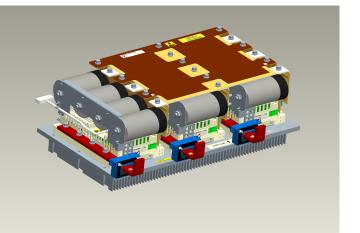
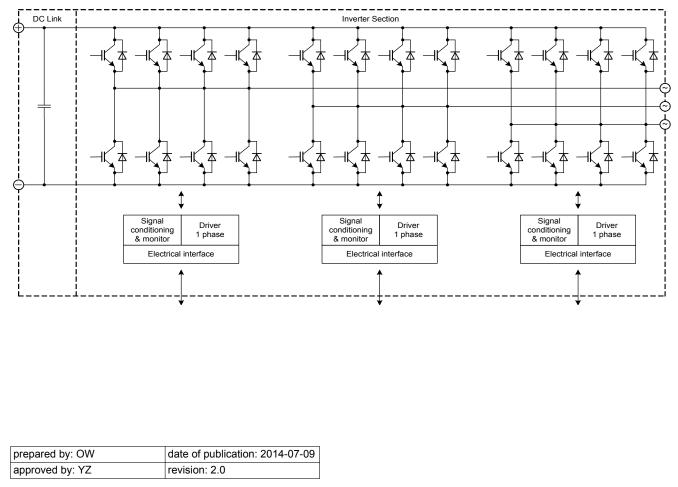
Technical Information

PrimeSTACK™

6PS18012E4FG38393


Preliminary data


General information

IGBT Stack for typical voltages of up to 400 V_{RMS} Rated output current 800 A_{RMS}

- · Solar power
- Motor drives
- \cdot High power converter
- · 62mm power module
 · Trenchstop[™] IGBT4

Topology	B6I
Application	Inverter
Load type	Resistive, inductive
Semiconductor (Inverter Section)	12x FF450R12KE4
DC Link	4.8 mF
Heatsink	Forced air cooled (fan not included)
Implemented sensors	Current, temperature
Driver signals IGBT	Electrical
Approvals	UL 508C
Sales - name	6PS18012E4FG38393
SP - No.	SP001054242

PrimeSTACK™

6PS18012E4FG38393

Preliminary data

Absolute maximum rated values

IGBT; T _{vj} = 25°C	V _{CES}	1200	V
Diode; T _{vj} = 25°C	V _{RRM}	1200	V
	V _{DC}	1000	V
according to installation height of 2000 m	V _{line}	500	V _{RMS}
according to EN 50178, f = 50 Hz, t = 1 s	VISOL	2.5	kV _{RMS}
t _p = 1 ms	I _{CRM2}	2560	A
t _p = 1 ms	I _{FRM2}	2440	A
	I _{AC2}	820	A _{RMS}
under switching conditions	T _{vjop}	150	°C
limited due to snubber caps	f _{sw2}	3	kHz
	Diode; $T_{v_j} = 25^{\circ}C$ according to installation height of 2000 m according to EN 50178, f = 50 Hz, t = 1 s $t_p = 1 \text{ ms}$ $t_p = 1 \text{ ms}$ under switching conditions	Diode; $T_{vj} = 25^{\circ}C$ V_{RRM} VDC V according to installation height of 2000 m Viline according to EN 50178, f = 50 Hz, t = 1 s VISOL tp = 1 ms IcRM2 tp = 1 ms IFRM2 under switching conditions Tvjop	Diode; $T_{vj} = 25^{\circ}C$ V_{RRM} 1200 V_{DC} 1000 according to installation height of 2000 m V_{line} 500 according to EN 50178, f = 50 Hz, t = 1 s V_{ISOL} 2.5 $t_p = 1 \text{ ms}$ I_{CRM2} 2560 $t_p = 1 \text{ ms}$ I_{FRM2} 2440 under switching conditions T_{vjop} 150

Notes

Further maximum ratings are specified in the following dedicated sections

Characteristic values

DC Link

			mın.	typ.	max.	
Rated voltage		V _{DC}		650	1000	V
Capacitor	1 s, 12 p, rated tol. 10 %	C _{DC}		4.8		mF
Maximum ripple current	per device, T _{amb} = 55 °C	Iripple			49	A _{RMS}

Notes

Activ clamping diodes not implemented, max. DC link voltage for short circuit protection 500V Max. DC link voltage under switching conditions 1000V up to 300A

Inverter Section

		min.	typ.	max.	
	IAC			800	ARMS
V_{DC} = 650 V, $f_{AC\ sine}$ = 0 Hz, f_{sw} = 3000 Hz, T_{inlet} = 40 °C, $T_{j} \leq$ 125 °C	IAC low			360	Arms
$I_{AC\ 150\%}$ = 826 $A_{RMS},\ t_{on\ over}$ = 60 s, $T_j \leq 125\ ^\circ C$	AC over1			550	ARMS
$I_{AC\ 150\%}$ = 950 ARMS, ton over = 3 s, $T_j \leq 125\ ^\circ C$	AC over2			630	Arms
within 15 µs	I _{AC OC}		1790		A _{peak}
$ I_{AC} = 400 \; A, \; V_{DC} = 650 \; V, \; cos(\phi) = 0.85, \; f_{AC \; sine} = 50 \; Hz, \\ f_{sw} = 3000 \; Hz, \; T_{inlet} = 40 \; ^{\circ}C, \; T_{j} \leq 120 \; ^{\circ}C $	Ploss		5900		W
		$ \begin{array}{l l} f_{AC \ sine} = 50 \ Hz, \ f_{sw} = 3000 \ Hz, \ T_{inlet} = 40 \ ^\circ C, \ T_j \leq 125 \ ^\circ C & I_{AC \ low} \\ \hline V_{DC} = 650 \ V, \ f_{AC \ sine} = 0 \ Hz, \ f_{sw} = 3000 \ Hz, \ T_{inlet} = 40 \ ^\circ C, \\ \hline I_{AC \ 150\%} = 826 \ A_{RMS}, \ t_{on \ over} = 60 \ s, \ T_j \leq 125 \ ^\circ C & I_{AC \ over1} \\ \hline I_{AC \ 150\%} = 950 \ A_{RMS}, \ t_{on \ over} = 3 \ s, \ T_j \leq 125 \ ^\circ C & I_{AC \ over2} \\ \hline within \ 15 \ \mu s & I_{AC \ over2} \\ \hline I_{AC \ = 400 \ A, \ V_{DC} = 650 \ V, \ cos(\phi) = 0.85, \ f_{AC \ sine} = 50 \ Hz, \\ \hline D_{AC \ Sine} = 50 \ Hz, \\ \hline D_{A$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Notes

Maximum junction temperature limited to 125°C under all operating conditions

Inverter Section (specific condition)

Inverter Section (specifi	c condition)		min.	typ.	max.	
Specific continuous current		I _{ACsp}		800		A _{RMS}
Notes						

With optimized cooling condition higher load current is possible. Details see customized application note.

prepared by: OW	date of publication: 2014-07-09
approved by: YZ	revision: 2.0

PrimeSTACK™

6PS18012E4FG38393

Preliminary data

Controller interface

Driver and interface board ref. to separate Application Note			DR240			
			min.	typ.	max.	
Auxiliary voltage		Vaux	18	24	30	V
Auxiliary power requirement	V _{aux} = 24 V	Paux			40	W
Digital input level	resistor to GND 10 k Ω , capacitor to GND 1 nF	V _{in low}	0		4	V
		V _{in high}	11		15	V
Digital output level	open collector, logic low = no fault, max. 15 mA	V _{out low}	0		1.5	V
		Vout high		15		V
Analog current sensor output inverter section	load max 5 mA, @ 800 A _{RMS}	VIU ana2 V _{IV ana2} V _{IW ana2}	4.3	4.4	4.5	V
Over temperature shutdown inverter section	load max 5 mA, @T _{NTC} = 94 °C	VError OT2		12.5		V

System data

System data				min.	typ.	max.	
EMC robustness	according to IEC 61800-3 at named	power	V _{Burst}		2		kV
	interfaces	control	V _{Burst}		1		kV
		aux (24V)	V _{surge}		1		kV
Storage temperature			T _{stor}	-40		80	°C
Operational ambient temperature	PCB, DC link capacitor, bus bar, excludi medium	ng cooling	$T_{op\ amb}$	-25		60	°C
Cooling air velocity	PCB, DC link capacitor, bus bar, standa	rd atmosphere	V _{air}	2			m/s
Humidity	no condensation		Rel. F	0		85	%
Vibration	according to IEC 60721					5	m/s²
Shock	according to IEC 60721					50	m/s²
Protection degree					IP00		
Pollution degree					2		
Dimensions	width x depth x height			664	438	299	mm
Weight					53		kg

System data valid for continuous operation

Heatsink air cooled			min.	typ.	max.	
Air flow	T_{air} = 20 °C, P_{air} = 1013 hPa, dry and dust free, measured at the side of the heat sink according to DIN 41882	ΔV/Δt	1500			m³/h
Air pressure drop	at min. air flow	Δр		200		Pa
Air inlet temperature		Tinlet	-30		60	°C

Notes

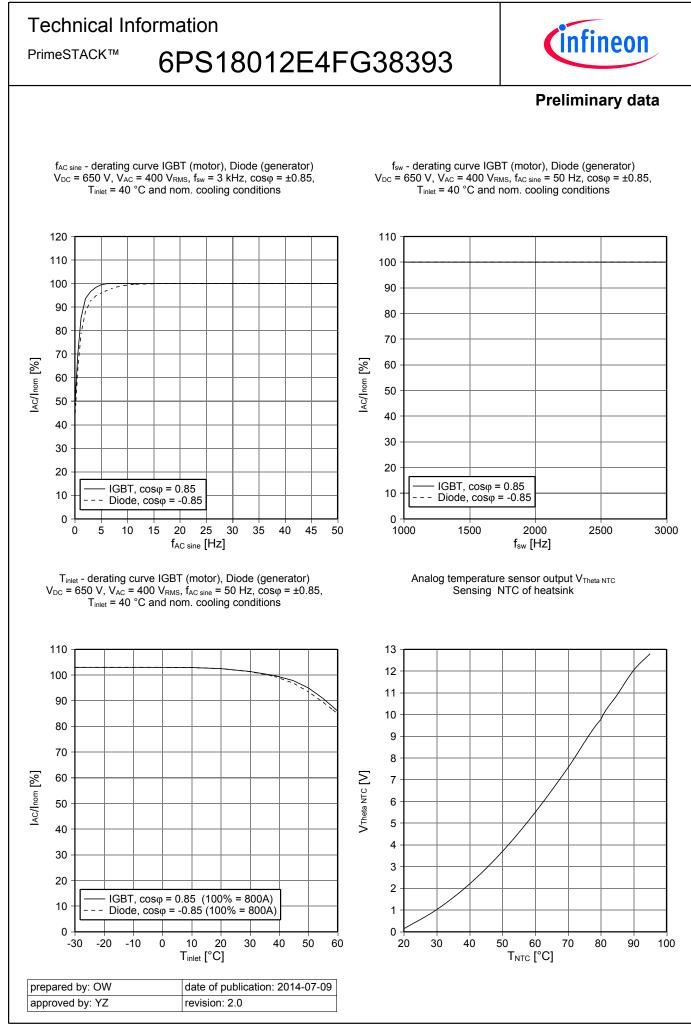
Conditions are standard Infineon characterization for heatsinks.

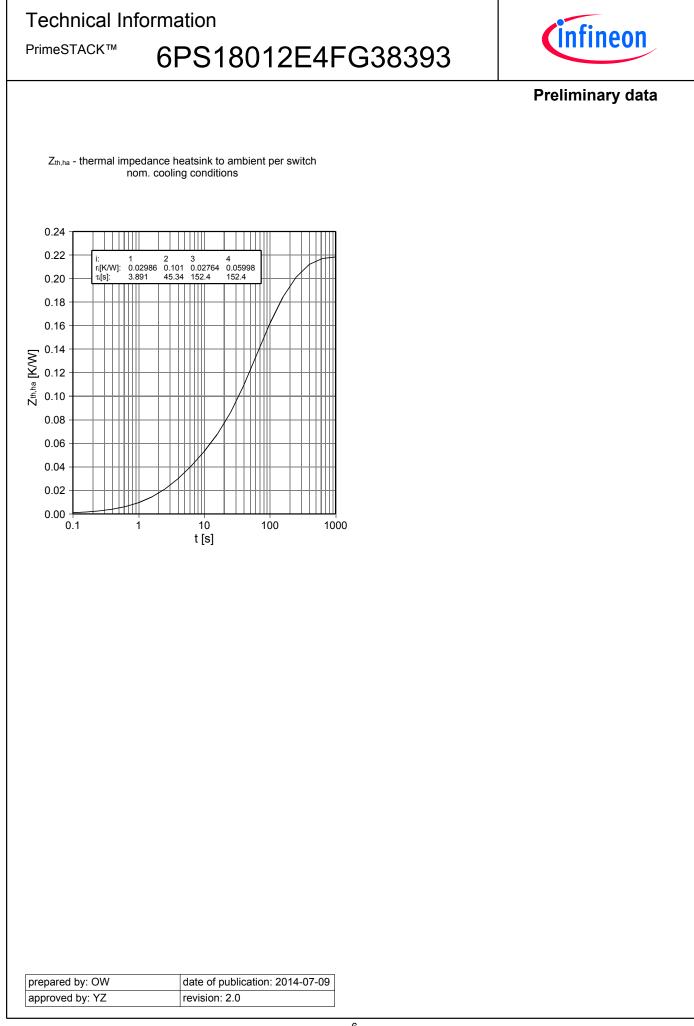
prepared by: OW date of publication: 2014-07-09 approved by: YZ revision: 2.0

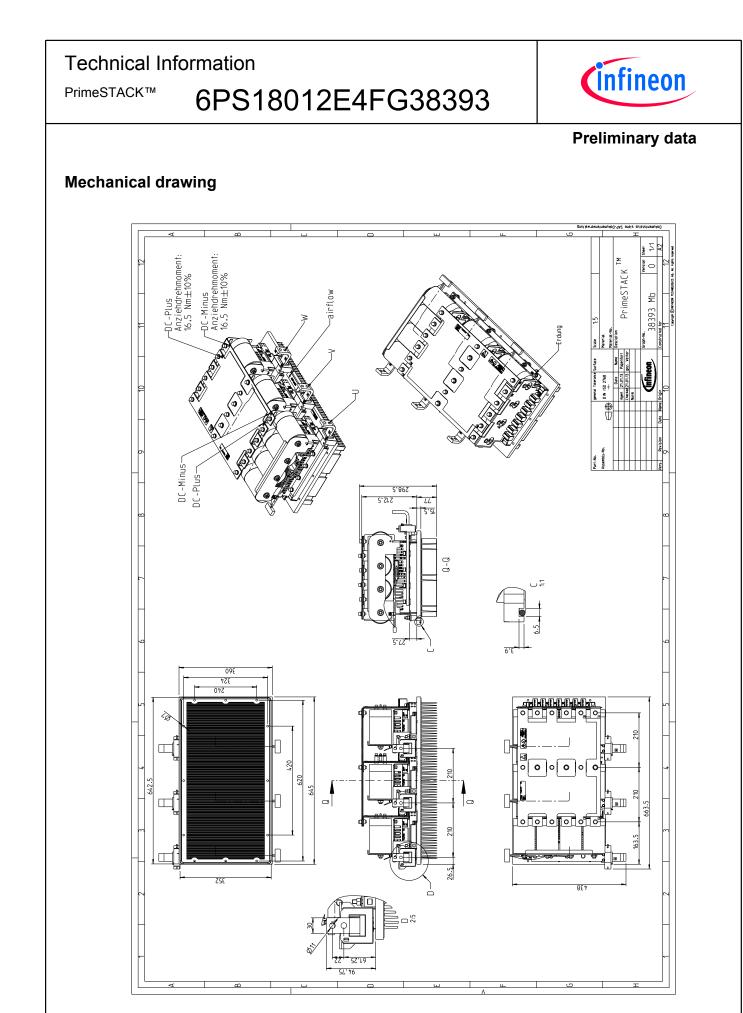
Technical Information

PrimeSTACK™

6PS18012E4FG38393

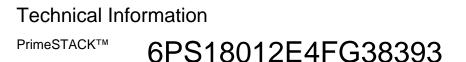



Preliminary data


Overview of optional components	Unit 1	Inverter Section	Unit 3
Parallel interface board			
Optical interface board			
Voltage sensor			
Current sensor		×	
Temperature sensor		×	
Temperature simulation			
DC link capacitors		×	
Data cable for control signals		×	
Fan			
Collector-emitter Active Clamping			
Snubber capcitors		×	

Datacable not specified for the STACK permitted temperature range. The included cables are standard computer cable.


prepared by: OW	date of publication: 2014-07-09
approved by: YZ	revision: 2.0



approved by: YZ revision: 2.0	prepared by: OW	date of publication: 2014-07-09
	approved by: YZ	revision: 2.0

Preliminary data

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.infineon.com, sales&contact). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures.

If and to the extent necessary, please forward equivalent notices to your customers.

Changes of this product data sheet are reserved.

Safety Instructions

Prior to installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced. To installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced.

prepared by: OW	date of publication: 2014-07-09
approved by: YZ	revision: 2.0

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon(英飞凌)