

## **Programmable Linear Hall Sensor**









### **Features**

- Integration of two individual programmable Linear Hall sensor IC's with SPC (Short PWM Code) protocol with enhanced interface features based on SENT (Single Edge Nibble Transmission, defined by SAE J2716)
- 20-bit Digital Signal Processing (DSP)
- Digital temperature and stress compensation
- 16-bit overall resolution
- Operating automotive temperature range -40°C to 125°C
- Minimal drift of output signal over temperature and lifetime
- Programmable parameters stored in EEPROM with single-bit error correction:
  - SPC protocol modes: synchronous transmission, dynamic range selection, ID selection mode
  - Magnetic range, sensitivity (gain), offset, and polarity of the output slope
  - Bandwidth
  - Clamping levels
  - Customer temperature compensation coefficients for all common magnets
- Re-programmable until memory lock
- Supply voltage 4.5-5.5 V (4.1-16 V extended range)
- Configurable magnetic range: ±50 mT, ±100 mT, or ±200 mT
- Reverse-polarity and overvoltage protection for all pins
- · Output short-circuit protection
- On-board diagnostics (overvoltage, EEPROM error)
- Output of internal magnetic field values and temperature
- · Programming and operation of multiple sensors with common power supply
- Two-point calibration of magnetic transfer function without iteration steps
- Green Product (RoHS compliant)
- AEC Qualified

### PRO-SIL™ Features

Safety Manual and Safety Analysis Summary Report





## **Potential applications**

- Robust replacement of potentiometers: No mechanical abrasion, resistant to humidity, temperature, pollution and vibration
- Linear and angular position sensing in automotive and industrial applications with highest accuracy requirements
- Suited for safety applications such as pedal position, throttle position and steering torque sensing

### **Product validation**

Qualified for automotive applications. Product validation according to AEC-Q100.

## **Description**

The linear Hall IC TLE4998C8(D) has been designed specifically to meet the requirements of highly accurate angle and position detection.

The sensor provides a digital SPC (Short PWM Code) signal, based on the standardized SENT (Single Edge Nibble Transmission, SAE J2716) protocol. The SPC protocol allows transmissions initiated by the ECU. Two further operation modes are available.

- "range selection" for dynamically switching of the measurement range during operation
- "ID selection" to build a bus system with up to 4 IC's on a single output line and a common supply, which can be individually accessed by the ECU.

Each transmission sequence contains an adjustable number of nibbles representing the magnetic field, the temperature value and a status information of the sensor. The interface is further described in Chapter 6.

The output stage is an open-drain driver pulling the output pin to low only. Therefore, the high level needs to be obtained by an external pull-up resistor. This output type has the advantage that the receiver may use an even lower supply voltage (e.g. 3.3 V). In this case the pull-up resistor must be connected to the given receiver supply.

The IC is produced in BiCMOS technology with high voltage capability and it also has reverse-polarity protection.

Digital signal processing using a 16-bit DSP architecture together with digital temperature and stress compensation guarantees excellent stability over the whole temperature range and life time.

**Ordering Information** Table 1

| <b>Product Name</b> | Marking | Ordering Code             | Package                    |
|---------------------|---------|---------------------------|----------------------------|
| TLE4998C8           | C8S     | SP002497758 <sup>1)</sup> | single sensor, PG-TDSO-8-1 |
| TLE4998C8D          | C8D     | SP002497754 <sup>1)</sup> | dual sensor, PG-TDSO-8-2   |

<sup>1)</sup> These ordering codes are valid for the B2 design onwards.

## Programmable Linear Hall Sensor



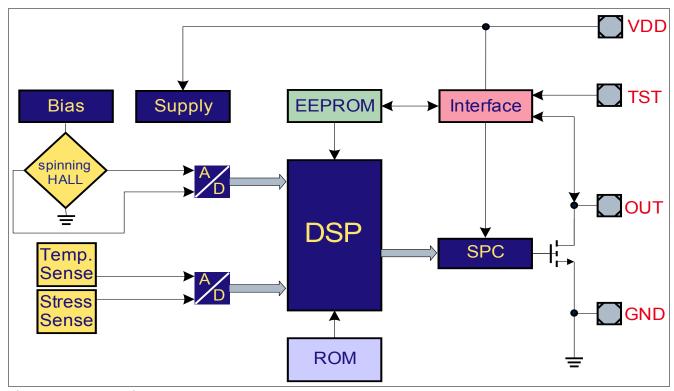
# **Table of Contents**

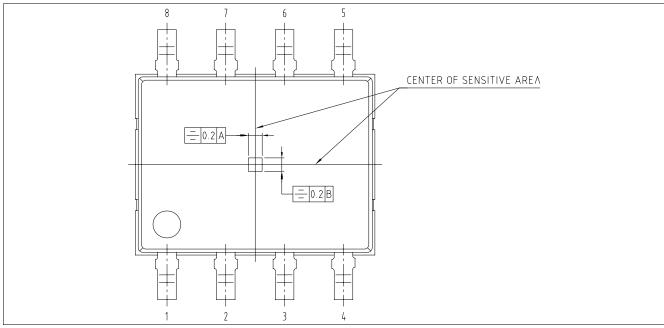
| 1     | Block Diagram                                                 | 4    |
|-------|---------------------------------------------------------------|------|
| 2     | Pin Configuration                                             | 5    |
| 3     | Functional Description                                        | 6    |
| 3.1   | Principle of Operation                                        | 6    |
| 3.2   | Transfer Functions                                            | 6    |
| 4     | Application Circuit                                           | 7    |
| 5     | General Product Characteristics                               | 8    |
| 5.1   | Maximum Ratings                                               | 8    |
| 5.2   | Operating Range                                               |      |
| 5.3   | Electrical, Thermal and Magnetic Parameters                   |      |
| 5.3.1 | Electrical Characteristics                                    |      |
| 5.3.2 | Magnetic Characteristics                                      |      |
| 5.3.3 | Electrical and Magnetic Characteristics in Undervoltage Range |      |
| 5.3.4 | Magnetic Field Direction Definition                           | . 12 |
| 6     | SPC Output                                                    | . 14 |
| 6.1   | SPC Protocol                                                  | . 14 |
| 6.2   | Unit Time Setup                                               |      |
| 6.3   | Master Pulse                                                  |      |
| 6.4   | SPC Modes                                                     |      |
| 6.4.1 | Synchronous Transmission                                      |      |
| 6.4.2 | Synchronous Transmission Including Range Selection            |      |
| 6.4.3 | Synchronous Mode with ID Selection                            | . 18 |
| 7     | Configuration and Calibration Parameters                      | . 20 |
| 8     | Error Detection                                               | . 22 |
| 8.1   | Voltages Outside the Operating Range                          | . 22 |
| 8.2   | EEPROM Error Correction                                       | . 22 |
| 9     | Package Outlines                                              | . 23 |
| 10    | Revision History                                              | . 26 |
|       |                                                               |      |



**Block Diagram** 

# 1 Block Diagram





Figure 1 Block Diagram



**Pin Configuration** 

### **Pin Configuration** 2

Figure 2 shows the location of the Hall elements in the package and the pin configuration of the TLE4998C8(D).



Pin Configuration of PG-TDSO-8 package Figure 2

Table 2 TLE4998C8(D) Pin Definitions and Functions

| Pin No. | Symbol | TLE4998C8 Function                          | TLE4998C8D Function                                     |
|---------|--------|---------------------------------------------|---------------------------------------------------------|
| 1       | TST    | Test pin (connection to GND is recommended) | Test pin (top die, connection to GND is recommended)    |
| 2       | VDD    | Supply voltage / programming interface      | Supply voltage / programming interface (top die)        |
| 3       | GND    | Ground                                      | Ground (top die)                                        |
| 4       | OUT    | Output / programming interface              | Output / programming interface (top die)                |
| 5       | OUT    | Not connected                               | Output / programming interface (bottom die)             |
| 6       | GND    | Not connected                               | Ground (bottom die)                                     |
| 7       | VDD    | Not connected                               | Supply voltage / programming interface (bottom die)     |
| 8       | TST    | Not connected                               | Test pin (bottom die, connection to GND is recommended) |

**Functional Description** 

#### 3 **Functional Description**

#### 3.1 **Principle of Operation**

- A magnetic flux is measured by a Hall-effect cell
- The output signal from the Hall-effect cell is converted from analog to digital signals
- The chopped Hall-effect cell and continuous-time A/D conversion ensure a very low and stable magnetic
- A programmable low-pass filter to reduce noise
- The temperature is measured and A/D converted
- Temperature compensation is done digitally using a second-order function
- Digital processing of the output value is based on zero field and sensitivity value
- The output value range can be clamped by digital limiters
- The final output value is represented by the data nibbles of the SPC protocol

#### **Transfer Functions** 3.2

The examples in Figure 3 show how different magnetic field ranges can be mapped to the desired output value ranges.

- Polarity Mode:
  - Bipolar: Magnetic fields can be measured in both orientations. The limit points do not necessarily have to be symmetrical around the zero field point
  - **Unipolar**: Only north- or south-oriented magnetic fields are measured
- Inversion: Both gain can be set to positive values, negative values or positive/negative values.

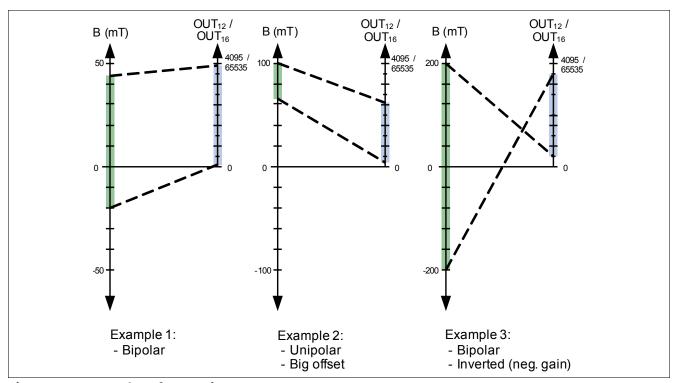



Figure 3 **Examples of Operation** 



**Application Circuit** 

### **Application Circuit** 4

Figure 4 shows the connection of two Linear Hall sensors to a microcontroller.

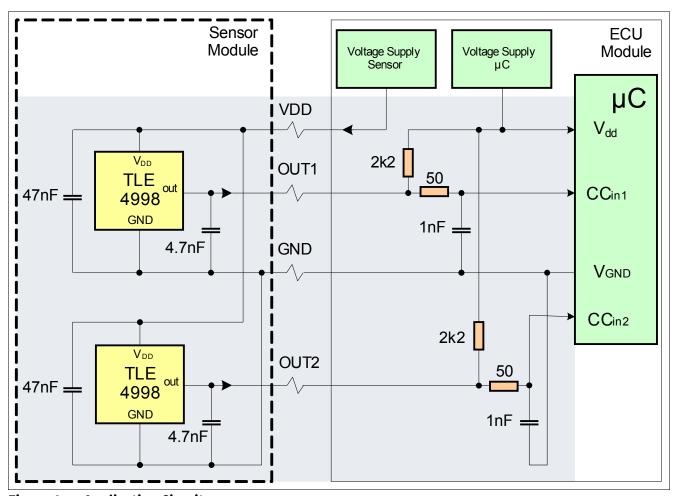



Figure 4 **Application Circuit** 

The application circuit shown should be regarded as an example only.

**General Product Characteristics** 

#### 5 **General Product Characteristics**

#### 5.1 **Maximum Ratings**

All further given specifications are regarded to each of the implemented sensors IC's, or otherwise noted.

Table 3 **Absolute Maximum Ratings** 

| Parameter                                          | Symbol             | Values |      |                     | Unit | Note or                                    |
|----------------------------------------------------|--------------------|--------|------|---------------------|------|--------------------------------------------|
|                                                    |                    | Min.   | Тур. | Max.                |      | <b>Test Condition</b>                      |
| Junction temperature                               | T <sub>J</sub>     | - 40   | -    | 160 <sup>1)</sup>   | °C   | _                                          |
| Voltage on $V_{\rm DD}$ pin with respect to ground | V <sub>DD</sub>    | -18    | _    | 18.35               | V    | 2)3)                                       |
| Supply current @ overvoltage $V_{\rm DD}$ max.     | I <sub>DDov</sub>  | -      | _    | 15                  | mA   | -                                          |
| Reverse supply current @ $V_{\rm DD}$ min.         | I <sub>DDrev</sub> | -1     | -    | 0                   | mA   | _                                          |
| Voltage on output pin with respect to ground       | V <sub>OUT</sub>   | -14)   | _    | 18.35 <sup>5)</sup> | V    | -                                          |
| Magnetic field                                     | B <sub>MAX</sub>   | _      | -    | 1                   | Т    | _                                          |
| ESD protection                                     | V <sub>ESD</sub>   | _      | -    | ±2                  | kV   | According HBM<br>ANSI/ESDA/JEDEC<br>JS-001 |

- 1) For limited time of 96 h. Depends on customer temperature lifetime cycles. Please ask Infineon for support.
- 2) Higher voltage stress than absolute maximum rating, e.g. 150% in latch-up tests is not applicable. In such cases,  $R_{\text{series}}$ ≥100  $\Omega$  for current limitation is required.
- 3) Max 1h, in operating temperature range.
- 4) IDD can exceed 10 mA when the voltage on OUT is pulled below -1 V (-5 V at room temperature).
- 5) VDD = 5 V, open drain permanent low, for max. 10 minutes

# Attention: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this

specification is not implied. Furthermore, only single error cases are assumed. More than one stress/error case may also damage the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions the voltage on VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Lifetime statements are an anticipation based on an extrapolation of Infineon's qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period.

### **Programmable Linear Hall Sensor**



### **General Product Characteristics**

#### 5.2 **Operating Range**

The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4998C8(D). All parameters specified in the following sections refer to these operating conditions and each of the implemented sensors IC's if applicable or unless otherwise indicated.

Table 4 **Operating Range** 

| Parameter                            | Symbol                 |                                  | Values |                    |    | <b>Note or Test Condition</b>                                        |  |
|--------------------------------------|------------------------|----------------------------------|--------|--------------------|----|----------------------------------------------------------------------|--|
|                                      |                        | Min.                             | Тур.   | Max.               |    |                                                                      |  |
| Supply voltage                       | $V_{DD}$               | 4.5                              | -      | 5.5                | V  | -                                                                    |  |
|                                      |                        | 4.1                              | -      | 16 <sup>1)2)</sup> | V  | Extended range                                                       |  |
| Supply undervoltage                  | V <sub>DDuv</sub>      | V <sub>DDpon</sub> <sup>3)</sup> | _      | 4.1                | V  | Undervoltage range, reduced magnetic performance (see Table 7)       |  |
| Output pull-up voltage <sup>4)</sup> | V <sub>pull-up</sub>   | _                                | -      | 18.35              | V  | -                                                                    |  |
| Load resistance <sup>4)</sup>        | $R_L$                  | 1                                | -      | _                  | kΩ | -                                                                    |  |
| Output current <sup>4)</sup>         | l <sub>out</sub>       | 0                                | -      | 5                  | mA | -                                                                    |  |
| Output leakage current <sup>5)</sup> | I <sub>out, leak</sub> | 40                               | 85     | 140                | μΑ | V <sub>pull-up</sub> = 5V and 0< V <sub>DD</sub> <v<sub>DDuv</v<sub> |  |
| Load capacitance <sup>4)</sup>       | C <sub>L</sub>         | 1                                | _      | 8                  | nF | -                                                                    |  |
| Ambient temperature <sup>6)</sup>    | T <sub>A</sub>         | -40                              | -      | 125                | °C | max. 1200 h at 125°C <sup>7)</sup>                                   |  |

- 1) For supply voltages > 12 V, a series resistance  $R_{\text{series}} \ge 100 \Omega$  is recommended
- 2) The open drain switch off, due to overvoltage on the  $V_{DD}$  line, can take place in the range of 16.65 V to 18.35 V, as defined in **Chapter 8.1** of the data sheet.
- 3)  $V_{DDpon}$  ... power-on reset level, see **Table 5**
- 4) Output protocol characteristics depend on these parameters,  $R_L$  must be according to max. output current.
- 5) Internal leakage from Out pin to GND pin in case  $V_{DD}$  is lost.
- 6)  $R_{THja} \le 150 \text{ K/W}.$
- 7) Maximum exposure time at other ambient temperatures between -40°C and 125°C shall be calculated based on the values specified in this table using the Arrhenius model.

Keeping signal levels within the limits specified in this table ensures operation without overload Note: conditions.

### **General Product Characteristics**

#### **Electrical, Thermal and Magnetic Parameters** 5.3

All specification values are valid over temperature and lifetime, unless noted otherwise.

#### **Electrical Characteristics** 5.3.1

Table 5 **Electrical Characteristics** 

| Parameter                          | Symbol               |      | Value | S    | Unit              | Note or Test Condition                                        |
|------------------------------------|----------------------|------|-------|------|-------------------|---------------------------------------------------------------|
|                                    |                      | Min. | Тур.  | Max. |                   |                                                               |
| Supply current                     | I <sub>DD</sub>      | 3    | 6     | 8    | mA                | per die                                                       |
| Thermal resistance <sup>1)</sup>   | R <sub>thJA</sub>    | _    | _     | 150  | K/W               | junction to air                                               |
| Power-on time <sup>2)</sup>        | t <sub>Pon</sub>     | _    | 0.7   | 2    | ms                | ≤±5% target out value                                         |
|                                    |                      | _    | 15    | 20   |                   | ≤±1% target out value                                         |
| Power-on reset level <sup>3)</sup> | $V_{DDpon}$          | 3.1  | 3.5   | 3.9  | V                 |                                                               |
| Output impedance                   | Z <sub>OUT</sub>     | 20   | 40    | 70   | kΩ                |                                                               |
| Output fall time                   | t <sub>fall</sub>    | 2    | 3.5   | 5    | μs                | V <sub>OUT</sub> 4.5 V to 0.5 V <sup>4)</sup>                 |
| Output rise time                   | t <sub>rise</sub>    | _    | 20    | _    | μs                | V <sub>OUT</sub> 0.5 V to 4.5 V <sup>4)</sup>                 |
| Output low saturation              | V <sub>OUTsat</sub>  | -    | 0.3   | 0.6  | V                 | I <sub>OUTsink</sub> = 5 mA                                   |
| voltage                            |                      | -    | 0.2   | 0.4  | V                 | I <sub>OUTsink</sub> = 2.2 mA                                 |
| Output noise (rms)                 | OUT <sub>noise</sub> | -    | -     | 2    | LSB <sub>12</sub> | With LP filter setting from 80 Hz until 1390 Hz <sup>5)</sup> |
| Oscillator frequency variation     | Δf/f                 | -20  | -     | 20   | %                 | Nominal oscillator frequency:<br>8MHz                         |

- 1) Values derived from a simulation with a 4-layer PCB
- 2) Response time to set up output data at power on when a constant field is applied. The first value given has a  $\pm 5\%$ error, the second value has a ±1% error.
- 3) Power-on and power-off
- 4) Depends on External  $R_L$  and  $C_L$ , See **Application Circuit**
- 5) Range ±50 mT (also valid for ranges ±100 mT and ±200 mT), Gain 1.0 (scales linearly with gain)

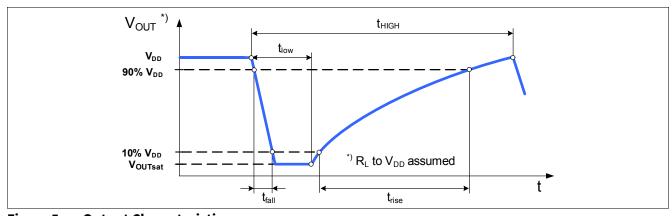



Figure 5 **Output Characteristic** 

### **Programmable Linear Hall Sensor**



### **General Product Characteristics**

### **Calculation of the Junction Temperature**

The internal power dissipation P<sub>TOT</sub> of the sensor increases the chip junction temperature above the ambient temperature.

The power multiplied by the total thermal resistance  $R_{thJA}$  (Junction to Ambient) added to  $T_A$  leads to the final junction temperature. R<sub>thJA</sub> is the sum of the addition of the two components, Junction to Case and Case to Ambient.

$$R_{thJA} = R_{thJC} + R_{thCA}$$

$$T_J = T_A + \Delta T = R_{thJA} \times P_{TOT} = R_{thJA} \times (V_{DD} \times I_{DD} + V_{OUT} \times I_{OUT}); I_{DD}, I_{OUT} > 0$$
, if direction is into IC

Example (assuming no load on V<sub>OUT</sub> and TLE4998C8(D) type):

- $V_{DD} = 5 V$
- $I_{DD} = 8 \text{ mA}$
- $\Delta T = 150 [K/W] \times (5 [V] \times 0.008 [A] + 0 [VA]) = 6 K per silicon$

For molded sensors, the calculation with  $R_{\text{thJC}}$  is more adequate.

#### 5.3.2 **Magnetic Characteristics**

Table 6 **Magnetic Characteristics** 

| Parameter             | Symbol           | Values |      |      | Unit                  | <b>Note or Test Condition</b> |
|-----------------------|------------------|--------|------|------|-----------------------|-------------------------------|
|                       |                  | Min.   | Тур. | Max. |                       |                               |
| Sensitivity           | S <sup>1)</sup>  | ±8.2   | _    | ±245 | LSB <sub>12</sub> /mT | programmable <sup>2)</sup>    |
| Sensitivity drift     | ΔS               | -2.0   | _    | +2.0 | %                     |                               |
| Magnetic field range  | MFR              | ±50    | ±100 | ±200 | mT                    | programmable <sup>3)</sup>    |
| Integral nonlinearity | INL              | -      | ±2.0 | ±4.1 | LSB <sub>12</sub>     | 4)                            |
| Magnetic offset       | B <sub>os</sub>  | -      | ±100 | ±400 | μΤ                    |                               |
| Magnetic offset drift | ΔB <sub>OS</sub> | -      | ±1   | ±5   | μT/°C                 |                               |
| Magnetic hysteresis   | B <sub>HYS</sub> | -      | _    | 20   | μΤ                    | in 50mT range                 |
|                       |                  |        |      | 10   |                       | in 100mT range                |

- 1) Defined as  $\triangle OUT / \triangle B$ .
- 2) Programmable in steps of 0.024%.
- 3) Depending on offset and gain settings, the output may already be saturated at lower fields.
- 4) Range ±50 mT (also valid for ranges ±100 mT and ±200 mT), Gain = 1.0 (scales linearly with gain)

**General Product Characteristics** 

#### **Electrical and Magnetic Characteristics in Undervoltage Range** 5.3.3

**Electrical and Magnetic Characteristics in Supply Undervoltage Range** Table 7

| Parameter             | Symbol               |      | Value | es        | Unit              | Note or Test Condition                                        |
|-----------------------|----------------------|------|-------|-----------|-------------------|---------------------------------------------------------------|
|                       |                      | Min. | Тур.  | Max.      | -                 |                                                               |
| Sensitivity drift     | S <sub>E(T)</sub>    | _    | _     | +2.5/-7.5 | %                 |                                                               |
| Magnetic offset drift | ΔB <sub>os</sub>     | _    | _     | ±400      | μΤ                |                                                               |
| Integral nonlinearity | INL                  | _    | _     | ±8.2      | LSB <sub>12</sub> | 1)                                                            |
| Output noise (rms)    | OUT <sub>noise</sub> | -    | -     | 8         | LSB <sub>12</sub> | With LP filter setting from 80 Hz until 1390 Hz <sup>1)</sup> |

<sup>1)</sup> Range ±50 mT (also valid for ranges ±100 mT and ±200 mT), Gain = 1.0 (scales linearly with gain)

### **Magnetic Field Direction Definition** 5.3.4

Figure 6 shows the definition of the magnetic field direction. By standard the south pole field defines the positive field values of the top die of the TLE4998C8(D).

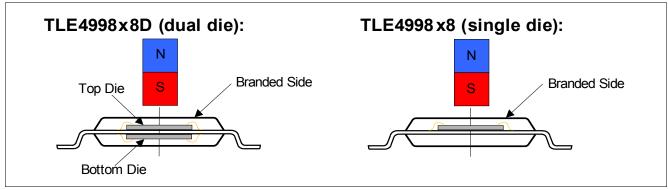



Figure 6 Definition of magnetic field direction of the TLE4998C8(D).

For the TLE4998C8D, the bottom die measures the inverted field value of the top die. This leads to a default output characteristic as shown in Figure 7.



### **General Product Characteristics**

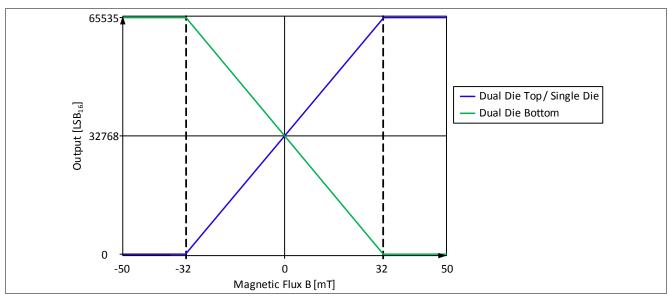



Figure 7 Example of the dual die output characteristic (range 50 mT, gain 1.0, typical)



**SPC Output** 

#### 6 **SPC Output**

The sensor supports a SPC (Short PWM Code) protocol, which enhances the standard SENT protocol (Single Edge Nibble Transmission) defined by SAE J2716. SPC is a synchronous SENT output, triggered by a master pulse from the ECU.

#### 6.1 **SPC Protocol**

The single edge is defined by a 3 unit time (UT) low pulse on the output, followed by the high time defined in the protocol (nominal values, may vary by tolerance of internal RC oscillator and the programming, see Chapter 6.2). All values are multiples of a configurable unit time. A transfer consists of the following parts:

- A trigger pulse by the master, which initiates the data transmission
- A synchronization period of 56 UT (in parallel, a new sample is calculated)
- A status nibble of 12-27 UT
- Between 3 and 6 data nibbles of 12-27 UT each (number is programmable, see Table 8), representing the Hall value and temperature information
- A Checksum (CRC) nibble of 12-27 UT.
- An end pulse to terminate the SPC transmission.

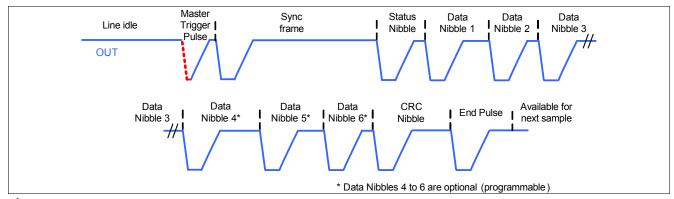



Figure 8 **SPC Frame** 

The CRC checksum includes the status nibble and the data nibbles and can be used to check the validity of the decoded data. It is calculated using a polynomial  $x^4 + x^3 + x^2 + 1$  with a seed value of 0101. The calculation scheme of the CRC is described in detail in the TLE4998 User's Manual.

The sensor is available for the next sample 90 µs after the falling edge of the end pulse. The sensor's sampling time is at the beginning of the synchronization period.

The number of transmitted SPC nibbles is programmable to customize the amount of information sent by the sensor. The default frame contains a 16 bit Hall value and an 8bit temperature value.

Table 8 **Frame Selection** 

| Frame Type                     | Parameter F | Data Nibbles |
|--------------------------------|-------------|--------------|
| 16 bit Hall, 8 bit temperature | 0           | 6 nibbles    |
| 16 bit Hall                    | 1           | 4 nibbles    |
| 12 bit Hall, 8 bit temperature | 2           | 5 nibbles    |
| 12 bit Hall                    | 3           | 3 nibbles    |

### **Programmable Linear Hall Sensor**



### **SPC Output**

The temperature is coded as an 8 bit value. The value is transferred in unsigned integer format and corresponds to the range between -55 °C and +200 °C, so a transferred value of 55 corresponds to 0 °C. The temperature is additional information and although it is not calibrated, may be used for a plausibility check, for example. Table 9 shows the mapping between junction temperature and the transmitted value in the SPC frame.

Table 9 **Mapping of Temperature Value** 

| Junction Temperature | Typ. Decimal Value from Sensor | Note                                  |
|----------------------|--------------------------------|---------------------------------------|
| - 55 °C              | 0                              | Theoretical lower limit <sup>1)</sup> |
| 0 °C                 | 55                             | _                                     |
| 25 °C                | 80                             | -                                     |
| 200 °C               | 255                            | Theoretical upper limit <sup>1)</sup> |

<sup>1)</sup> Theoretical range of temperature values, not operating temperature range.

The status nibble allows to check internal states and conditions of the sensor.

- Depending on the selected SPC mode, the first two bits of the status nibble contain either the selected magnetic range or the ID of the sensor and allow therefore an easy interpretation of the received data.
- The third bit is set to 1 for the first transmission after the sensor returns from an overvoltage operation with disabled open drain stage to regular operation (see **Chapter 8**).
- The fourth bit is switched to 1 for the first data package transferred after a reset.

#### **Unit Time Setup** 6.2

The basic SPC protocol unit time granularity is defined as 3 µs. Every timing is a multiple of this basic time unit. To achieve more flexibility, trimming of the unit time can be used to:

- Allow a calibration trim within a timing error of less than 20% clock error (as given in SAE standard)
- Allow a modification of the unit time for small speed adjustments

This enables a setup of different unit times. The output characteristic depends on the external load, the wiring, as well on the pull-up resistor and the temperature. Furthermore, sufficient driving capability of the reciever is required, in order to fulfill the master pulse requirements.

Table 10 **Pre-divider Setting** 

| Parameter | Symbol            | Values |      | Values |    | Note or Test Condition        |
|-----------|-------------------|--------|------|--------|----|-------------------------------|
|           |                   | Min.   | Тур. | Max.   |    |                               |
| Unit time | t <sub>UNIT</sub> | 2.0    | -    | 3.88   | μs | ClkUNIT=8 MHz <sup>1)2)</sup> |

- 1) Default setting is 3 µs nominal SPC unit time.
- 2) Subject to RC oscillator frequency variation ± 20%.

The nominal unit time is calculated by:

$$t_{\text{UNIT}} = (Prediv + 16) / Clk_{\text{UNIT}}$$

$$Clk_{\text{UNIT}} = 8\text{MHz} \pm 20\% \tag{6.1}$$



**SPC Output** 

#### **Master Pulse** 6.3

An SPC transmission is initiated by a Master pulse from the ECU on the OUT pin. To detect a low-level on the OUT pin, the voltage has to be below a threshold  $V_{\rm thf}$ . The sensor detects that the OUT line has been released as soon as  $V_{\rm thr}$  is crossed. Figure 9 shows the timing definitions for the master pulse. The master low time  $t_{\rm mlow}$ as well as the total trigger time  $t_{\rm mtr}$  are individual for the different SPC modes and are given in the subsequent sections.

It is recommended to choose the typical master low time exactly between the minimum and the maximum possible time:  $t_{\text{mlow,typ}} = (t_{\text{mlow,min}} + t_{\text{mlow,max}}) / 2$ . The master shall provide a high timing accuracy (approx. 1%). If the master low time exceeds the maximum low time, the sensor does not respond and is available for a next triggering 30 $\mu$ s after the master pulse crosses  $V_{\rm thr}$ .  $t_{\rm md,tot}$  is the delay between internal triggering of the falling edge in the sensor and the triggering of the ECU.

Note:

Internal acceptance limits for trigger low time are wider than those specified in Table 13, Table 14, and Table 15, to accomodate +-20% oscillator drift.

**Master Pulse Parameters** Table 11

| Parameter              | Symbol          | Values |      |      | Unit | Note or Test Condition           |
|------------------------|-----------------|--------|------|------|------|----------------------------------|
|                        |                 | Min.   | Тур. | Max. |      |                                  |
| Falling edge threshold | $V_{thf}$       | 1.1    | 1.3  | 1.7  | ٧    | -                                |
| Rising edge threshold  | $V_{thr}$       | 1.25   | 1.43 | 1.8  | ٧    | -                                |
| Total trigger time     | $t_{mtr}$       | _      | 13   | _    | UT   | Synchronous mode <sup>1)2)</sup> |
|                        |                 | _      | 56   | _    | UT   | Dyn. range mode 1)2)             |
|                        |                 | _      | 90   | _    | UT   | ID selection mode 1)2)           |
| Master delay time      | $t_{ m md,tot}$ | 3.7    | 5.8  | 7.9  | μs   | 3)                               |

- UT = Programmed nominal SPC unit time
- Trigger time in the sensor is fixed to the number of unit times specified in the "typ." column, but the effective trigger time varies due to the sensor's clock variation
- 3) Depends on External  $R_L$ ,  $C_L$  and  $V_{dd}$

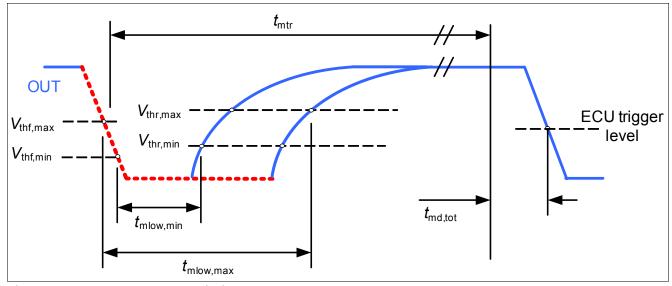



Figure 9 **SPC Master Pulse Timing** 

### **Programmable Linear Hall Sensor**



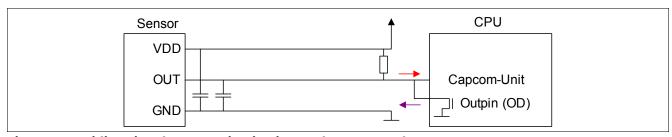
**SPC Output** 

#### 6.4 **SPC Modes**

SPC enables the use of enhanced protocol functionality due to the ability to select between "synchronous", "range selection" and "ID selection" protocol mode. The ID register is only used in ID selection mode.

Table 12 **SPC Mode Selection** 

| Mode                    | Parameter Prot MSB | Parameter Prot LSB |
|-------------------------|--------------------|--------------------|
| Synchronous             | 0                  | No effect          |
| Dynamic range selection | 1                  | 0                  |
| ID selection            | 1                  | 1                  |


#### **Synchronous Transmission** 6.4.1

In the "synchronous" mode, the sensor (slave) starts to transfer a complete data frame only after a low pulse is forced by the master on the OUT pin. This means that the data line is bidirectional - an open drain output of the micro controller (master) sends the trigger pulse. The sensor then initiates a sync pulse and starts to calculate the new output data value. After the synchronization period, the data follows in form of a standard SENT frame, starting with the status, data and CRC nibbles. At the end, an end pulse allows the CRC nibble decoding and indicates that the data line is idle again. The timing diagram in Figure 8 visualizes a synchronous transmission.

Table 13 **Master Pulse Timing for Synchronous Mode** 

| Parameter       | Symbol            |      | Values |      | Unit             | Note or Test Condition |
|-----------------|-------------------|------|--------|------|------------------|------------------------|
|                 |                   | Min. | Тур.   | Max. |                  |                        |
| Master low time | t <sub>mlow</sub> | 1.5  | 2.75   | 4    | UT <sup>1)</sup> | -                      |

<sup>1)</sup> UT = Programmed nominal SPC unit time.



**Bidirectional Communication in Synchronous Mode** Figure 10

#### 6.4.2 **Synchronous Transmission Including Range Selection**

The low time duration of the master can be used to select the magnetic range of the sensor in SPC dynamic range selection mode.

Table 14 **Master Pulse Timing for Dynamic Range Mode** 

| Parameter       | Symbol            | Values |      |      | Unit             | Note or Test Condition        |
|-----------------|-------------------|--------|------|------|------------------|-------------------------------|
|                 |                   | Min.   | Тур. | Max. |                  |                               |
| Master low time | t <sub>mlow</sub> | 1.5    | 3.25 | 5    | UT <sup>1)</sup> | Range = 200 mT ( <i>R</i> =0) |
|                 |                   | 9      | 12   | 15   | UT               | Range = 100 mT ( <i>R</i> =1) |
|                 |                   | 24     | 31.5 | 39   | UT               | Range = 50 mT ( <i>R</i> =3)  |

### **Programmable Linear Hall Sensor**



### **SPC Output**

1) UT = Programmed nominal SPC unit time.

Changing the range takes some time due to the settling time of internal circuitry. The first sample after a range switch therefore still displays a value sampled with the old range setting and the second transmission after changing the range displays the new range with reduced accuracy.

#### **Synchronous Mode with ID Selection** 6.4.3

In ID selection mode, one of up to four sensors are selectable on a bus (bus mode, 1 master with up to 4 slaves). This allows parallel connection of up to 4 sensors on one data line, as illustrated in Figure 11.

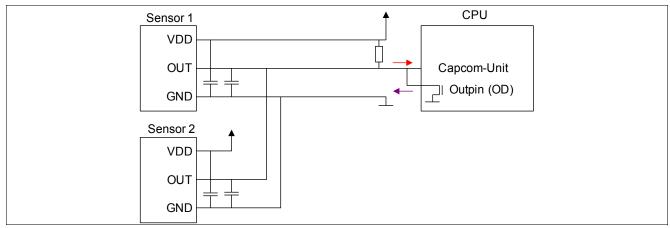



Figure 11 **Bidirectional Communication with ID Selection** 

In this mode, the sensor starts to transfer complete packages only after receiving a master low pulse with an ID that is equivalent to the programmed value in its ID register. The mapping between master low time and ID is given in Table 15. A proper addressing requires the different sensors on a same bus to be programmed with the same nominal SPC unit time.

Table 15 **Master Pulse Timing for ID Selection Mode** 

| Parameter       | Symbol     | Values |      |      | Unit             | Note or Test Condition |
|-----------------|------------|--------|------|------|------------------|------------------------|
|                 |            | Min.   | Тур. | Max. |                  |                        |
| Master low time | $t_{mlow}$ | 9      | 10.5 | 12   | UT <sup>1)</sup> | ID = 0                 |
|                 |            | 19     | 21   | 23   | UT               | ID = 1                 |
|                 |            | 35.5   | 38   | 40.5 | UT               | ID = 2                 |
|                 |            | 61.5   | 64.5 | 67.5 | UT               | ID = 3                 |

1) UT = Programmed nominal SPC unit time.

### **Programmable Linear Hall Sensor**



### **SPC Output**

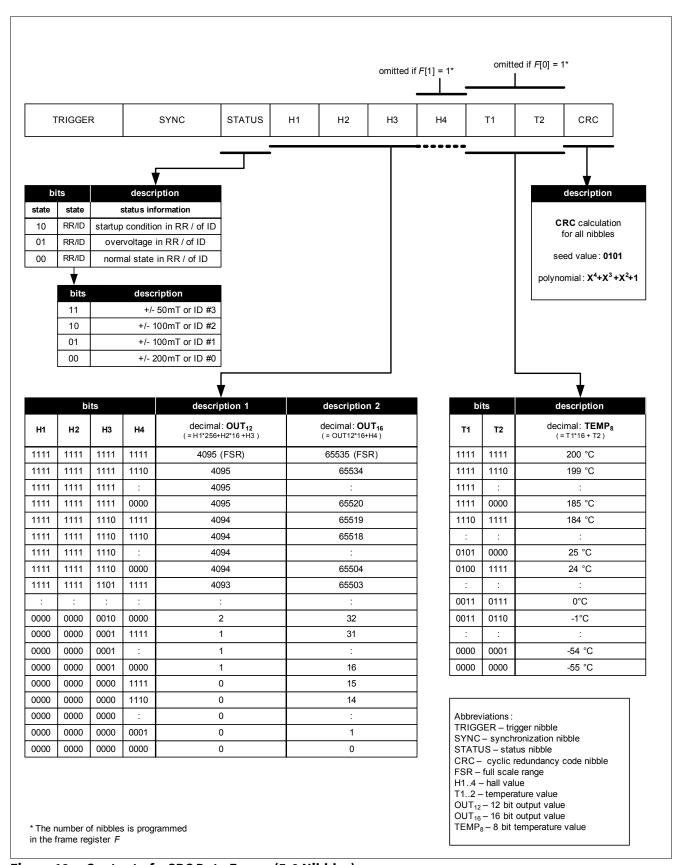



Figure 12 Content of a SPC Data Frame (5-8 Nibbles)

### **Programmable Linear Hall Sensor**



### **Configuration and Calibration Parameters**

#### **Configuration and Calibration Parameters** 7

The TLE4998C8(D) has several configurable parameters which are stored in the EEPROM. These parameters affect the internal data processing and compensation and the output protocol. This chapter gives an overview of the parameters. A detailed description of all the parameters and the programming procedure is given in the TLE4998 User's Manual.

Table 16 TLE4998C8(D) Paramters

| Parameter                                                     | Setting range                                                                                    | Note                                                                                                                                    |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Magnetic range                                                | ±50 mT<br>±100 mT<br>±200 mT                                                                     | Magnetic input range of Hall ADC                                                                                                        |  |  |
| Gain                                                          | -4.04.0                                                                                          | Gain value of +1.0 corresponds to typical 32 LSB <sub>12</sub> /mT sensitivity in 100 mT range (64 LSB <sub>12</sub> /mT in 50mT range) |  |  |
| Offset                                                        | -16384 LSB <sub>12</sub> 16384 LSB <sub>12</sub>                                                 | Quantization step: 1 LSB <sub>12</sub>                                                                                                  |  |  |
| Clamping low level                                            | 0 LSB <sub>16</sub> 64512 LSB <sub>16</sub>                                                      | Quantization step: 1024 LSB <sub>16</sub> (see <b>Figure 13</b> )                                                                       |  |  |
| Clamping high level                                           | 1023 LSB <sub>16</sub> 65535 LSB <sub>16</sub>                                                   | Quantization step: 1024 LSB <sub>16</sub>                                                                                               |  |  |
| Bandwidth <sup>1)</sup>                                       | 80 Hz<br>240 Hz<br>440 Hz<br>640 Hz<br>860 Hz<br>1100 Hz<br>1390 Hz<br>Off                       | Low-pass filter cut-off (-3 dB) frequency (see Figure 14)                                                                               |  |  |
| 1 <sup>st</sup> order temperature coefficient TC <sub>1</sub> | -1000 ppm/°C 2500 ppm/°C                                                                         | 2)                                                                                                                                      |  |  |
| 2 <sup>nd</sup> order temperature coefficient TC <sub>2</sub> | -4 ppm/°C <sup>2</sup> 4 ppm/°C <sup>2</sup>                                                     | 3)                                                                                                                                      |  |  |
| SPC unit time <sup>1)</sup>                                   | 2.0 μs 3.88 μs                                                                                   | see Chapter 6.2                                                                                                                         |  |  |
| SPC protocol frames                                           | 16 bit Hall + 8 bit temperature<br>16 bit Hall<br>12 bit Hall + 8 bit temperature<br>12 bit Hall | see Table 8                                                                                                                             |  |  |
| SPC mode                                                      | Synchronous<br>Dynamic Range<br>ID Selection                                                     | see Chapter 6.4                                                                                                                         |  |  |

<sup>1)</sup> Subject to oscillator variation ±20%.

<sup>2)</sup> Relative range to Infineon temperature pre-calibration, the maximum adjustable range is limited by the register-size and depends on specific pre-calibrated TL setting, full adjustable range: -2441 to +5355 ppm/°C.

Relative range to Infineon temperature pre-calibration, the maximum adjustable range is limited by the register-size and depends on specific pre-calibrated TQ setting, full adjustable range: -15 to +15 ppm/°C<sup>2</sup>.



### **Configuration and Calibration Parameters**

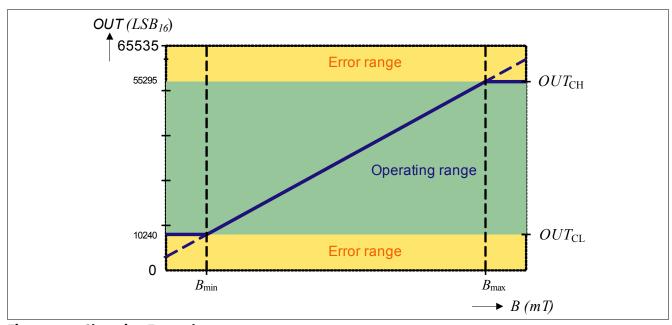



Figure 13 Clamping Example

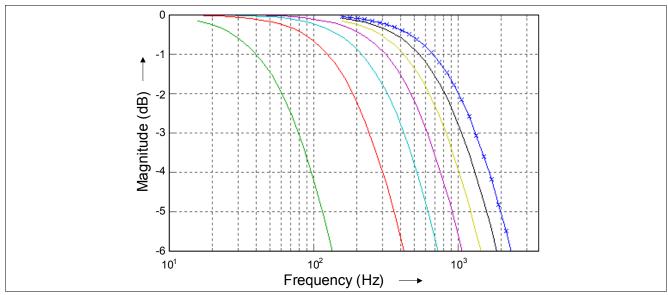



Figure 14 DSP Input Filter (Magnitude Plot)

### **Programmable Linear Hall Sensor**



**Error Detection** 

### 8 Error Detection

Different error cases can be detected by the On-Board Diagnostics (OBD) and reported to the micro controller in the status nibble (see **SPC Output**).

## 8.1 Voltages Outside the Operating Range

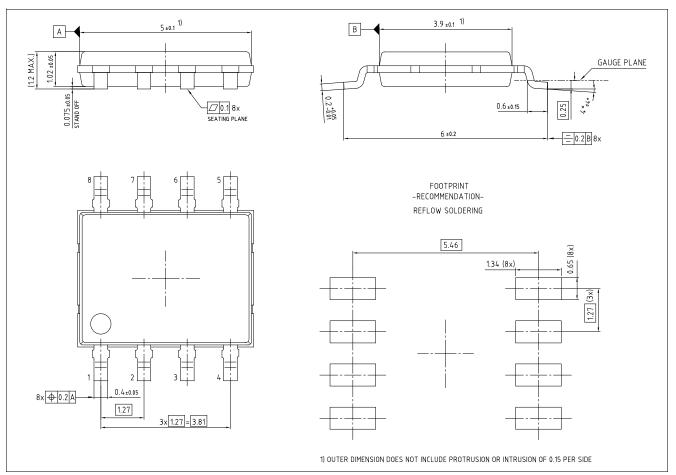
- Inside the ratings specified in Table 3 "Absolute Maximum Ratings" on Page 8
- Outside the range specified in Table 4 "Operating Range" on Page 9

The output signals an error condition if V<sub>DD</sub> crosses the overvoltage threshold level.

Table 17 Overvoltage

| Parameter             | Symbol     | Values |      |       | Unit | Note or        |
|-----------------------|------------|--------|------|-------|------|----------------|
|                       |            | Min.   | Тур. | Max.  |      | Test Condition |
| Overvoltage threshold | $V_{DDov}$ | 16.65  | 17.5 | 18.35 | V    |                |

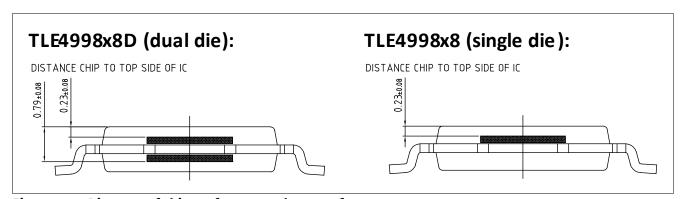
### 8.2 **EEPROM Error Correction**


The parity method is able to correct a single bit in the EEPROM line. One other single bit error in another EEPROM line can also be detected, but not corrected. In case there is an incorrectable EEPROM failure, the open drain stage is disabled and permanently kept in off state (high ohmic/sensor defect).



**Package Outlines** 

#### **Package Outlines** 9


### **PG-TDSO-8 Package Outlines**



PG-TDSO-8 (PG-TDSO-Plastic Green Thin Dual Small Outline), Package Dimensions

### Distance Chip to package

Figure 16 shows the distance of the chip surface to the PG-TDSO-8 surface.



Distance of chip surface to package surface

### **Moisture Sensitivity Level (MSL)**

The PG-TDSO-8 fulfills the MSL level 3 according to IPC/JEDEC J-STD-033B.1.



**Package Outlines** 

### **PG-TDSO-8 Package Marking**

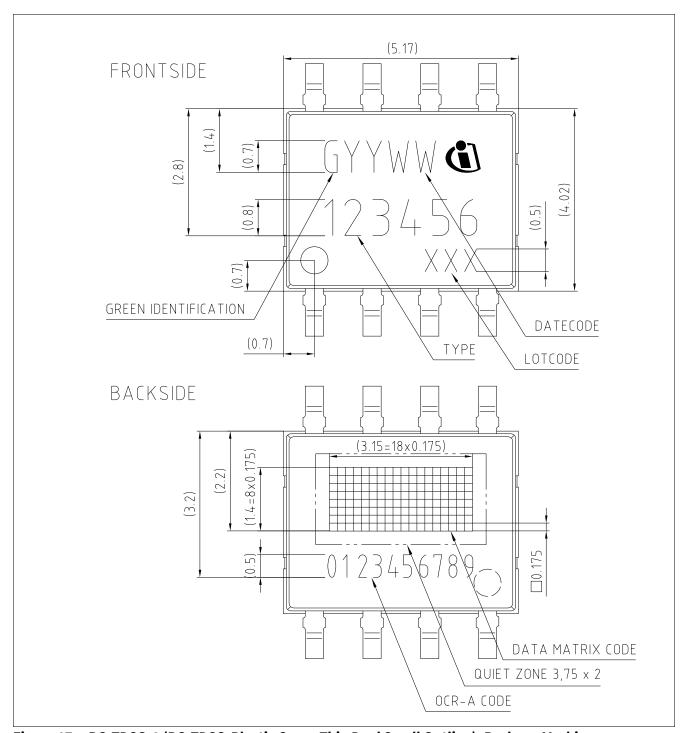



Figure 17 PG-TDSO-8 (PG-TDSO-Plastic Green Thin Dual Small Outline), Package Marking

### **Programmable Linear Hall Sensor**



### **Package Outlines**

### **Green Product (RoHS compliant)**

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

## Programmable Linear Hall Sensor



**Revision History** 

### **Revision History** 10

| Revision History |                                                                                                                  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| Page or Item     | Subjects (major changes since previous revision)                                                                 |  |  |  |
| Rev. 2.0, 2018-  | 05                                                                                                               |  |  |  |
| Updated Datas    | neet to new Infineon template                                                                                    |  |  |  |
| Page 2           | Removed AEC Q100 Revision version.                                                                               |  |  |  |
| Page 2           | Updated Ordering Code for the TLE4998C8 for the B2 parts.                                                        |  |  |  |
| Page 2           | Updated Ordering Code for the TLE4998C8D for the B2 parts.                                                       |  |  |  |
| Page 2           | Added footnote to <b>Ordering Code</b> .                                                                         |  |  |  |
| Page 9           | Added new parameter Output leakage current to Operating Range.                                                   |  |  |  |
| Page 10          | Updated Footnote Hyperlink <b>Depends on External R<sub>L</sub> and C<sub>L</sub>, See Application Circuit</b> . |  |  |  |

### Trademarks

Edition 2018-05 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference

### IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

### WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)