

Symbo I	Pin Num.	Input Outp.	Function
$\overline{V_{DDP}}$	9, 17, 38, 61, 87	-	Digital Pad Supply Voltage (Pin Output Drivers): +5 V during normal operation and idle mode. Please refer to the Operating Conditions
$\overline{V_{SSI}}$	34, 98	_	Digital Ground.
$\overline{V_{SSP}}$	8, 16, 37, 62, 88	-	Connect decoupling capacitors to adjacent $V_{\rm DD}/V_{\rm SS}$ pin pairs as close as possible to the pins. All $V_{\rm SS}$ pins must be connected to the ground-line or ground-plane.

3 Functional Description

The architecture of the XC164N combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a very well-balanced way. In addition, the on-chip memory blocks allow the design of compact systems-on-silicon with maximum performance (computing, control, communication).

The on-chip memory blocks (program code-memory and SRAM, dual-port RAM, data SRAM) and the set of generic peripherals are connected to the CPU via separate buses. Another bus, the LXBus, connects additional on-chip resources as well as external resources (see Figure 3).

This bus structure enhances the overall system performance by enabling the concurrent operation of several subsystems of the XC164N.

The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the XC164N.

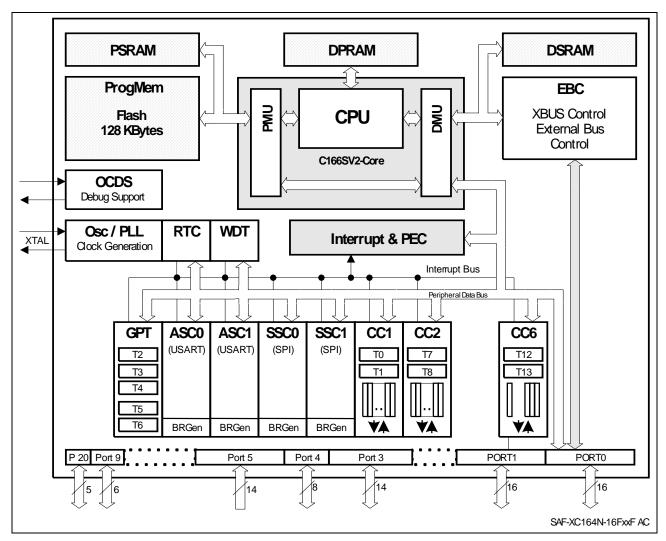


Figure 3 Block Diagram

3.1 Memory Subsystem and Organization

The memory space of the XC164N is configured in a Von Neumann architecture, which means that all internal and external resources, such as code memory, data memory, registers and I/O ports, are organized within the same linear address space. This common memory space includes 16 Mbytes and is arranged as 256 segments of 64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (E/SFR) have additionally been made directly bitaddressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls accesses to the program memories, such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls accesses to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected via the high-speed system bus to exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources, including peripherals on the LXbus. The system bus allows concurrent two-way communication for maximum transfer performance.

128 Kbytes of on-chip Flash memory store code or constant data. The on-chip Flash memory is organized as four 8-Kbyte sectors, one 32-Kbyte sector, and one 64-Kbyte sectors. Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A password sequence temporarily unlocks protected areas. The Flash module combines very fast 64-bit one-cycle read accesses with protected and efficient writing algorithms for programming and erasing. Thus, program execution out of the internal Flash results in maximum performance. Dynamic error correction provides extremely high read data security for all read accesses.

Programming typically takes 2 ms per 128-byte block (5 ms max.), erasing a sector typically takes 200 ms (500 ms max.).

- **2 Kbytes of on-chip Program SRAM (PSRAM)** are provided to store user code or data. The PSRAM is accessed via the PMU and is therefore optimized for code fetches.
- **2 Kbytes of on-chip Data SRAM (DSRAM)** are provided as a storage for general user data. The DSRAM is accessed via the DMU and is therefore optimized for data accesses.
- **2 Kbytes of on-chip Dual-Port RAM (DPRAM)** are provided as a storage for user defined variables, for the system stack, general purpose register banks. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7)

¹⁾ Each two 8-Kbyte sectors are combined for write-protection purposes.

so-called General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bitaddressable. When used by a GPR, any location in the DPRAM is bitaddressable.

1024 bytes (2 × **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC166 Family. Therefore, they should either not be accessed, or written with zeros, to ensure upward compatibility.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 12 Mbytes (approximately, see **Table 3**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

Table 3 XC164N Memory Map¹⁾

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
Flash register space	FF'F000 _H	FF'FFFF _H	4 Kbytes	Flash only ³⁾
Reserved (Acc. trap)	F8'0000 _H	FF'EFFF _H	<0.5 Mbytes	Minus Flash regs
Reserved for PSRAM	E0'0800 _H	F7'FFFF _H	<1.5 Mbytes	Minus PSRAM
Program SRAM	E0'0000 _H	E0'07FF _H	2 Kbytes	Maximum
Reserved for pr. mem.	C2'0000 _H	DF'FFFF _H	< 2 Mbytes	Minus Flash
Program Flash	C0'0000 _H	C1'FFFF _H	128 Kbytes	up to 128 Kbytes
Reserved	BF'0000 _H	BF'FFFF _H	64 Kbytes	
External memory area	40'0000 _H	BE'FFFF _H	< 8 Mbytes	Minus res. seg.
External IO area ⁴⁾	20'0800 _H	3F'FFFF _H	< 2 Mbytes	
Reserved	20'0000 _H	20'07FF _H	2 Kbytes	
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
Data RAMs and SFRs	00'8000 _H	00'FFFF _H	32 Kbytes	Partly used
External memory area	00'0000 _H	00'7FFF _H	32 Kbytes	

¹⁾ Accesses to the shaded areas generate external bus accesses.

²⁾ The areas marked with "<" are slightly smaller than indicated, see column "Notes".

³⁾ Not defined register locations return a trap code.

⁴⁾ Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

3.2 External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes¹⁾, which are as follows:

- 16 ... 24-bit Addresses, 16-bit Data, Demultiplexed
- 16 ... 24-bit Addresses, 16-bit Data, Multiplexed
- 16 ... 24-bit Addresses, 8-bit Data, Multiplexed
- 16 ... 24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0 or POL, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output. The high order address (segment) lines use Port 4. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines are assigned to Port 4.

Up to 4 external $\overline{\text{CS}}$ signals (3 windows plus default) can be generated in order to save external glue logic. External modules can directly be connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface have been made programmable (via registers TCONCSx/FCONCSx) to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via registers ADDRSELx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these 4 address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is related to the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

The EBC also controls accesses to resources connected to the on-chip LXBus. The LXBus is an internal representation of the external bus and allows accessing integrated peripherals and modules in the same way as external components.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

3.3 Central Processing Unit (CPU)

The main core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction-fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply and divide unit, a bit-mask generator, and a barrel shifter.

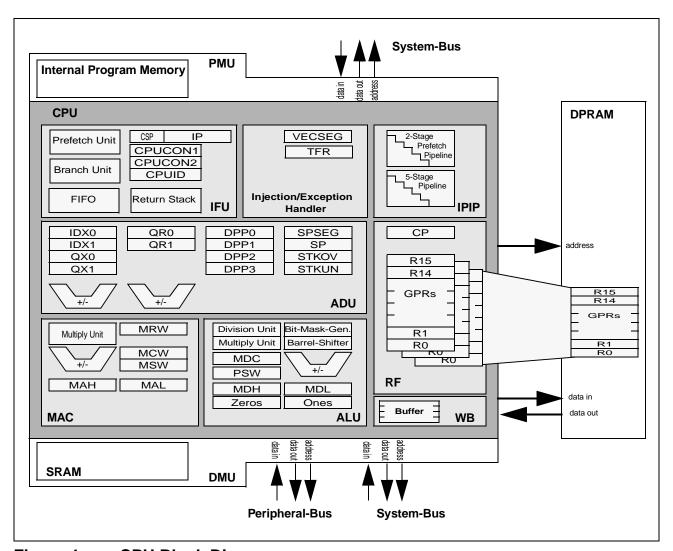


Figure 4 CPU Block Diagram

Based on these hardware provisions, most of the XC164N's instructions can be executed in just one machine cycle which requires 25 ns at 40 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. Also multiplication and most MAC instructions execute in one single cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: for example, a 32-/16-bit division is started within 4 cycles, while the remaining 15 cycles are executed in the

background. Another pipeline optimization, the branch target prediction, allows eliminating the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided as a storage for temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient XC164N instruction set which includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

3.4 Interrupt System

With an interrupt response time of typically 8 CPU clocks (in case of internal program execution), the XC164N is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the XC164N supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source, or the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The XC164N has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt nodes. Via its related register, each node can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt nodes has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 4 shows all of the possible XC164N interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes), may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Table 4 XC164N Interrupt Nodes

CAPCOM Register 1 CC1_CC1IC xx'0044 _H 11 _H / 17 _L CAPCOM Register 2 CC1_CC2IC xx'0048 _H 12 _H / 18 _L CAPCOM Register 3 CC1_CC3IC xx'004C _H 13 _H / 19 _L CAPCOM Register 4 CC1_CC4IC xx'0050 _H 14 _H / 20 _L CAPCOM Register 5 CC1_CC5IC xx'0054 _H 15 _H / 21 _L CAPCOM Register 6 CC1_CC6IC xx'0050 _H 17 _H / 23 _L CAPCOM Register 7 CC1_CC7IC xx'0060 _H 18 _H / 24 _L CAPCOM Register 8 CC1_CC3IC xx'0060 _H 18 _H / 24 _L CAPCOM Register 9 CC1_CC3IC xx'0060 _H 19 _H / 25 _L CAPCOM Register 10 CC1_CC10IC xx'0064 _H 19 _H / 25 _L CAPCOM Register 11 CC1_CC11IC xx'0060 _H 18 _H / 27 _L CAPCOM Register 12 CC1_CC12IC xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC13IC xx'00774 _H 1D _H / 29 CAPCOM Register 14 CC1_CC16IC xx'00776 _H 1F _H / 31 _L CAPCOM Register 16 CC2_CC16IC	Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number	
CAPCOM Register 2 CAPCOM Register 3 CC1_CC3IC Xx'004C _H 13 _H / 19 _E CAPCOM Register 4 CC1_CC4IC Xx'0050 _H 14 _H / 20 _E CAPCOM Register 5 CC1_CC5IC Xx'0054 _H 15 _H / 21 _E CAPCOM Register 6 CC1_CC6IC Xx'0058 _H 16 _H / 22 _E CAPCOM Register 7 CC1_CC7IC Xx'005C _H 17 _H / 23 _E CAPCOM Register 8 CC1_CC8IC Xx'0060 _H 18 _H / 24 _E CAPCOM Register 9 CC1_CC9IC Xx'0064 _H 19 _H / 25 _E CAPCOM Register 10 CC1_CC10IC Xx'0068 _H 14 _H / 26 _E CAPCOM Register 11 CC1_CC10IC Xx'0066 _H 18 _H / 27 _E CAPCOM Register 12 CC1_CC11IC Xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC12IC Xx'0070 _H 1C _H / 28 CAPCOM Register 14 CC1_CC13IC Xx'0070 _H 1C _H / 28 CAPCOM Register 15 CC1_CC15IC Xx'0070 _H 1E _H / 30 _E CAPCOM Register 16 CC2_CC16IC Xx'0070 _H 1F _H / 31 _E CAPCOM Register 17 CC2_CC16IC Xx'00C0 _H 30 _H / 48 _E CAPCOM Register 18 CC2_CC16IC Xx'00C0 _H 31 _H / 49 _E CAPCOM Register 19 CC2_CC19IC Xx'00C0 _H 33 _H / 50 _E CAPCOM Register 20 CC2_CC2IIC Xx'00D0 _H 34 _H / 52 _E CAPCOM Register 21 CC2_CC2IIC Xx'00D0 _H 34 _H / 52 _E CAPCOM Register 22 CC2_CC2IIC Xx'00D0 _H 35 _H / 50 _E CAPCOM Register 23 CC2_CC2IIC Xx'00D0 _H 36 _H / 54 _E CAPCOM Register 24 CC2_CC2IIC Xx'00D0 _H 38 _H / 50 _E CAPCOM Register 25 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 26 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 27 CC2_CC2IIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 26 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 27 CC2_CC2IIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 27 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H 38 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H 36 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H 36 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H 36 _H / 50 _E CAPCOM Register 28 CC2_CC2EIC Xx'00E0 _H	CAPCOM Register 0	CC1_CC0IC	xx'0040 _H	10 _H / 16 _D	
CAPCOM Register 3 CC1_CC3IC xx'004C _H 13 _H / 19 _E CAPCOM Register 4 CC1_CC4IC xx'0050 _H 14 _H / 20 _E CAPCOM Register 5 CC1_CC5IC xx'0054 _H 15 _H / 21 _E CAPCOM Register 6 CC1_CC6IC xx'0054 _H 16 _H / 22 _E CAPCOM Register 7 CC1_CC7IC xx'0050 _H 17 _H / 23 _E CAPCOM Register 8 CC1_CC8IC xx'0060 _H 18 _H / 24 _E CAPCOM Register 9 CC1_CC9IC xx'0064 _H 19 _H / 25 _E CAPCOM Register 10 CC1_CC10IC xx'0066 _H 18 _H / 26 _E CAPCOM Register 11 CC1_CC11IC xx'0070 _H 1C _H / 28 CAPCOM Register 12 CC1_CC12IC xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC13IC xx'0074 _H 1D _H / 29 CAPCOM Register 14 CC1_CC14IC xx'0070 _H 1E _H / 30 _E CAPCOM Register 15 CC1_CC15IC xx'0070 _H 1F _H / 31 _E CAPCOM Register 16 CC2_CC16IC xx'00C4 _H 31 _H / 49 _E CAPCOM Register 19 CC2_CC21IC	CAPCOM Register 1	CC1_CC1IC	xx'0044 _H	11 _H / 17 _D	
CAPCOM Register 4 CC1_CC4IC xx'0050 _H 14 _H / 20 _t CAPCOM Register 5 CC1_CC5IC xx'0054 _H 15 _H / 21 _t CAPCOM Register 6 CC1_CC6IC xx'0058 _H 16 _H / 22 _t CAPCOM Register 7 CC1_CC7IC xx'005C _H 17 _H / 23 _t CAPCOM Register 8 CC1_CC8IC xx'0060 _H 18 _H / 24 _t CAPCOM Register 9 CC1_CC9IC xx'0064 _H 19 _H / 25 _t CAPCOM Register 10 CC1_CC10IC xx'0068 _H 1A _H / 26 _t CAPCOM Register 11 CC1_CC1IIC xx'0070 _H 1C _H / 28 CAPCOM Register 12 CC1_CC12IC xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC13IC xx'0074 _H 1D _H / 29 CAPCOM Register 14 CC1_CC14IC xx'007C _H 1F _H / 30 _t CAPCOM Register 15 CC1_CC15IC xx'007C _H 1F _H / 30 _t CAPCOM Register 16 CC2_CC16IC xx'000C0 _H 30 _H / 48 _t CAPCOM Register 18 CC2_CC1IC xx'00C0 _H 32 _H / 50 _t CAPCOM Register 20 CC2_CC2IIC	CAPCOM Register 2	CC1_CC2IC	xx'0048 _H	12 _H / 18 _D	
CAPCOM Register 5 CC1_CC5IC xx'0054 _H 15 _H / 21 _E CAPCOM Register 6 CC1_CC6IC xx'0058 _H 16 _H / 22 _E CAPCOM Register 7 CC1_CC7IC xx'005C _H 17 _H / 23 _E CAPCOM Register 8 CC1_CC8IC xx'0060 _H 18 _H / 24 _E CAPCOM Register 9 CC1_CC9IC xx'0066 _H 19 _H / 25 _E CAPCOM Register 10 CC1_CC10IC xx'0066 _H 18 _H / 26 _E CAPCOM Register 11 CC1_CC1IIC xx'0070 _H 1C _H / 28 CAPCOM Register 12 CC1_CC12IC xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC13IC xx'0074 _H 1D _H / 29 CAPCOM Register 14 CC1_CC14IC xx'0078 _H 1E _H / 30 _H CAPCOM Register 15 CC1_CC15IC xx'007C _H 1F _H / 31 _H CAPCOM Register 16 CC2_CC16IC xx'00C0 _H 30 _H / 48 _E CAPCOM Register 17 CC2_CC1IC xx'00C6 _H 31 _H / 50 _E CAPCOM Register 18 CC2_CC1IC xx'00C6 _H 33 _H / 51 _E CAPCOM Register 20 CC2_CC2IC	CAPCOM Register 3	CC1_CC3IC	xx'004C _H	13 _H / 19 _D	
CAPCOM Register 6 CC1_CC6IC xx'0058 _H 16 _H / 22 _I CAPCOM Register 7 CC1_CC7IC xx'005C _H 17 _H / 23 _I CAPCOM Register 8 CC1_CC8IC xx'0060 _H 18 _H / 24 _I CAPCOM Register 9 CC1_CC9IC xx'0064 _H 19 _H / 25 _I CAPCOM Register 10 CC1_CC10IC xx'0068 _H 1A _H / 26 _I CAPCOM Register 11 CC1_CC11IC xx'0070 _H 1C _H / 28 CAPCOM Register 12 CC1_CC12IC xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC13IC xx'0070 _H 1D _H / 29 CAPCOM Register 14 CC1_CC14IC xx'0078 _H 1E _H / 30 _I CAPCOM Register 15 CC1_CC15IC xx'0070 _H 1F _H / 31 _I CAPCOM Register 16 CC2_CC16IC xx'00C0 _H 30 _H / 48 _I CAPCOM Register 18 CC2_CC18IC xx'00C0 _H 32 _H / 50 _I CAPCOM Register 20 CC2_CC2IIC xx'00D0 _H 34 _H / 52 _I CAPCOM Register 21 CC2_CC2IIC xx'00D0 _H 36 _H / 54 _I CAPCOM Register 23 CC2_CC22IC	CAPCOM Register 4	CC1_CC4IC	xx'0050 _H	14 _H / 20 _D	
CAPCOM Register 7 CC1_CC7IC xx'005C _H 17 _H / 23 _L CAPCOM Register 8 CC1_CC8IC xx'0060 _H 18 _H / 24 _L CAPCOM Register 9 CC1_CC9IC xx'0064 _H 19 _H / 25 _L CAPCOM Register 10 CC1_CC10IC xx'0068 _H 1A _H / 26 _L CAPCOM Register 11 CC1_CC11IC xx'0070 _H 1C _H / 28 CAPCOM Register 12 CC1_CC12IC xx'0070 _H 1C _H / 28 CAPCOM Register 13 CC1_CC13IC xx'0074 _H 1D _H / 29 CAPCOM Register 14 CC1_CC15IC xx'0076 _H 1E _H / 30 _H CAPCOM Register 15 CC1_CC15IC xx'0070 _H 1F _H / 31 _H CAPCOM Register 16 CC2_CC16IC xx'00C0 _H 30 _H / 48 _H CAPCOM Register 17 CC2_CC17IC xx'00C4 _H 31 _H / 49 _H CAPCOM Register 18 CC2_CC18IC xx'00C6 _H 32 _H / 50 _H CAPCOM Register 20 CC2_CC2IIC xx'00D0 _H 34 _H / 52 _H CAPCOM Register 21 CC2_CC2IIC xx'00D0 _H 36 _H / 54 _H CAPCOM Register 23 CC2_CC2IIC <td>CAPCOM Register 5</td> <td>CC1_CC5IC</td> <td>xx'0054_H</td> <td>15_H / 21_D</td>	CAPCOM Register 5	CC1_CC5IC	xx'0054 _H	15 _H / 21 _D	
CAPCOM Register 8 CC1_CC8IC	CAPCOM Register 6	CC1_CC6IC	xx'0058 _H	16 _H / 22 _D	
CAPCOM Register 9 CC1_CC9IC Xx'0064 _H 19 _H / 25 _T CAPCOM Register 10 CC1_CC10IC Xx'0068 _H 1A _H / 26 _T CAPCOM Register 11 CC1_CC11IC Xx'006C _H 1B _H / 27 _T CAPCOM Register 12 CC1_CC12IC CAPCOM Register 13 CC1_CC13IC Xx'0074 _H 1D _H / 29 CAPCOM Register 14 CC1_CC13IC Xx'0078 _H 1E _H / 30 _T CAPCOM Register 15 CC1_CC15IC Xx'0070 _H 1F _H / 31 _T CAPCOM Register 16 CC2_CC16IC CX'0070 _H 1F _H / 31 _T CAPCOM Register 17 CC2_CC16IC Xx'00C0 _H 30 _H / 48 _T CAPCOM Register 18 CC2_CC18IC Xx'00C8 _H 32 _H / 50 _T CAPCOM Register 19 CC2_CC19IC Xx'00C0 _H 33 _H / 51 _T CAPCOM Register 20 CC2_CC20IC Xx'00D0 _H 34 _H / 52 _T CAPCOM Register 21 CC2_CC21IC Xx'00D4 _H 35 _H / 53 _T CAPCOM Register 22 CC2_CC22IC Xx'00D0 _H 36 _H / 54 _T CAPCOM Register 23 CC2_CC23IC Xx'00D0 _H 37 _H / 55 _T CAPCOM Register 24 CC2_CC25IC Xx'00E0 _H 38 _H / 56 _T CAPCOM Register 25 CC2_CC25IC Xx'00E0 _H 38 _H / 56 _T CAPCOM Register 26 CC2_CC26IC Xx'00E0 _H 38 _H / 58 _T CAPCOM Register 27 CC2_CC26IC Xx'00E0 _H 38 _H / 58 _T CAPCOM Register 27 CC2_CC28IC Xx'00E0 _H 38 _H / 58 _T CAPCOM Register 28 CC2_CC28IC Xx'00E0 _H 38 _H / 58 _T CAPCOM Register 27 CC2_CC28IC Xx'00E0 _H 36 _H / 58 _T CAPCOM Register 28 CC2_CC28IC Xx'00E0 _H 36 _H / 58 _T CAPCOM Register 28 CC2_CC28IC Xx'00E0 _H 36 _H / 58 _T CAPCOM Register 28 CC2_CC28IC Xx'00E0 _H 36 _H / 58 _T CAPCOM Register 28 CC2_CC28IC Xx'00E0 _H 36 _H / 58 _T CAPCOM Register 28	CAPCOM Register 7	CC1_CC7IC	xx'005C _H	17 _H / 23 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 8	CC1_CC8IC	xx'0060 _H	18 _H / 24 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 9	CC1_CC9IC	xx'0064 _H	19 _H / 25 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 10	CC1_CC10IC	xx'0068 _H	1A _H / 26 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 11	CC1_CC11IC	xx'006C _H	1B _H / 27 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 12	CC1_CC12IC	xx'0070 _H	1C _H / 28 _D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 13	CC1_CC13IC	xx'0074 _H	1D _H / 29 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 14	CC1_CC14IC	xx'0078 _H	1E _H / 30 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 15	CC1_CC15IC	xx'007C _H	1F _H / 31 _D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 16	CC2_CC16IC	xx'00C0 _H	30 _H / 48 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 17	CC2_CC17IC	xx'00C4 _H	31 _H / 49 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 18	CC2_CC18IC	xx'00C8 _H	32 _H / 50 _D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPCOM Register 19	CC2_CC19IC	xx'00CC _H	33 _H / 51 _D	
CAPCOM Register 22	CAPCOM Register 20	CC2_CC20IC	xx'00D0 _H	34 _H / 52 _D	
CAPCOM Register 23	CAPCOM Register 21	CC2_CC21IC	xx'00D4 _H	35 _H / 53 _D	
CAPCOM Register 24 $CC2_CC24IC$ $xx'00E0_H$ $38_H / 56_D$ $CAPCOM$ Register 25 $CC2_CC25IC$ $xx'00E4_H$ $39_H / 57_D$ $CAPCOM$ Register 26 $CC2_CC26IC$ $xx'00E8_H$ $3A_H / 58_D$ $CAPCOM$ Register 27 $CC2_CC27IC$ $xx'00EC_H$ $3B_H / 59_D$ $CAPCOM$ Register 28 $CC2_CC28IC$ $xx'00E0_H$ $3C_H / 60_D$	CAPCOM Register 22	CC2_CC22IC	xx'00D8 _H	36 _H / 54 _D	
CAPCOM Register 25 $CC2_CC25IC$ $xx'00E4_H$ $39_H / 57_D$ $CAPCOM$ Register 26 $CC2_CC26IC$ $xx'00E8_H$ $3A_H / 58_D$ $CAPCOM$ Register 27 $CC2_CC27IC$ $xx'00EC_H$ $3B_H / 59_D$ $CAPCOM$ Register 28 $CC2_CC28IC$ $xx'00E0_H$ $3C_H / 60_D$	CAPCOM Register 23	CC2_CC23IC	xx'00DC _H	37 _H / 55 _D	
CAPCOM Register 26 CC2_CC26IC xx'00E8 _H 3A _H / 58 _H CAPCOM Register 27 CC2_CC27IC xx'00EC _H 3B _H / 59 _H CAPCOM Register 28 CC2_CC28IC xx'00E0 _H 3C _H / 60	CAPCOM Register 24	CC2_CC24IC	xx'00E0 _H	38 _H / 56 _D	
CAPCOM Register 27 CC2_CC27IC xx'00EC _H 3B _H / 59 CAPCOM Register 28 CC2_CC28IC xx'00E0 _H 3C _H / 60	CAPCOM Register 25	CC2_CC25IC	xx'00E4 _H	39 _H / 57 _D	
CAPCOM Register 28 CC2_CC28IC xx'00E0 _H 3C _H / 60	CAPCOM Register 26	CC2_CC26IC	xx'00E8 _H	3A _H / 58 _D	
	CAPCOM Register 27	CC2_CC27IC	xx'00EC _H	3B _H / 59 _D	
CAPCOM Register 29	CAPCOM Register 28	CC2_CC28IC	xx'00E0 _H	3C _H / 60 _D	
	CAPCOM Register 29	CC2_CC29IC	xx'0110 _H	44 _H / 68 _D	

Table 4 XC164N Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 30	CC2_CC30IC	xx'0114 _H	45 _H / 69 _D
CAPCOM Register 31	CC2_CC31IC	xx'0118 _H	46 _H / 70 _D
CAPCOM Timer 0	CC1_T0IC	xx'0080 _H	20 _H / 32 _D
CAPCOM Timer 1	CC1_T1IC	xx'0084 _H	21 _H / 33 _D
CAPCOM Timer 7	CC2_T7IC	xx'00F4 _H	3D _H / 61 _D
CAPCOM Timer 8	CC2_T8IC	xx'00F8 _H	3E _H / 62 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0088 _H	22 _H / 34 _D
GPT1 Timer 3	GPT12E_T3IC	xx'008C _H	23 _H / 35 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0090 _H	24 _H / 36 _D
GPT2 Timer 5	GPT12E_T5IC	xx'0094 _H	25 _H / 37 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0098 _H	26 _H / 38 _D
GPT2 CAPREL Reg.	GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
Unassigned node		xx'00A0 _H	28 _H / 40 _D
Unassigned node		xx'00A4 _H	29 _H / 41 _D
ASC0 Transmit	ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0 Transmit Buffer	ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0 Receive	ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0 Error	ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0 Autobaud	ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0 Transmit	SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0 Receive	SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0 Error	SSC0_EIC	xx'00BC _H	2F _H / 47 _D
PLL/OWD	PLLIC	xx'010C _H	43 _H / 67 _D
ASC1 Transmit ²⁾	ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1 Transmit Buffer	ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1 Receive	ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1 Error	ASC1_EIC	xx'0128 _H	4A _H / 74 _D
ASC1 Autobaud	ASC1_ABIC	xx'0108 _H	42 _H / 66 _D
End of PEC Subch.	EOPIC	xx'0130 _H	4C _H / 76 _D
CAPCOM6 Timer T12	CCU6_T12IC	xx'0134 _H	4D _H / 77 _D

Table 4 XC164N Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM6 Timer T13	CCU6_T13IC	xx'0138 _H	4E _H / 78 _D
CAPCOM6 Emergency	CCU6_EIC	xx'013C _H	4F _H / 79 _D
CAPCOM6	CCU6_IC	xx'0140 _H	50 _H / 80 _D
SSC1 Transmit	SSC1_TIC	xx'0144 _H	51 _H / 81 _D
SSC1 Receive	SSC1_RIC	xx'0148 _H	52 _H / 82 _D
SSC1 Error	SSC1_EIC	xx'014C _H	53 _H / 83 _D
Unassigned node		xx'0150 _H	54 _H / 84 _D
Unassigned node		xx'0154 _H	55 _H / 85 _D
Unassigned node		xx'0158 _H	56 _H / 86 _D
Unassigned node		xx'015C _H	57 _H / 87 _D
Unassigned node		xx'0164 _H	59 _H / 89 _D
Unassigned node		xx'0168 _H	5A _H / 90 _D
Unassigned node		xx'016C _H	5B _H / 91 _D
Unassigned node		xx'0170 _H	5C _H / 92 _D
Unassigned node		xx'0174 _H	5D _H / 93 _D
Unassigned node		xx'0100 _H	40 _H / 64 _D
Unassigned node		xx'0104 _H	41 _H / 65 _D
Unassigned node		xx'012C _H	4B _H / 75 _D
Unassigned node		xx'00FC _H	3F _H / 63 _D
Unassigned node		xx'0160 _H	58 _H / 88 _D

Register VECSEG defines the segment where the vector table is located to.
 Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting, with a distance of 4 (two words) between two vectors.

²⁾ The interrupt nodes assigned to ASC1 are only available in derivatives including the ASC1. Otherwise, they are unassigned nodes.

The XC164N also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 5 shows all of the possible exceptions or error conditions that can arise during runtime:

Table 5 Hardware Trap Summary

Exception Condition	Trap Flag	Trap Vector	Vector Location ¹⁾	Trap Number	Trap Priority
Reset Functions: - Hardware Reset - Software Reset - W-dog Timer Overflow	_	RESET RESET RESET	xx'0000 _H xx'0000 _H xx'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: - Non-Maskable Interrupt - Stack Overflow - Stack Underflow - Software Break	NMI STKOF STKUF SOFTBRK	NMITRAP STOTRAP STUTRAP SBRKTRAP	xx'0008 _H xx'0010 _H xx'0018 _H xx'0020 _H	02 _H 04 _H 06 _H 08 _H	
Class B Hardware Traps: - Undefined Opcode - PMI Access Error - Protected Instruction Fault - Illegal Word Operand Access	UNDOPC PACER PRTFLT ILLOPA	BTRAP BTRAP BTRAP BTRAP	xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H	0A _H 0A _H 0A _H	
Reserved	_	_	[2C _H – 3C _H]	[0B _H – 0F _H]	_
Software Traps – TRAP Instruction	_	_	Any [xx'0000 _H - xx'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority

¹⁾ Register VECSEG defines the segment where the vector table is located to.

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation features built into the XC164N. The user software running on the XC164N can thus be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface, consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger controls the OCDS via a set of dedicated registers accessible via the JTAG interface. Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported as well as the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the JTAG interface or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to communicate with external circuitry. These interface signals are realized as alternate functions on Port 3 pins.

Complete system emulation is supported by the New Emulation Technology (NET) interface. Via this full-featured emulation interface (including internal buses, control, status, and pad signals) the XC164N chip can be connected to a NET carrier chip.

The use of the XC164N production chip together with the carrier chip provides superior emulation behavior, because the emulation system shows exactly the same functionality as the production chip (use of the identical silicon).

3.6 Capture/Compare Units (CAPCOM1/2)

The CAPCOM units support generation and control of timing sequences on up to 32 channels with a maximum resolution of 1 system clock cycle (8 cycles in staggered mode). The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for each capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function.

12 registers of the CAPCOM2 module have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

Table 6 Compare Modes (CAPCOM1/2)

Compare Modes	Function
Mode 0	Interrupt-only compare mode; several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; several compare events per timer period are possible
Mode 2	Interrupt-only compare mode; only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; pin toggles on each compare match; several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; can be used with any compare mode

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

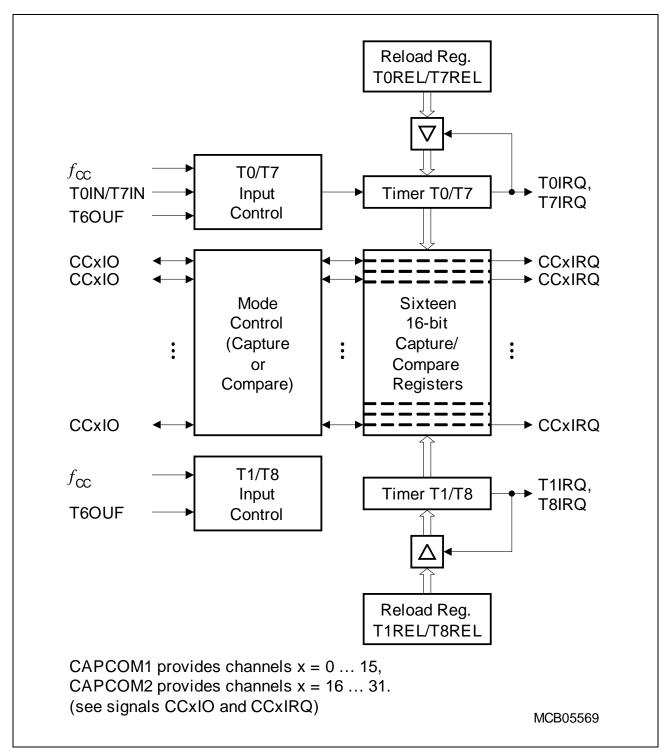


Figure 5 CAPCOM1/2 Unit Block Diagram

3.7 The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and control of timing sequences on up to three 16-bit capture/compare channels plus one independent 10-bit compare channel.

In compare mode the CAPCOM6 unit provides two output signals per channel which have inverted polarity and non-overlapping pulse transitions (deadtime control). The compare channel can generate a single PWM output signal and is further used to modulate the capture/compare output signals.

In capture mode the contents of compare timer T12 is stored in the capture registers upon a signal transition at pins CCx.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked by the prescaled system clock.

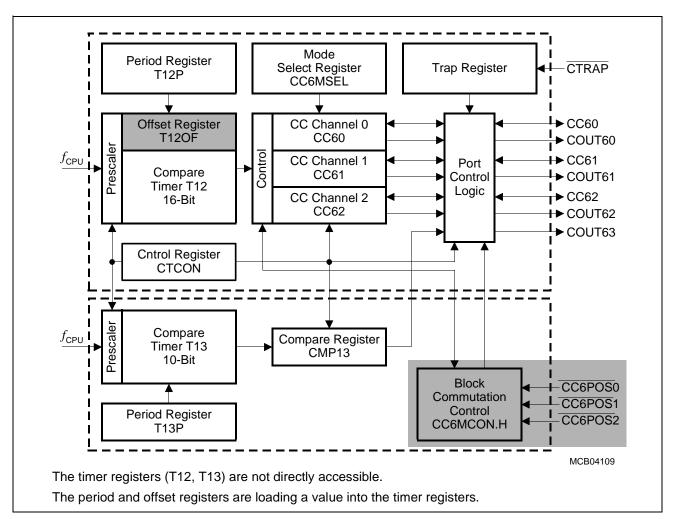


Figure 6 CAPCOM6 Block Diagram

For motor control applications both subunits may generate versatile multichannel PWM signals which are basically either controlled by compare timer T12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).

3.8 General Purpose Timer (GPT12E) Unit

The GPT12E unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-flow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

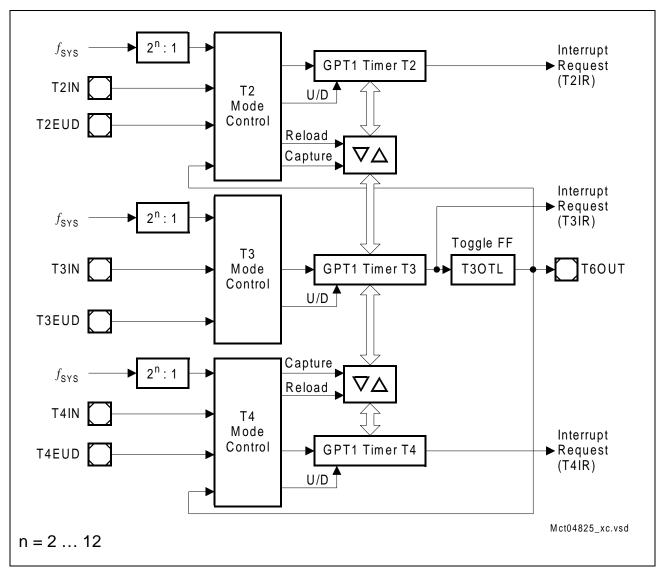


Figure 7 Block Diagram of GPT1

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM1/2 timers, and to cause a reload from the CAPREL register.

The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared

after the capture procedure. This allows the XC164N to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

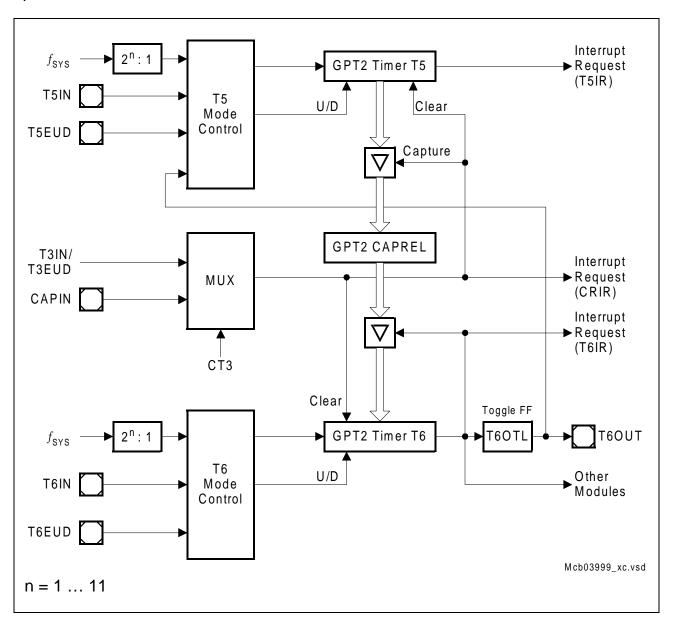


Figure 8 Block Diagram of GPT2

3.9 Real Time Clock

The Real Time Clock (RTC) module of the XC164N is directly clocked via a separate clock driver with the prescaled on-chip oscillator frequency ($f_{\rm RTC} = f_{\rm OSC}$ / 32). It is therefore independent from the selected clock generation mode of the XC164N.

The RTC basically consists of a chain of divider blocks:

- a selectable 8:1 divider (on off)
- the reloadable 16-bit timer T14
- the 32-bit RTC timer block (accessible via registers RTCH and RTCL), made of:
 - a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

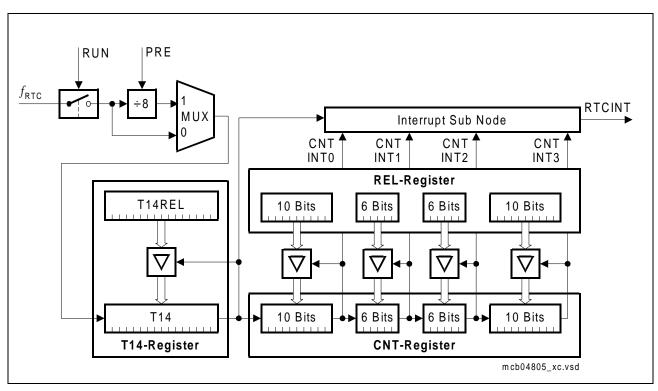


Figure 9 RTC Block Diagram

Note: The registers associated with the RTC are not affected by a reset in order to maintain the correct system time even when intermediate resets are executed.

The RTC module can be used for different purposes:

- System clock to determine the current time and date, optionally during idle mode, sleep mode, and power down mode
- Cyclic time based interrupt, to provide a system time tick independent of CPU frequency and other resources, e.g. to wake up regularly from idle mode.
- 48-bit timer for long term measurements (maximum timespan is >100 years).
- Alarm interrupt for wake-up on a defined time

3.10 Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)

The Asynchronous/Synchronous Serial Interfaces ASCO/ASC1 (USARTs) provide serial communication with other microcontrollers, processors, terminals or external peripheral components. They are upward compatible with the serial ports of the Infineon 8-bit microcontroller families and support full-duplex asynchronous communication and half-duplex synchronous communication. A dedicated baud rate generator with a fractional divider precisely generates all standard baud rates without oscillator tuning. For transmission, reception, error handling, and baudrate detection 5 separate interrupt vectors are provided.

In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to 115.2 kbit/s with fixed or programmable IrDA pulse width are supported.

In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift clock which is generated by the ASC0/1. The LSB is always shifted first.

In both modes, transmission and reception of data is FIFO-buffered. An autobaud detection unit allows to detect asynchronous data frames with its baudrate and mode with automatic initialization of the baudrate generator and the mode control bits.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

Summary of Features

- Full-duplex asynchronous operating modes
 - 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking
 - Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz)
 - Multiprocessor mode for automatic address/data byte detection
 - Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz)
 - Loop-back capability
 - Auto baudrate detection
- Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz)
- Buffered transmitter/receiver with FIFO support (8 entries per direction)
- Loop-back option available for testing purposes
- Interrupt generation on transmitter buffer empty condition, last bit transmitted condition, receive buffer full condition, error condition (frame, parity, overrun error), start and end of an autobaud detection

3.11 High Speed Synchronous Serial Channels (SSC0/SSC1)

The High Speed Synchronous Serial Channels SSC0/SSC1 support full-duplex and half-duplex synchronous communication. It may be configured so it interfaces with serially linked peripheral components, full SPI functionality is supported.

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling three separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit error and receive error supervise the correct handling of the data buffer. Phase error and baudrate error detect incorrect serial data.

Summary of Features

- Master or Slave mode operation
- Full-duplex or Half-duplex transfers
- Baudrate generation from 20 Mbit/s to 305.18 bit/s (@ 40 MHz)
- Flexible data format
 - Programmable number of data bits: 2 to 16 bits
 - Programmable shift direction: LSB-first or MSB-first
 - Programmable clock polarity: idle low or idle high
 - Programmable clock/data phase: data shift with leading or trailing clock edge
- Loop back option available for testing purposes
- Interrupt generation on transmitter buffer empty condition, receive buffer full condition, error condition (receive, phase, baudrate, transmit error)
- Three pin interface with flexible SSC pin configuration

3.12 Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled until the EINIT instruction has been executed (compatible mode), or it can be disabled and enabled at any time by executing instructions DISWDT and ENWDT (enhanced mode). Thus, the chip's start-up procedure is always monitored. The software has to be designed to restart the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and

generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded and the low byte is cleared. Thus, time intervals between $13 \,\mu s$ and $419 \,ms$ can be monitored (@ $40 \,MHz$).

The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz).

3.13 Clock Generation

The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers to generate the clock signals for the XC164N with high flexibility. The master clock $f_{\rm MC}$ is the reference clock signal and is output to the external system. The CPU clock $f_{\rm CPU}$ and the system clock $f_{\rm SYS}$ are derived from the master clock either directly (1:1) or via a 2:1 prescaler ($f_{\rm SYS} = f_{\rm CPU} = f_{\rm MC}$ / 2). See also **Section 5.1**.

The on-chip oscillator can drive an external crystal or accepts an external clock signal. The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable factor) or can be divided by a programmable prescaler factor.

If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the Oscillator Watchdog (OWD) activates the PLL Unlock / OWD interrupt node and supplies the CPU with an emergency clock, the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

The oscillator watchdog can be disabled by switching the PLL off. This reduces power consumption, but also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of an external reset (EA = '0') the oscillator watchdog may be disabled via hardware by (externally) pulling the RD line low upon a reset, similar to the standard reset configuration.

3.14 Parallel Ports

The XC164N provides up to 79 I/O lines which are organized into six input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of some I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs (except for pin RSTOUT).

The edge characteristics (shape) and driver characteristics (output current) of the port drivers can be selected via registers POCONx.

The input threshold of some ports is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

Table 7 Summary of the XC164N's Parallel Ports

Port	Control	Alternate Functions
PORT0	Pad drivers	Address/Data lines or data lines ¹⁾
PORT1	Pad drivers	Address lines ²⁾
		Capture inputs or compare outputs, Serial interface lines, Fast external interrupt inputs
Port 3	Pad drivers, Open drain, Input threshold	Timer control signals, serial interface lines, Optional bus control signal BHE/WRH, System clock output CLKOUT (or FOUT), Debug interface lines
Port 4	Pad drivers,	Segment address lines ³⁾
	Open drain, Input threshold	Optional chip select signals
Port 5		Timer control signals
Port 9	Pad drivers,	Capture inputs or compare outputs
	Open drain, Input threshold	
Port 20	Pad drivers, Open drain	Bus control signals RD, WR/WRL, ALE, External access enable pin EA, Reset indication output RSTOUT

¹⁾ For multiplexed bus cycles.

²⁾ For demultiplexed bus cycles.

³⁾ For more than 64 Kbytes of external resources.

3.15 Power Management

The XC164N provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

- Power Saving Modes switch the XC164N into a special operating mode (control via instructions).
 - Idle Mode stops the CPU while the peripherals can continue to operate. Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.
- Clock Generation Management controls the distribution and the frequency of internal and external clock signals. While the clock signals for currently inactive parts of logic are disabled automatically, the user can reduce the XC164N's CPU clock frequency which drastically reduces the consumed power.
 - External circuitry can be controlled via the programmable frequency output FOUT.
- **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3). Each peripheral can separately be disabled/enabled.

The on-chip RTC supports intermittend operation of the XC164N by generating cyclic wake-up signals. This offers full performance to quickly react on action requests while the intermittend sleep phases greatly reduce the average power consumption of the system.

3.16 Instruction Set Summary

Table 8 lists the instructions of the XC164N in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "Instruction Set Manual".

This document also provides a detailled description of each instruction.

Table 8 Instruction Set Summary

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
(X)OR(B)	Bitwise (exclusive)OR, (word/byte operands)	2/4
BCLR / BSET	Clear/Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND / BOR / BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH / BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4

Table 8 Instruction Set Summary (cont'd)

Mnemonic	Description	Bytes
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
JB(C)	Jump relative if direct bit is set (and clear bit)	4
JNB(S)	Jump relative if direct bit is not set (and set bit)	4
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH / POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2
RETS	Return from inter-segment subroutine	2
RETI	Return from interrupt service subroutine	2
SBRK	Software Break	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT/ENWDT	Disable/Enable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2
CoMUL / CoMAC	Multiply (and accumulate)	4
CoADD / CoSUB	Add / Subtract	4
Co(A)SHR/CoSHL	(Arithmetic) Shift right / Shift left	4
CoLOAD/STORE	Load accumulator / Store MAC register	4
CoCMP/MAX/MIN	Compare (maximum/minimum)	4
CoABS / CoRND	Absolute value / Round accumulator	4
CoMOV/NEG/NOP	Data move / Negate accumulator / Null operation	4

4 Electrical Parameters

4.1 Absolute Maximum Ratings

Table 9 Absolute Maximum Rating Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Storage temperature	T_{ST}	-65	150	°C	_
Junction temperature	T_{J}	-40	150	°C	under bias
Voltage on $V_{\rm DDI}$ pins with respect to ground ($V_{\rm SS}$)	V_{DDI}	-0.5	3.25	V	_
$\begin{tabular}{lll} \hline & Voltage on $V_{\rm DDP}$ pins with \\ respect to ground ($V_{\rm SS}$) \\ \hline \end{tabular}$	V_{DDP}	-0.5	6.2	V	_
Voltage on any pin with respect to ground ($V_{\rm SS}$)	V_{IN}	-0.5	V _{DDP} + 0.5	V	_
Input current on any pin during overload condition	_	-10	10	mA	_
Absolute sum of all input currents during overload condition	_	_	100	mA	-

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pins with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

4.2 Package Properties

Table 10 Package Parameters (P-TQFP-100-16)

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	max.			
Power dissipation	P_{DISS}	_	0.8	W	_	
Thermal Resistance	R_{THA}	_	29	K/W	Chip-Ambient	

4.3 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC164N. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Table 11 Operating Condition Parameters

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Digital supply voltage for the core	V_{DDI}	2.35	2.7	V	Active mode, $f_{CPU} = f_{CPUmax}^{1}$
Digital supply voltage for IO pads	V_{DDP}	4.4	5.5	V	Active mode
Supply Voltage Difference	ΔV_{DD}	-0.5	_	V	V_{DDP} - $V_{DDI}^{}^{4)}}$
Digital ground voltage	V_{SS}		0	V	Reference voltage
Overload current	I_{OV}	-5	5	mA	Per IO pin ⁵⁾⁶⁾
		-2	5	mA	Per analog input pin ⁵⁾⁶⁾
Overload current coupling	K_{OVA}	_	1.0×10^{-4}	_	$I_{\text{OV}} > 0$
factor for analog inputs ⁷⁾		_	1.5×10^{-3}	_	<i>I</i> _{OV} < 0
Overload current coupling	K_{OVD}	_	5.0×10^{-3}	_	$I_{\text{OV}} > 0$
factor for digital I/O pins ⁷⁾		_	1.0×10^{-2}	_	<i>I</i> _{OV} < 0
Absolute sum of overload currents	$\Sigma I_{OV} $	_	50	mA	6)
External Load Capacitance	C_{L}	_	50	pF	Pin drivers in default mode ⁸⁾
Ambient temperature	T_{A}	0	70	°C	SAB-XC164N
		-40	85	°C	SAF-XC164N
		-40	125	°C	SAK-XC164N

¹⁾ $f_{\rm CPUmax}$ = 40 MHz for devices marked ...40F, $f_{\rm CPUmax}$ = 20 MHz for devices marked ...20F.

²⁾ External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating level.

³⁾ The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters, such as leakage currents, refer to the standard operating voltage range of $V_{\rm DDP}$ = 4.75 V to 5.25 V.

⁴⁾ This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes.

- 5) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: $V_{\text{OV}} > V_{\text{DDP}} + 0.5 \text{ V}$ ($I_{\text{OV}} > 0$) or $V_{\text{OV}} < V_{\text{SS}}$ 0.5 V ($I_{\text{OV}} < 0$). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltages must remain within the specified limits.
 - Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, \overline{RD} , \overline{WR} , etc.
- 6) Not subject to production test verified by design/characterization.
- 7) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}). The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it.
 - The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 8) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_1) .

4.4 Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the XC164N and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the XC164N will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the XC164N.

4.5 DC Parameters

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit	Values Unit		Test Condition	
		min.	max.			
Input low voltage TTL (all except XTAL1)	V_{IL} SR	-0.5	0.2×V _{DDP} - 0.1	V	_	
Input low voltage XTAL1	V_{ILC} SR	-0.5	$0.3 \times V_{DDI}$	V	_	
Input low voltage (Special Threshold)	V_{ILS} SR	-0.5	$0.45 \\ \times V_{\rm DDP}$	V	2)	
Input high voltage TTL (all except XTAL1)	V _{IH} SR	0.2×V _{DDP} + 0.9	V _{DDP} + 0.5	V	-	
Input high voltage XTAL1	V_{IHC} SR	$\begin{array}{c} 0.7 \\ \times V_{\mathrm{DDI}} \end{array}$	V _{DDI} + 0.5	V	-	
Input high voltage (Special Threshold)	V_{IHS} SR	0.8×V _{DDP} - 0.2	V _{DDP} + 0.5	V	2)	
Input Hysteresis (Special Threshold)	HYS	$0.04 \\ \times V_{DDP}$	_	V	$V_{\rm DDP}$ in [V], Series resistance = 0 Ω^{2}	
Output low voltage	V_{OL} CC	_	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}^{3)}$	
		_	0.45	V	$I_{\rm OL} \leq I_{\rm OLnom}^{3) 4}$	
Output high voltage ⁵⁾	V_{OH} CC	V _{DDP} - 1.0	_	V	$I_{\text{OH}} \ge I_{\text{OHmax}}^{3)}$	
		V _{DDP} - 0.45	_	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{3) \ 4)}$	
Input leakage current (Port 5) ⁶⁾	I _{OZ1} CC	_	±300	nA	$\begin{array}{c} \text{O V} < V_{\text{IN}} < V_{\text{DDP},} \\ T_{\text{A}} \leq \text{125 °C} \end{array}$	
			±200	nA	$0 \text{ V} < V_{\text{IN}} < V_{\text{DDP}}, T_{\text{A}} \le 85 \text{ °C}^{12)}$	
Input leakage current (all other) ⁶⁾	I _{OZ2} CC	_	±500	nA	$0.45~\mathrm{V} < V_\mathrm{IN} < V_\mathrm{DDP}$	
Configuration pull-up current ⁷⁾	$I_{CPUH}^{(8)}$	_	-10	μΑ	$V_{IN} = V_{IHmin}$	
	$I_{CPUL}^{9)}$	-100	_	μΑ	$V_{IN} = V_{ILmax}$	

DC Characteristics (cont'd) (Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Configuration pull-down	$I_{\text{CPDL}}^{(8)}$	_	10	μΑ	$V_{IN} = V_{ILmax}$
current ¹⁰⁾	$I_{CPDH}^{9)}$	120	_	μΑ	$V_{IN} = V_{IHmin}$
Level inactive hold current ¹¹⁾	$I_{LHI}^{(8)}$	_	-10	μΑ	$V_{OUT} = \\ 0.5 \times V_{DDP}$
Level active hold current ¹¹⁾	$I_{LHA}^{9)}$	-100	_	μΑ	V_{OUT} = 0.45 V
XTAL1 input current	I_{IL} CC	_	±20	μΑ	$0 \; V < V_{IN} < V_{DDI}$
Pin capacitance ¹²⁾ (digital inputs/outputs)	C_{IO} CC	_	10	pF	

- 1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .
- 2) This parameter is tested for P2, P3, P4, P9.
- 3) The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected.
- 4) As a rule, with decreasing output current the output levels approach the respective supply level ($V_{\rm OL} \rightarrow V_{\rm SS}$, $V_{\rm OH} \rightarrow V_{\rm DDP}$). However, only the levels for nominal output currents are guaranteed.
- 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- 6) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor K_{OV} .
- 7) This specification is valid during Reset for configuration on RD, WR, EA, PORTO.
- 8) The maximum current may be drawn while the respective signal line remains inactive.
- 9) The minimum current must be drawn to drive the respective signal line active.
- 10) This specification is valid during Reset for configuration on ALE.
- 11) This specification is valid during Reset for pins P4.3-0, which can act as CS outputs.
- 12) Not subject to production test verified by design/characterization.

Table 12 Current Limits for Port Output Drivers

Port Output Driver Mode	Maximum Output Current (I _{OLmax} , -I _{OHmax}) ¹⁾	Nominal Output Current (I _{OLnom} , -I _{OHnom})
Strong driver	10 mA	2.5 mA
Medium driver	4.0 mA	1.0 mA
Weak driver	0.5 mA	0.1 mA

¹⁾ An output current above $|I_{\rm OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction ($\Sigma I_{\rm OL}$ and $\Sigma I_{\rm OH}$) must remain below 50 mA.

Power Consumption XC164N

(Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Power supply current (active) with all peripherals active	I_{DDI}	_	15 + 2.6 × f _{CPU}	mA	f_{CPU} in [MHz] ²⁾
Pad supply current	I_{DDP}	_	5	mA	3)
Idle mode supply current with all peripherals active	I_{IDX}	_	15 + 1.2 × f _{CPU}	mA	$f_{ m CPU}$ in [MHz] $^{2)}$
Sleep and Power-down mode supply current caused by leakage ⁴⁾	$I_{PDL}^{5)}$	_	128,000 × e ^{-α}	mA	$V_{\text{DDI}} = V_{\text{DDImax}}^{6}$ $T_{\text{J}} \text{ in [°C]}$ $\alpha = 4670/(273 + T_{\text{J}})$
Sleep and Power-down mode supply current caused by leakage and the RTC running, clocked by the main oscillator ⁴⁾	$I_{PDM}^{-7)}$	_	0.6 + 0.02×f _{OSC} + I _{PDL}	mA	$V_{ m DDI} = V_{ m DDImax}$ $f_{ m OSC}$ in [MHz]

- 1) During Flash programming or erase operations the supply current is increased by max. 5 mA.
- 2) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at $V_{\rm DDImax}$ and maximum CPU clock frequency with all outputs disconnected and all inputs at $V_{\rm IL}$ or $V_{\rm IH}$.
- 3) The pad supply voltage pins $(V_{\rm DDP})$ mainly provides the current consumed by the pin output drivers. A small amount of current is consumed even though no outputs are driven, because the drivers' input stages are switched and also the Flash module draws some power from the $V_{\rm DDP}$ supply.
- 4) The total supply current in Sleep and Power-down mode is the sum of the temperature dependent leakage current and the frequency dependent current for RTC and main oscillator (if active).

- 5) This parameter is determined mainly by the transistor leakage currents. This current heavily depends on the junction temperature (see **Figure 12**). The junction temperature T_J is the same as the ambient temperature T_A if no current flows through the port output drivers. Otherwise, the resulting temperature difference must be taken into account.
- 6) All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DDP} 0.1 V to V_{DDP} , all outputs (including pins configured as outputs) disconnected. This parameter is tested at 25 °C and is valid for $T_{\text{J}} \ge$ 25 °C.
- 7) This parameter is determined mainly by the current consumed by the oscillator switched to low gain mode (see Figure 11). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The given values refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

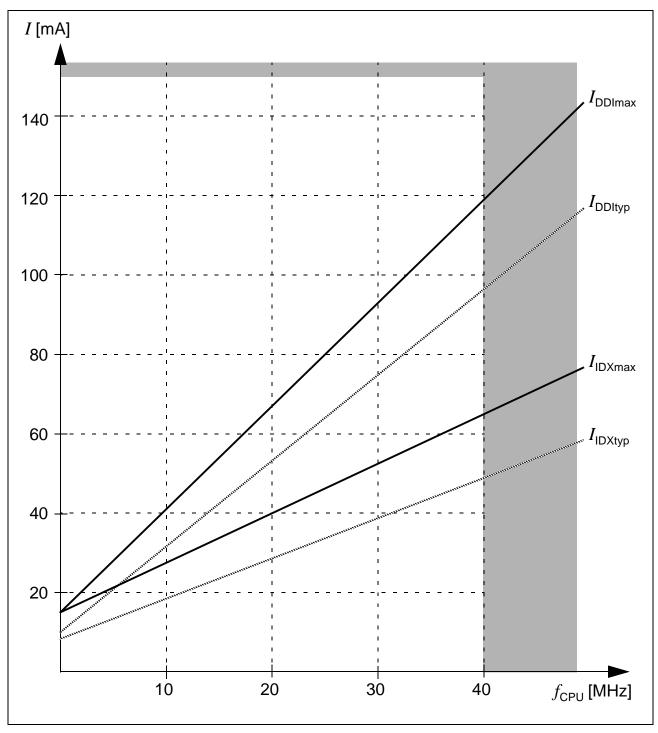


Figure 10 Supply/Idle Current as a Function of Operating Frequency

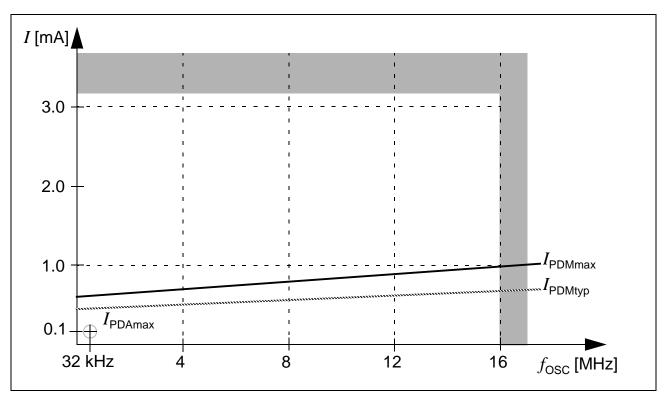


Figure 11 Sleep and Power Down Supply Current due to RTC and Oscillator running, as a Function of Oscillator Frequency

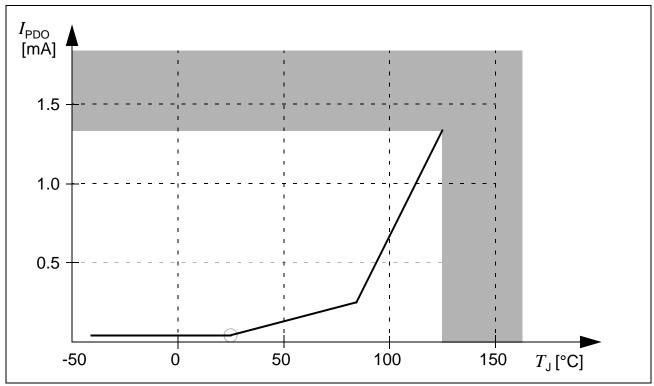


Figure 12 Sleep and Power Down Leakage Supply Current as a Function of Temperature

5 Timing Parameters

5.1 Definition of Internal Timing

The internal operation of the XC164N is controlled by the internal master clock $f_{\rm MC}$.

The master clock signal $f_{\rm MC}$ can be generated from the oscillator clock signal $f_{\rm OSC}$ via different mechanisms. The duration of master clock periods (TCMs) and their variation (and also the derived external timing) depend on the used mechanism to generate $f_{\rm MC}$. This influence must be regarded when calculating the timings for the XC164N.

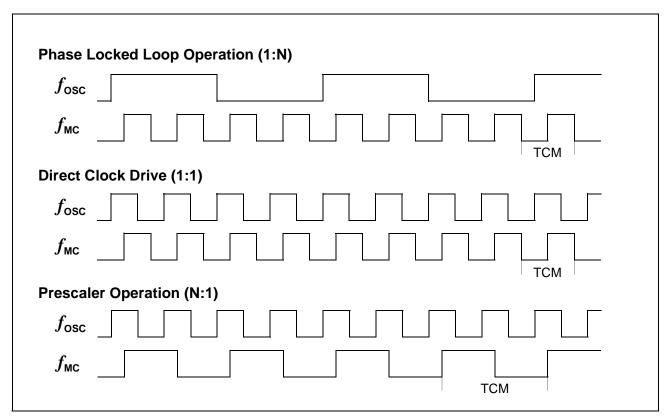


Figure 13 Generation Mechanisms for the Master Clock

Note: The example for PLL operation shown in **Figure 13** refers to a PLL factor of 1:4, the example for prescaler operation refers to a divider factor of 2:1.

The used mechanism to generate the master clock is selected by register PLLCON.

CPU and EBC are clocked with the CPU clock signal $f_{\rm CPU}$. The CPU clock can have the same frequency as the master clock ($f_{\rm CPU} = f_{\rm MC}$) or can be the master clock divided by two: $f_{\rm CPU} = f_{\rm MC}$ / 2. This factor is selected by bit CPSYS in register SYSCON1.

The specification of the external timing (AC Characteristics) depends on the period of the CPU clock, called "TCP".

The other peripherals are supplied with the system clock signal $f_{\rm SYS}$ which has the same frequency as the CPU clock signal $f_{\rm CPU}$.

Bypass Operation

When bypass operation is configured (PLLCTRL = $0x_B$) the master clock is derived from the internal oscillator (input clock signal XTAL1) through the input- and output-prescalers:

$$f_{MC} = f_{OSC} / ((PLLIDIV+1) \times (PLLODIV+1)).$$

If both divider factors are selected as '1' (PLLIDIV = PLLODIV = '0') the frequency of $f_{\rm MC}$ directly follows the frequency of $f_{\rm OSC}$ so the high and low time of $f_{\rm MC}$ is defined by the duty cycle of the input clock $f_{\rm OSC}$.

The lowest master clock frequency is achieved by selecting the maximum values for both divider factors:

$$f_{MC} = f_{OSC} / ((3+1) \times (14+1)) = f_{OSC} / 60.$$

Phase Locked Loop (PLL)

When PLL operation is configured (PLLCTRL = 11_B) the on-chip phase locked loop is enabled and provides the master clock. The PLL multiplies the input frequency by the factor \mathbf{F} ($f_{MC} = f_{OSC} \times \mathbf{F}$) which results from the input divider, the multiplication factor, and the output divider ($\mathbf{F} = \text{PLLMUL+1} / (\text{PLLIDIV+1} \times \text{PLLODIV+1})$). The PLL circuit synchronizes the master clock to the input clock. This synchronization is done smoothly, i.e. the master clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm MC}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm MC}$ which also affects the duration of individual TCMs.

The timing listed in the AC Characteristics refers to TCPs. Because $f_{\rm CPU}$ is derived from $f_{\rm MC}$, the timing must be calculated using the minimum TCP possible under the respective circumstances.

The actual minimum value for TCP depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCP is lower than for one single TCP (see formula and Figure 14).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler (K = PLLODIV+1) to generate the master clock signal $f_{\rm MC}$. Therefore, the number of VCO cycles can be represented as K \times N, where N is the number of consecutive $f_{\rm MC}$ cycles (TCM).

For a period of $N \times \text{TCM}$ the accumulated PLL jitter is defined by the deviation D_N : D_N [ns] = $\pm (1.5 + 6.32 \times N / f_{MC})$; f_{MC} in [MHz], N = number of consecutive TCMs. So, for a period of 3 TCMs @ 20 MHz and K = 12: $D_3 = \pm (1.5 + 6.32 \times 3 / 20) = 2.448$ ns. This formula is applicable for K $\times N$ < 95. For longer periods the K $\times N$ =95 value can be used. This steady value can be approximated by: D_{Nmax} [ns] = $\pm (1.5 + 600 / (K \times f_{MC}))$.



Figure 14 Approximated Accumulated PLL Jitter

Note: The bold lines indicate the minimum accumulated jitter which can be achieved by selecting the maximum possible output prescaler factor K.

Different frequency bands can be selected for the VCO, so the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Table 13 VCO Bands for PLL Operation¹⁾

PLLCON.PLLVB	VCO Frequency Range	Base Frequency Range
00	100 150 MHz	20 80 MHz
01	150 200 MHz	40 130 MHz
10	200 250 MHz	60 180 MHz
11	Reserved	

¹⁾ Not subject to production test - verified by design/characterization.

5.2 External Clock Drive XTAL1

Table 14 External Clock Drive Characteristics (Operating Conditions apply)

Parameter	Symbol	Lin	Limit Values		
		min.	max.		
Oscillator period	$t_{ m OSC}$ SF	R 20	250 ¹⁾	ns	
High time ²⁾	t_1 SF	₹ 6	_	ns	
Low time ²⁾	t_2 SF	₹ 6	_	ns	
Rise time ²⁾	t_3 SF	₹ –	8	ns	
Fall time ²⁾	t_4 SF	₹ –	8	ns	

¹⁾ The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL.

²⁾ The clock input signal must reach the defined levels $V_{\rm ILC}$ and $V_{\rm IHC}$.

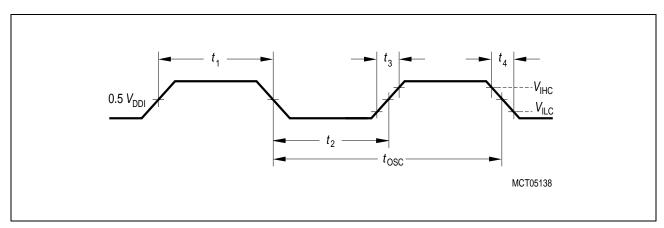


Figure 15 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the oscillator frequency is limited to a range of 4 MHz to 16 MHz.

It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is verified by design only (not subject to production test).

5.3 Testing Waveforms

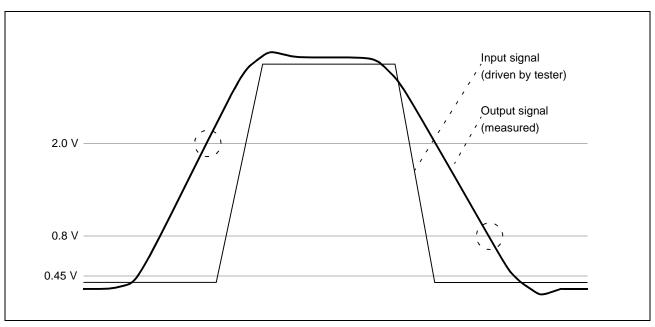


Figure 16 Input Output Waveforms

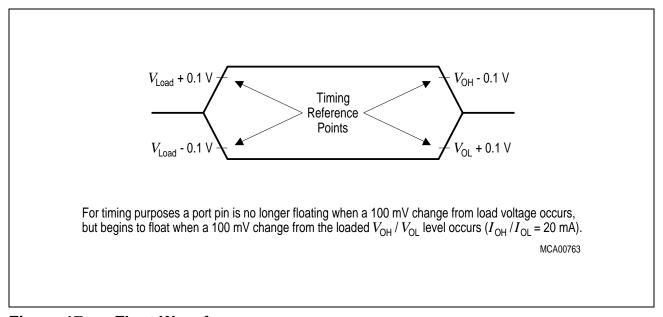


Figure 17 Float Waveforms

5.4 AC Characteristics

Table 15 CLKOUT Reference Signal

Parameter	Sym	Symbol		Limits	
			min.	max.	
CLKOUT cycle time	tc_5	CC	50/25 ¹⁾		ns
CLKOUT high time	tc_6	CC	8	_	ns
CLKOUT low time	tc_7	CC	6	_	ns
CLKOUT rise time	tc ₈	CC	_	4	ns
CLKOUT fall time	tc_9	CC	_	4	ns

¹⁾ The CLKOUT cycle time is influenced by the PLL jitter (given values apply to $f_{\rm CPU}$ = 20/40 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

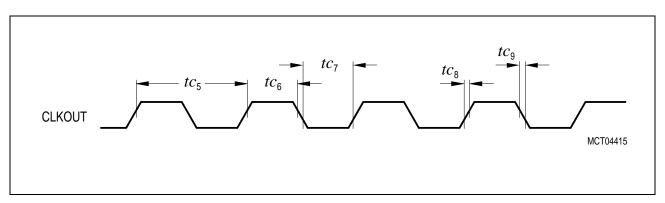


Figure 18 CLKOUT Signal Timing

Variable Memory Cycles

External bus cycles of the XC164N are executed in five subsequent cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

This table provides a summary of the phases and the respective choices for their duration. The specification of the external timing depends on the period of the CPU clock, which is called "TCP" and is used in **Table 16**

Table 16 Programmable Bus Cycle Phases (see timing diagrams)

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 2 TCP) can be extended by 0 3 TCP if the address window is changed	tp_{AB}	1 2 (5)	ТСР
Command delay phase	tp_{C}	0 3	TCP
Write Data setup / MUX Tristate phase	tp_{D}	0 1	TCP
Access phase	<i>tp</i> _E	1 32	TCP
Address / Write Data hold phase	<i>tp</i> _F	0 3	TCP

Note: The bandwidth of a parameter (minimum and maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Table 17 External Bus Cycle Timing (Operating Conditions apply)

Parameter	Sym	Symbol		Limits	
				max.	
Output valid delay for: RD, WR(L/H)	tc ₁₀	CC	1	15	ns
Output valid delay for: BHE, ALE	tc ₁₁	CC	-1	8	ns
Output valid delay for: A23A16, A15A0 (on PORT1)	tc ₁₂	CC	3	18	ns
Output valid delay for: A15A0 (on PORT0)	tc ₁₃	CC	3	18	ns
Output valid delay for:	tc ₁₄	CC	3	16	ns
Output valid delay for: D15D0 (write data, mux-mode)	tc ₁₅	CC	3	19	ns
Output valid delay for: D15D0 (write data, demux-mode)	tc ₁₆	CC	2	16	ns
Output hold time for: RD, WR(L/H)	tc ₂₀	CC	-3	4	ns
Output hold time for: BHE, ALE	tc_{21}	CC	0	11	ns
Output hold time for: A23A16, A15A0 (on PORT0)	tc_{23}	CC	1	13	ns
Output hold time for:	tc ₂₄	CC	-2	4	ns
Output hold time for: D15D0 (write data)	tc ₂₅	СС	1	13	ns
Input setup time for: D15D0 (read data)	tc ₃₀	SR	29	-	ns
Input hold time D15D0 (read data) ¹⁾	tc ₃₁	SR	-5	_	ns

Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can be removed after the rising edge of RD

Note: The shaded parameters have been verified by characterization. They are not subject to production test.

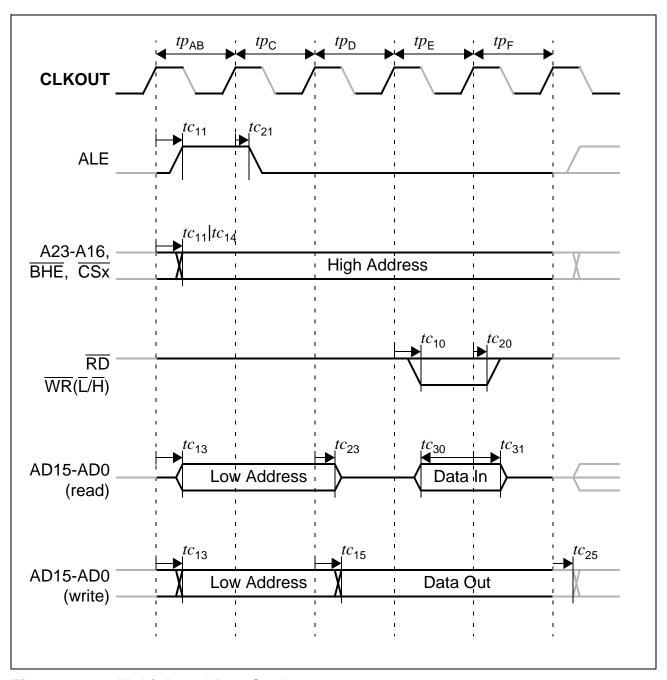


Figure 19 Multiplexed Bus Cycle

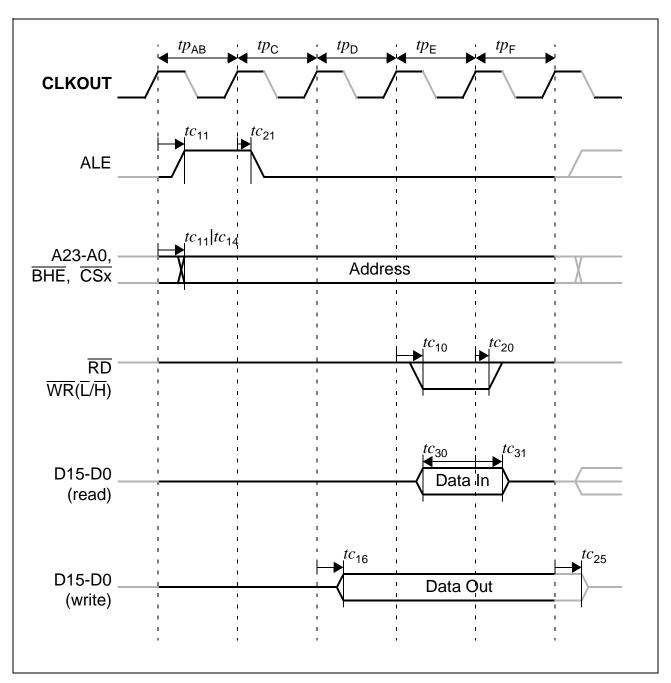


Figure 20 Demultiplexed Bus Cycle

Packaging

6 Packaging

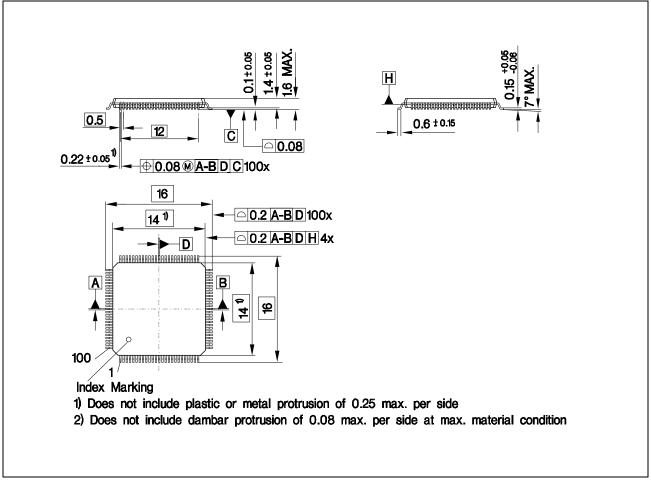


Figure 21 Package Outlines P-TQFP-100-16 (Plastic Thin Quad Flat Package)

Dimensions in mm.

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products

www.infineon.com

Published by Infineon Technologies AG

Downloaded From Oneyac.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon(英飞凌)