INTERNATIONAL RECTIFIER

REPETITIVE AVALANCHE RATED AND dv/dt RATED

HEXFET® TRANSISTOR

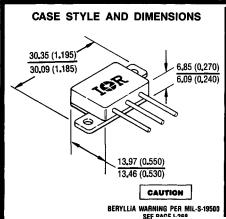
IRFI460

N-CHANNEL

500 Volt, 0.27 Ohm HEXFET

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies and virtually any application where military and/or high reliability is required.

Product Summary

Part Number	BV _{DSS}	R _{DS(on)}	ΙD
IRFI460	500V	0.27Ω	21A

FEATURES:

- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Isolated and Hermetically Sealed
- Alternative to TO-3 Package
- Simple Drive Requirements
- Ease of Paralleling
- Ceramic Eyelets

Dimensions in Millimeters and (Inches)

Downloaded From Oneyac.com

IRFI460 Device

Absolute Maximum Ratings

Parame	eter	IRFI460	Units
ID @ VGS = 0V, TC = 25°C	Continuous Drain Current	21	Α
ID @ VGS = 0V, TC = 100°C	Continuous Drain Current	13	
IDM	Pulsed Drain Current ①	84	
P _D @ T _C = 25°C	Max. Power Dissipation	300	w
	Linear Derating Factor	2.4	W/K (5)
Vgs	Gate-to-Source Voltage	±20	
EAS	Single Pulse Avalanche Energy ②	480	mJ
IAR	Avalanche Current ①	21	A
EAR	Repetitive Avalanche Energy ①	30	mJ
dv/dt	Peak Diode Recovery dv/dt ③	3.5	V/ns
T _J TSTG	Operating Junction Storage Temperature Range	-55 to 150	•c
-314	Lead Temperature	300 (0.063 in. (1.6 mm) from case for 10s)	
	Weight	10.5 (typical)	g

Electrical Characteristics @ T,I = 25°C (Unless Otherwise Specified)

:iectricai	Characteristics @ ij	= 25 0	Olliess .	JUIC: 1110	o opeo		
	Parameter	Min.	Тур.	Max.	Units	Test Condi	tions
BVDSS	Drain-to-Source Breakdown Voltage	500	-	_	٧	V _{GS} = 0V, I _D = 1.0 μA	
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.63	-	V/°C	Reference to 25°C, I _D = 1.0 n	nA
R _{DS(on)}	Static Drain-to-Source	_	-	0.27	ß		•
(,	On-State Resistance	_		0.31		VGS = 10V, ID = 21A	
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	٧	V _{DS} = V _{GS} , I _D = 250 μA	
9fs	Forward Transconductance	13	-	-	S (8)	V _{DS} = 15V, i _{DS} = 13A 4	
loss	Zero Gate Voltage Drain Current		_	25	- μΑ	V _{DS} = 0.8 x Max. Rating, V _C	as = 0V
		_	-	250	1 "	V _{DS} = 0.8 x Max. Rating	
		1				VGS = 0V, TJ = 125°C	
1gss	Gate-to-Source Leakage Forward	-	-	100	nA	V _{GS} = 20V	
lgss	Gate-to-Source Leakage Reverse	T	-	-100] ""	VGS = -20V	
Qg	Total Gate Charge	-	_	190		VGS = 10V, ID = 21A	
Q _{qB}	Gate-to-Source Charge	_	_	27	nC	VDS = 0.5 x Max. Rating	
Q _{gd}	Gate-to-Drain ("Miller") Charge	-	-	135]	See Fig. 6 and 14	
^t d(on)	Turn-On Delay Time	-	-	35		V _{DD} = 250V, I _D = 21A, R _G	= 2.35N
tr	Rise Time	T -	_	120	ne		
[†] d(off)	Turn-Off Delay Time	-	-	130]	See Fig. 11	
ty	Fall Time	T -	-	98	Ī		
LD	Internal Drain Inductance	_	8.7	-	пH	Measured from the drain lead, 6 mm (0.25 in.) from package to center of die.	Modified MOSFET symbol showing the internal inductances.
Lg	Internal Source Inductance	-	8.7	-		Measured from the source lead, 6 mm (0.25 in.) from package to source bonding pad.	
Ciss	Input Capacitance	-	4300	1-		VGS = 0V, VDS = 25V	
Coss	Output Capacitance	T-	1000	-	DF.	f = 1.0 MHz	
Crss	Reverse Transfer Capacitance	T =	250	T -	7	See Fig. 5	

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
ls	Continuous Source Current (Body Diode)	-	_	21	A	Modified MOSFET symbol showing the integral Reverse p-n junction rectifier.
ISM	Pulsed Source Current (Body Diode) ①	-	_	84] ^	in the second se
V _{SD}	Diode Forward Voltage	-	_	1.8	v	T _J = 25°C, I _S = 21A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time	_	_	580	. nS	T _J = 25°C, I _F = 21A, di/dt ≤ 100 A/µs ④
Q_{RR}	Reverse Recovery Charge		_	8.1	μC	V _{DD} ≤ 50V
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.				

Thermal Resistance

Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC Junction-to-Case	_	_	0.42		
RthCS Case-to-Sink	_	0.21	-	K/W (5	Mounting surface flat, smooth, and greased
R _{thJA} Junction-to-Ambient	_	_	30	1	Typical socket mount

Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 9) Refer to current HEXFET reliability report

(5) K/W = °C/W W/K = W/°C

② @ V_{DD} = 50V, Starting T_J = 25°C, L \geq 2.0 mH, R_G = 25 Ω , Peak I_L = 21A

⁽³⁾ $I_{SD} \le 21A$, $di/dt \le 160 A/\mu s$. $V_{DD} \le BV_{DSS}$, $T_{J} \le 150$ °C Suggested $R_{G} = 2.35\Omega$

^{④ Pulse width ≤ 300 μs; Duty Cycle ≤ 2%}

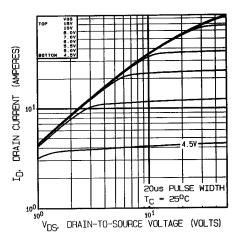


Fig. 1 — Typical Output Characteristics, T_C = 25°C

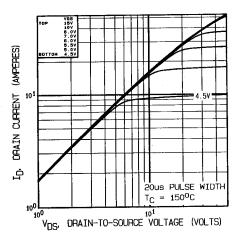


Fig. 2 — Typical Output Characteristics, T_C = 150°C

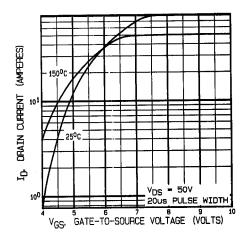


Fig. 3 — Typical Transfer Characteristics

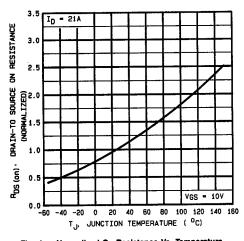


Fig. 4 -- Normalized On-Resistance Vs. Temperature

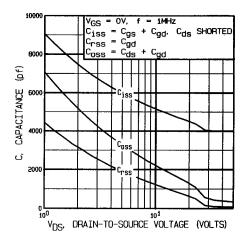


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

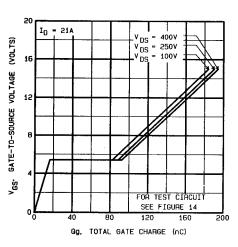


Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

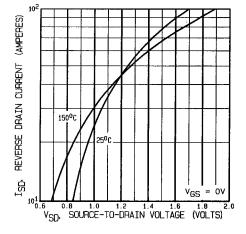


Fig. 7 — Typical Source-Drain Diode Forward Voltage

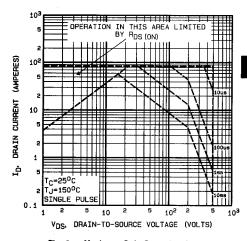


Fig. 8 — Maximum Safe Operating Area

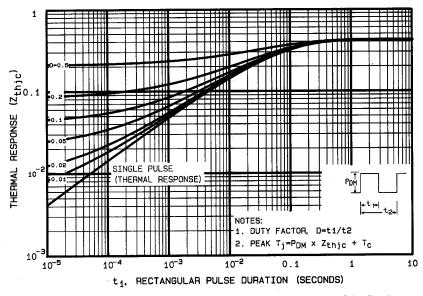
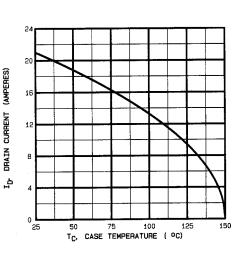



Fig. 9 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

V_{DS} D.U.T.

V_{GS} D.U.T.

V_{DD}

V

Fig. 11a - Switching Time Test Circuit

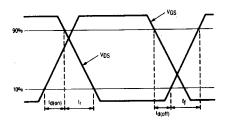


Fig. 10 — Maximum Drain Current Vs. Case Temperature

Fig. 11b — Switching Time Waveforms

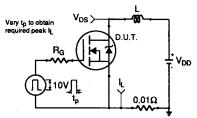


Fig. 12a - Unclamped Inductive Test Circuit

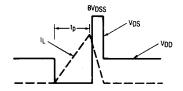


Fig. 12b — Unclamped Inductive Waveforms

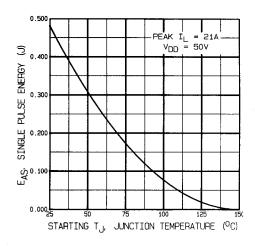


Fig. 12c — Maximum Avalanche Energy Vs. Starting Junction Temperature

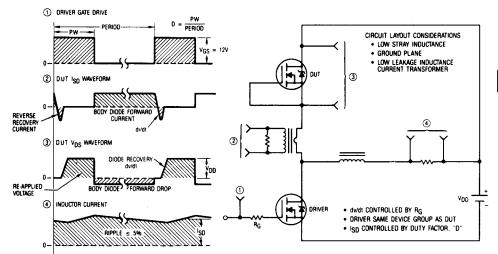
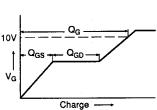



Fig. 13 — Peak Diode Recovery dv/dt Test Circuit

Current Regulator Same Type as D.U.T. V_{DS} D.U.T. V_{GS} > 3mA∏∏ Ь ١G **Current Sampling Resistors**

Fig. 14a - Basic Gate Charge Waveform

Fig. 14b — Gate Charge Test Circuit

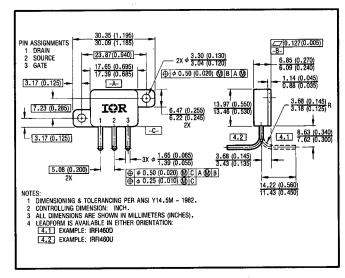


Fig. 15 - Optional Leadforms for Outline TO-259

BERYLLIA WARNING PER MIL-S-19500

Packages containing beryilla shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryilla or beryillum dust. Furthermore, beryillum oxide packages shall not be placed in acids that will produce fumes containing beryllium.

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)