International **ICR** Rectifier

POWER MOSFET THRU-HOLE (MO-036AB)

IRFG5110 100V, Combination 2N-2P-CHANNEL HEXFET[®] MOSFETTECHNOLOGY

Product Summary

Part Number	RDS(on)	ld	CHANNEL
IRFG5110	0.7Ω	1.0A	N
IRFG5110	0.7Ω	-1.0A	Р

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Dynamic dv/dt Rating
- Light-weight

	Parameter	N-Channel	P-Channel	Units
$I_D @ V_{GS} = \pm 10V, T_C = 25^{\circ}C$ Continuous Drain Current		1.0	-1.0	
ID @ VGS =± 10V, TC = 100°C	Continuous Drain Current	0.6	-0.6	A
IDM	Pulsed Drain Current ①	4.0	-4.0	
P _D @ T _C = 25°C	Max. Power Dissipation	1.4	1.4	W
	Linear Derating Factor	0.011	0.011	W/°C
VGS	Gate-to-Source Voltage	±20	±20	V
EAS	Single Pulse Avalanche Energy	75 ②	75 ⑤	mJ
IAR	Avalanche Current ①	—	—	А
EAR	Repetitive Avalanche Energy ①	—	—	mJ
dv/dt	Peak Diode Recovery dv/dt	5.5 3	-5.5 ⑥	V/ns
TJ Operating Junction		-55 to	150	
TSTG Storage Temperature Range				°C
	Lead Temperature	300 (0.63 in./1.6 mm	from case for 10s)	
	Weight	1.3 (Ty	pical)	g

Absolute Maximum Ratings (Per Die)

For footnotes refer to the last page

IRFG5110 International Electrical Characteristics For Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Мах	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	—	_	V	VGS = 0V, ID = 1.0mA
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	_	0.13	_	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source On-State		—	0.7	Ω.	VGS = 10V, ID = 0.6A ④
	Resistance	—	—	0.8	<u> </u>	V _{GS} = 10V, I _D = 1.0A
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
gfs	Forward Transconductance	0.86	—	_	S (O)	VDS > 15V, IDS = 0.6A ④
IDSS	Zero Gate Voltage Drain Current	_	—	25	μA	V _{DS} = 80V, V _{GS} = 0V
		_	_	250] .	V _{DS} = 80V,
						VGS = 0V, TJ =125°C
IGSS	Gate-to-Source Leakage Forward		—	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	—	-100	1	VGS = -20V
Qg	Total Gate Charge	_	—	15		VGS =10V, ID = 1.0A,
Qgs	Gate-to-Source Charge			7.5	nC	$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	—	7.5	Ī	
td(on)	Turn-On Delay Time	_	—	20		VDD = 50V, ID = 1.0A,
tr	Rise Time		—	25	ns	V_{GS} =10V, R_{G} = 24 Ω
td(off)	Turn-Off Delay Time	—	—	40		
tf	FallTime		_	40		
LS+LD	Total Inductance		10		nH	Measured from drain lead (6mm/ 0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	_	180	_		VGS = 0V, VDS = 25V
C _{OSS}	Output Capacitance		82	_] pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	15	_		

Source-Drain Diode Ratings and Characteristics (Per Die)

	Parameter		Min	Тур	Max	Units	Test Conditions		
IS	Continuous Source Current	(Body Diode)	_	_	1.0				
ISM	Pulse Source Current (Body	Diode) 1	—	—	4.0	A			
VSD	Diode Forward Voltage		—	—	1.5	V	$T_j = 25^{\circ}C, I_S = 1.0A, V_{GS} = 0V ④$		
trr	Reverse Recovery Time		—	—	200	nS	Tj = 25°C, IF = 1.0A, di/dt \leq 100A/ μ s		
QRR	Reverse Recovery Charge		_	—	0.83	nC	$V_{DD} \leq 50V @$		
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{S} + L_{D}$.							

Thermal Resistance (Per Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	17	°C/W	
R _{th} JA	Junction-to-Ambient	—	—	90	0/11	Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

International	IRFG5110
ter Rectifier	
Electrical Characteristics For Each P-Channel Device @ Tj = 25°	C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	—	—	V	$V_{GS} = 0V, I_{D} = -1.0mA$
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	_	-0.22	_	V/°C	Reference to 25°C, ID = -1.0mA
RDS(on)	Static Drain-to-Source On-State	—	—	0.7	Ω	VGS = -10V, ID = -0.6A
	Resistance	—	—	0.8	52	VGS = -10V, ID =- 1.0A
VGS(th)	Gate Threshold Voltage	-2.0	—	-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$
9fs	Forward Transconductance	1.1	—	—	S (7)	V _{DS} > -15V, I _{DS} = -0.6A ④
IDSS	Zero Gate Voltage Drain Current	—	—	-25		V _{DS} = -80V, V _{GS} = 0V
		—	—	-250	μA	V _{DS} = -80V,
						VGS = 0V, TJ =125°C
IGSS	Gate-to-Source Leakage Forward	—	—	-100	nA	VGS = - 20V
IGSS	Gate-to-Source Leakage Reverse	—	—	100		V _{GS} = 20V
Qg	Total Gate Charge	—	—	22		VGS = -10V, ID = -1.0A,
Qgs	Gate-to-Source Charge		-	8.0	nC	V _{DS} = -50V
Q _{gd}	Gate-to-Drain ('Miller') Charge	—	—	14]	
td(on)	Turn-On Delay Time	—	—	30		$V_{DD} = -50V, I_D = -1.0A,$
tr	Rise Time	—	—	60	ns	V_{GS} = -10V, R_{G} = 24 Ω
^t d(off)	Turn-Off Delay Time	—	—	60		
tf	Fall Time	—	—	60		
L _S +L _D	Total Inductance		10		nH	Measured from drain lead (6mm/ 0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	—	390	_		$V_{GS} = 0V, V_{DS} = -25V$
C _{OSS}	Output Capacitance	—	170	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	-	45	_		

Source-Drain Diode Ratings and Characteristics (Per Die)

	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (I	Body Diode)		_	-1.0	Α	
ISM	Pulse Source Current (Body	Diode) ①	_	_	-4.0	~	
VSD	Diode Forward Voltage		-	_	-5.5	V	Tj = 25°C, IS = -1.0A, VGS = 0V ④
trr	Reverse Recovery Time		_	—	200	nS	Tj = 25°C, IF = -1.0A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		_	—	0.66	nC	$V_{DD} \le -50V$
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

Thermal Resistance (Per Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	—	—	17	°C/W	
R _{th} JA	Junction-to-Ambient	—	—	90		Typical socket mount

For footnotes refer to the last page

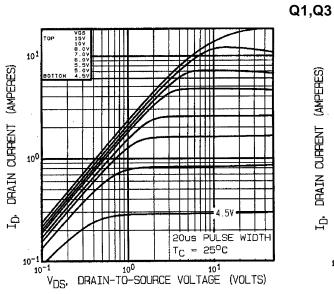
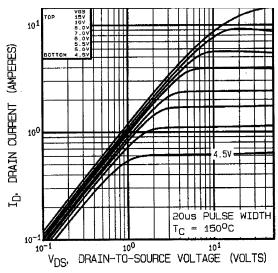



Fig 1. Typical Output Characteristics

N-Channel

Fig 2. Typical Output Characteristics

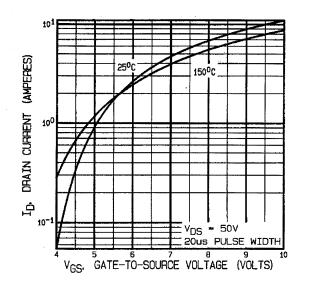


Fig 3. Typical Transfer Characteristics

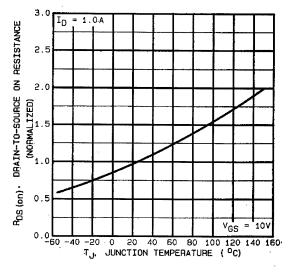
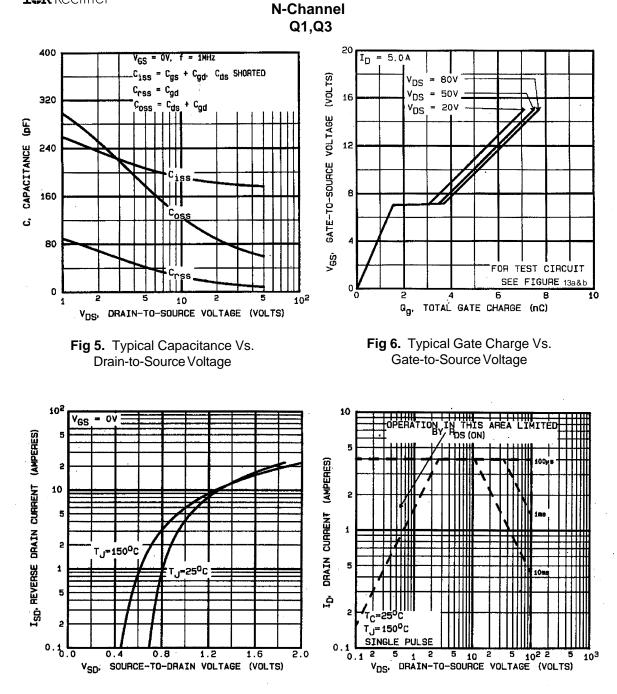
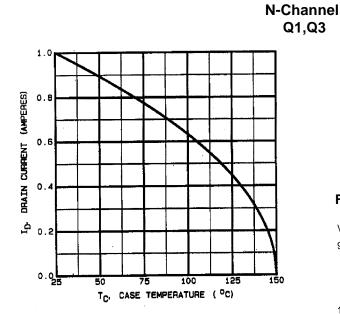
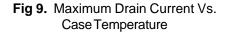
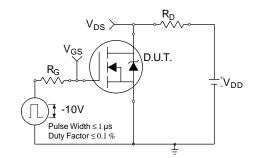


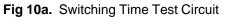
Fig 4. Normalized On-Resistance Vs. Temperature

International


Fig 7. Typical Source-Drain Diode Forward Voltage


Fig 8. Maximum Safe Operating Area


www.irf.com

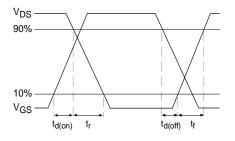


Fig 10b. Switching Time Waveforms

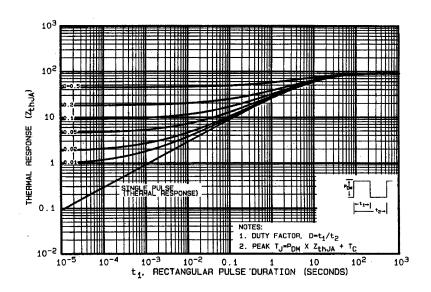


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

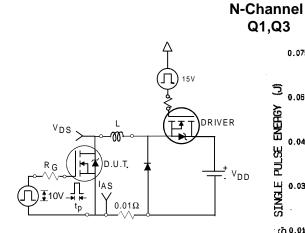


Fig 12a. Unclamped Inductive Test Circuit

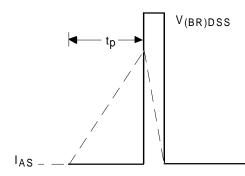


Fig 12b. Unclamped Inductive Waveforms

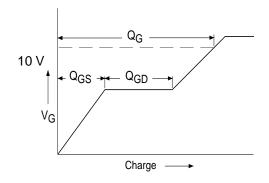


Fig 13a. Basic Gate Charge Waveform

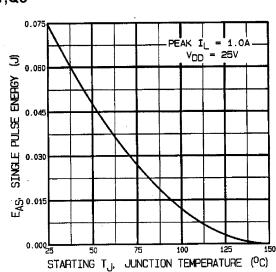


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

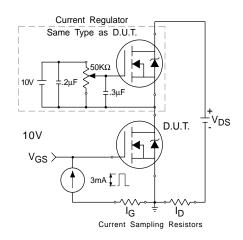
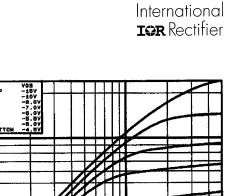
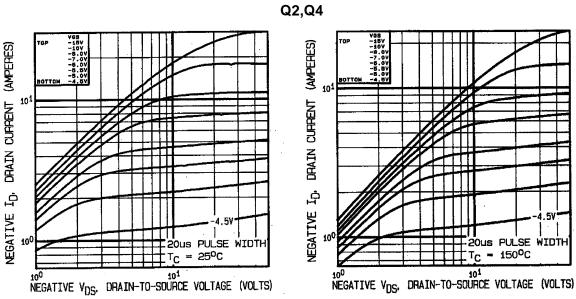




Fig 13b. Gate Charge Test Circuit

www.irf.com

7

P-Channel

Fig 14. Typical Output Characteristics

Fig 15. Typical Output Characteristics

5

WIDTH

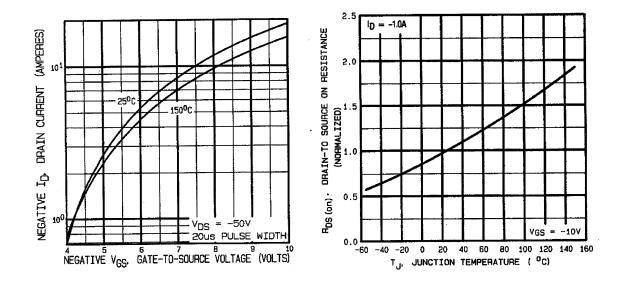
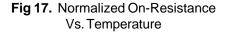
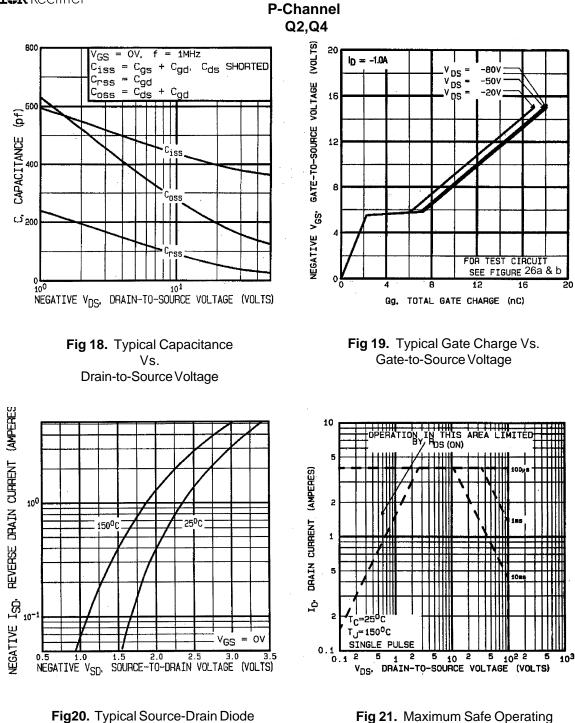
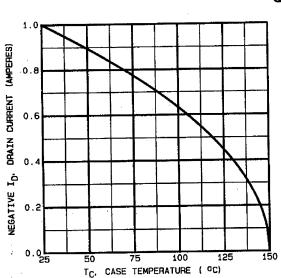
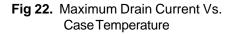




Fig 16. Typical Transfer Characteristics




Forward Voltage

www.irf.com

Area

P-Channel Q2,Q4

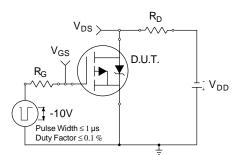
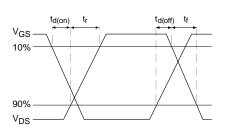
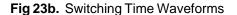




Fig 23a. Switching Time Test Circuit

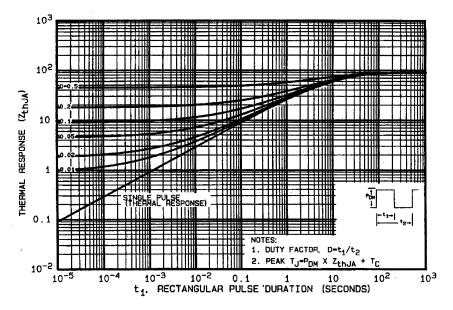


Fig 24. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

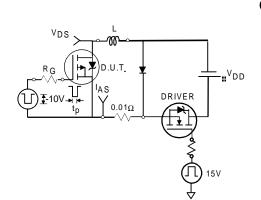
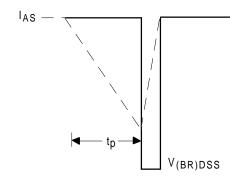
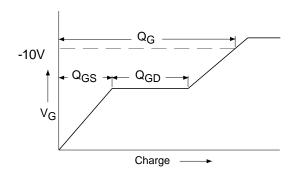


Fig 25a. Unclamped Inductive Test Circuit

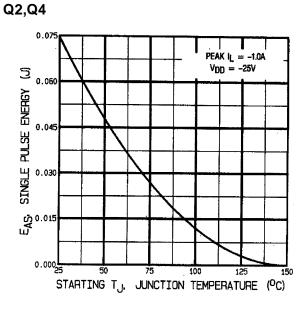
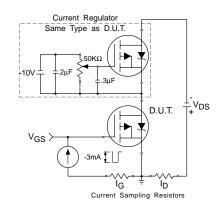


Fig 25b. Unclamped Inductive Waveforms



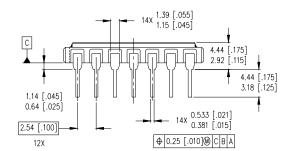


P-Channel

Fig 25c. Maximum Avalanche Energy Vs. Drain Current

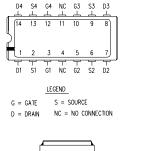
11

Footnotes:


- Repetitive Rating; Pulse width limited by maximum junction temperature.
- \odot V_{DD} = 50V, starting T_J = 25°C, L= 150mH, Peak I_L = 1.0A, V_{GS} = 10V

International

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- (5) $V_{DD} = -25V$, starting $T_J = 25^{\circ}C$, L= 150mH, Peak I_L = - 1.0A, V_{GS} = -10V


Case Outline and Dimensions — MO-036AB

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MO-036AB.
- 5 MEASURED WITH THE LEADS CONSTRAINED TO BE
 - PERPENDICULAR TO DATUM PLANE C.

LEAD ASSIGNMENTS

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice.04/02

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)