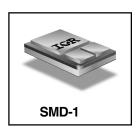
International TOR Rectifier


POWER MOSFET SURFACE MOUNT (SMD-1)

IRFNG40 1000V, N-CHANNEL HEXFET® MOSFET TECHNOLOGY

Product Summary

Part Number	RDS(on)	ID		
IRFNG40	3.5Ω	3.9A		

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Dynamic dv/dt Rating
- Surface mount
- Light-weight

Absolute Maximum Ratings

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current 3.9		
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	2.5	Α
IDM	Pulsed Drain Current ①	15.6	
P _D @ T _C = 25°C	Max. Power Dissipation	125	W
	Linear Derating Factor	1.0	W/°C
V _G S	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	530	mJ
IAR	Avalanche Current ①	3.9	Α
EAR	Repetitive Avalanche Energy ①	12.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	1.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Package Mounting Surface Temperature	300(for 5 seconds)	
	Weight	2.6 (Typical)	g

For footnotes refer to the last page

www.irf.com 1 2/11/02

IRFNG40

International

TOR Rectifier

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	1000	_	_	٧	VGS = 0V, ID = 1.0mA
ΔBVDSS/ΔTJ	Temperature Coefficient of Breakdown Voltage	_	1.4	_	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source On-State	_	_	3.5	Ω	VGS = 10V, ID = 2.5A VGS = 10V, ID = 3.9A
	Resistance	_	_	4.2	32	V _{GS} = 10V, I _D = 3.9A
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	٧	$V_{DS} = V_{GS}$, $I_{D} = 250\mu A$
9fs	Forward Transconductance	3.3	_	_	S (7)	V _{DS} > 15V, I _{DS} = 2.5A ④
IDSS	Zero Gate Voltage Drain Current	_	_	25		V _{DS} = 800V ,V _{GS} =0V
		_	_	250	μΑ	$V_{DS} = 800V$,
						V _{GS} = 0V, T _J = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100		V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	nA	V _{GS} = -20V
Qg	Total Gate Charge	_	_	120		VGS =10V, ID =3.9A
Qgs	Gate-to-Source Charge	_	_	12	nC	$V_{DS} = 500V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	66		
^t d(on)	Turn-On Delay Time	_	_	30		$V_{DD} = 500V, I_D = 3.9A,$
tr	Rise Time	_	_	50		$V_{GS} = 10V, R_{G} = 9.1\Omega$
td(off)	Turn-Off Delay Time	_	_	170	ns	
tf	Fall Time	_	_	50		
LS+LD	Total Inductance	_	4.0	_	nH	Measured from the center of drain pad to center of source pad.
C _{iss}	Input Capacitance	_	1700	_		$V_{GS} = 0V, V_{DS} = 25V$
Coss	Output Capacitance	_	250	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	100	_		

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	qvT	Max	Units	Test Conditions
Is Is	Continuous Source Current (Body Diode)			3.9	Α	
ISM	Pulse Source Current (Body Diode) ①	<u> </u>		15.6	^	
VSD	Diode Forward Voltage	_	_	1.8	V	Tj = 25°C, IS = 3.9A, VGS = 0V ④
t _{rr}	Reverse Recovery Time	_	_	1000	nS	$T_j = 25^{\circ}C$, $I_F = 3.9A$, $di/dt \le 100A/\mu s$
QRR	Reverse Recovery Charge	_	_	5.6	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lp.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	1.0	°C/W	

For footnotes refer to the last page

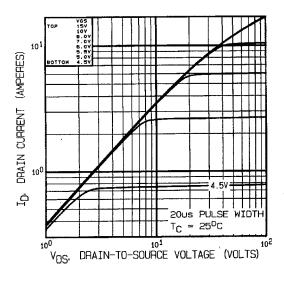


Fig 1. Typical Output Characteristics

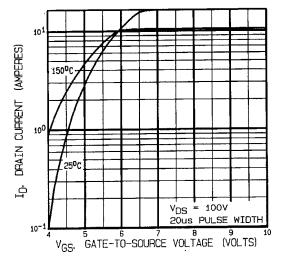
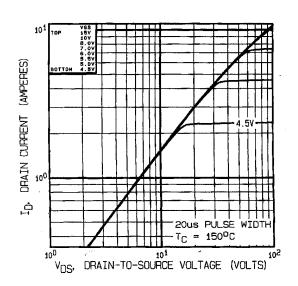
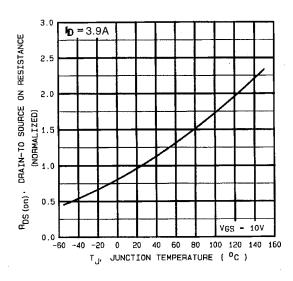
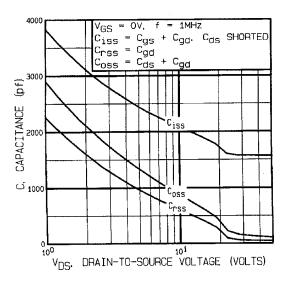
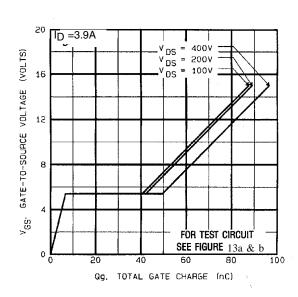


Fig 3. Typical Transfer Characteristics


Fig 2. Typical Output Characteristics

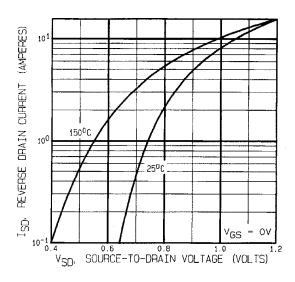

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

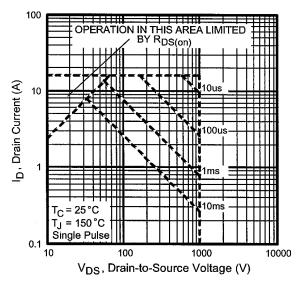
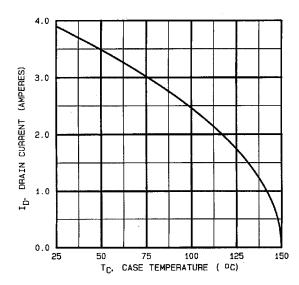



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

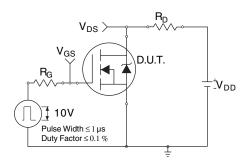


Fig 10a. Switching Time Test Circuit

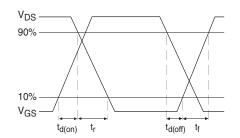


Fig 10b. Switching Time Waveforms

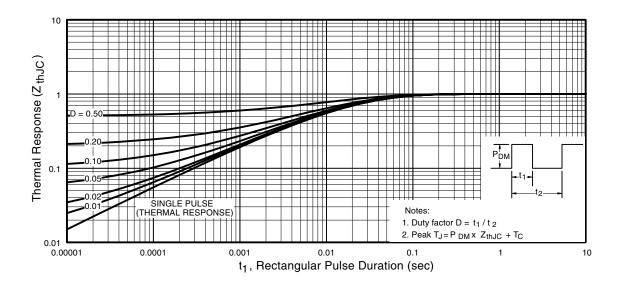


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

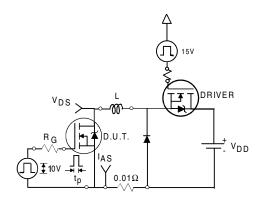


Fig 12a. Unclamped Inductive Test Circuit

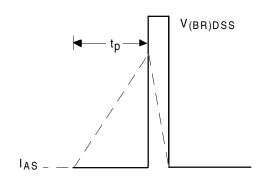


Fig 12b. Unclamped Inductive Waveforms

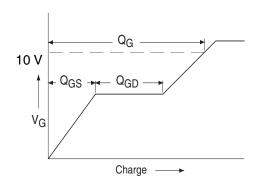
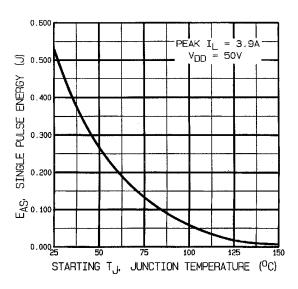
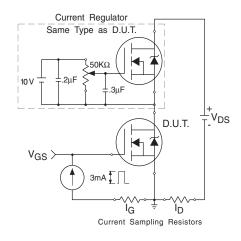
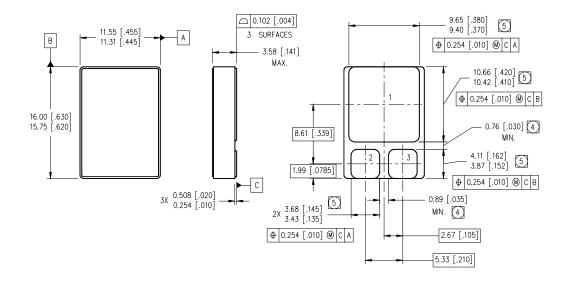



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit

IRFNG40

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L= 69mH Peak I_L = 3.9A, V_{GS} = 10V
- $\label{eq:local_state} \begin{tabular}{ll} \begin{tabular}{ll}$
- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%

Case Outline and Dimensions — SMD-1

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4 DIMENSION INCLUDES METALLIZATION FLASH.
- 5) DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

PAD ASSIGNMENTS

- 1- DRAIN
- 2- GATE
- 3- SOURCE

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 02/02

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)