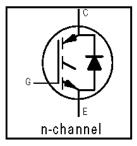
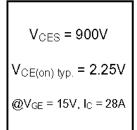
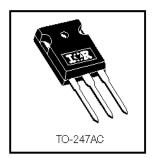
International

IRG4PF50WDPbF

IST Rectifier INSULATED GATE BIPOLAR TRANSISTOR WITH


ULTRAFAST SOFT RECOVERY DIODE


Features


- Optimized for use in Welding and Switch-Mode Power Supply applications
- Industry benchmark switching losses improve efficiency of all power supply topologies
- · 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
- IGBT co-packaged with HEXFRED™ ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- · Industry standard TO-247AC package
- Lead-Free

Benefits

- Lower switching losses allow more cost-effective operation and hence efficient replacement of larger-die MOSFETs up to 100kHz
- HEXFRED™ diodes optimized for performance with IGBTs.
 Minimized recovery characteristics reduce noise, EMI and switching losses

Absolute Maximum Katings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	900	V
Ic @ Tc = 25°C	Continuous Collector Current	51	
I _C @ T _C = 100°C	Continuous Collector Current	28	A
Icm	Pulsed Collector Current ①	204	
I _{LM}	Clamped Inductive Load Current ②	204	
I _F @ T _C = 100°C	Diode Continuous Forward Current	16	
IFM	Diode Maximum Forward Current	204	
V_{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	200	w
P _D @ T _C = 100°C	Maximum Power Dissipation	78	7,0
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Reuc	Junction-to-Case - IGBT	_		0.64	
R _{euc}	Junction-to-Case - Diode	_		0.83	°C/W
R _{ecs}	Case-to-Sink, flat, greased surface		0.24		1
Reja	Junction-to-Ambient, typical socket mount			40	
Wt	Weight		6 (0.21)		g (oz)

International

Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage®	900			V	$V_{GE} = 0V$, $I_{C} = 250\mu A$
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage	_	0.295		V/°C	$V_{GE} = 0V$, $I_{C} = 3.5 mA$
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.25	2.7		$I_C = 28A$ $V_{GE} = 15V$
		_	2.74	_	V	I _C = 60A See Fig. 2, 5
		_	2.12	_		I _C = 28A, T _J = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$
Δ∨αε(τη/ΔΤυ	Temperature Coeff. of Threshold Voltage	ı	-13		mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
gfe	Forward Transconductance ⊕	26	39		S	$V_{CE} = 50V$, $I_{C} = 28A$
Ices	Zero Gate Voltage Collector Current		_	500	μΑ	V _{GE} = 0V, V _{CE} = 900V
			_	2.0		$V_{GE} = 0V, V_{CE} = 10V, T_{J} = 25$ °C
			_	6.5	mΑ	$V_{GE} = 0V, V_{CE} = 900V, T_{J} = 150$ °C
V _{FM}	Diode Forward Voltage Drop		2.5	3.5	V	I _C = 16A See Fig. 13
		_	2.1	3.0		I _C = 16A, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	-	±100	nΑ	$V_{GE} = \pm 20V$

Switching Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Qg	Total Gate Charge (turn-on)		160	240		I _C = 28A		
Qge	Gate - Emitter Charge (turn-on)	-	19	29	nC	V _{CC} = 400V See Fig. 8		
Qgc	Gate - Collector Charge (turn-on)	_	53	80]	V _{GE} = 15V		
t _{d(on)}	Turn-On Delay Time		71			T _J = 25°C		
tr	Rise Time	_	50	_	ns	I _C = 28A, V _{CC} = 720V		
ta(off)	Turn-Off Delay Time		150	220		$V_{GE} = 15V, R_{G} = 5.0\Omega$		
t _f	Fall Time	_	110	170		Energy losses include "tail" and		
Eon	Turn-On Switching Loss		2.63	_		diode reverse recovery.		
E _{off}	Turn-Off Switching Loss	_	1.34	_	mJ	See Fig. 9, 10, 18		
Ets	Total Switching Loss	-	3.97	5.3				
t _{d(on)}	Turn-On Delay Time	_	69	_		T _J = 150°C, See Fig. 11, 18		
tr	Rise Time	_	52	_	ns	I _C = 28A, V _{CC} = 720V		
t _{a(off)}	Turn-Off Delay Time		270	_		$V_{GE} = 15V, R_{G} = 5.0\Omega$		
tr	Fall Time	-	190	_		Energy losses include "tail" and		
Ets	Total Switching Loss	_	6.0	_	mJ	diode reverse recovery.		
LE	Internal Emitter Inductance	_	13		nΗ	Measured 5mm from package		
Cies	Input Capacitance	_	3300	_		$V_{GE} = 0V$		
Coes	Output Capacitance	_	200	_	рF	V _{CC} = 30V See Fig. 7		
Cres	Reverse Transfer Capacitance		45	_		f = 1.0MHz		
trr	Diode Reverse Recovery Time		90	135	ns	T _J = 25°C See Fig.		
			164	245		T _J = 125°C 14 I _F = 16A		
Irr	Diode Peak Reverse Recovery Current	_	5.8	10	Α	T _J = 25°C See Fig.		
		_	8.3	15		$T_{\rm J} = 125^{\circ}{\rm C}$ 15 $V_{\rm R} = 200V$		
Qrr	Diode Reverse Recovery Charge		260	675	nC	T _J = 25°C See Fig.		
			680	1838]	T _J = 125°C 16 di/dt = 200A/µs		
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		120		A/µs	T _J = 25°C See Fig.		
	During t _ե		76	_		T _J = 125°C 17		

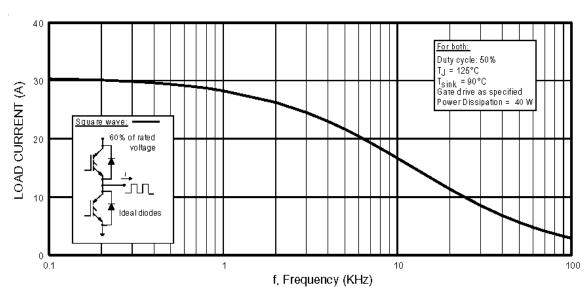


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

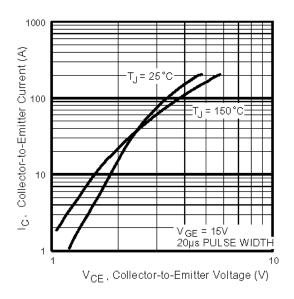


Fig. 2 - Typical Output Characteristics www.irf.com

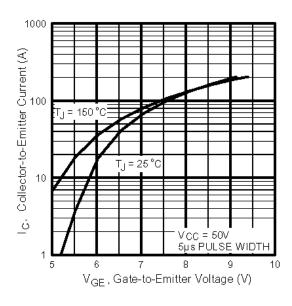
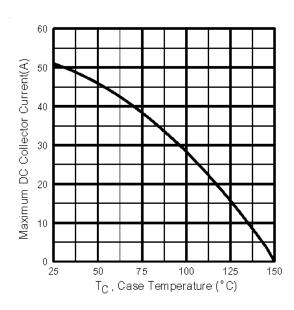



Fig. 3 - Typical Transfer Characteristics

3

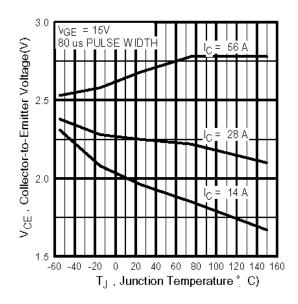


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature

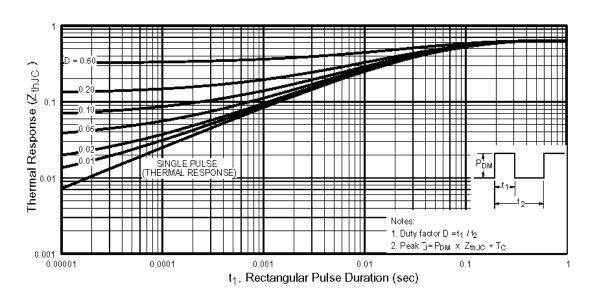


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

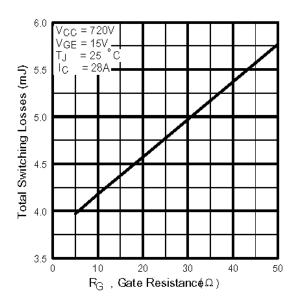
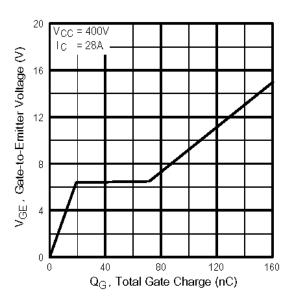
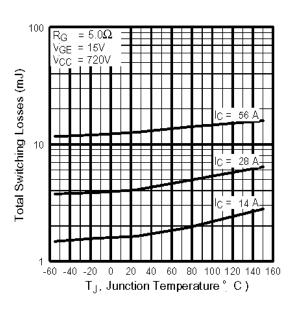
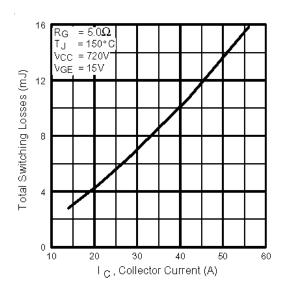
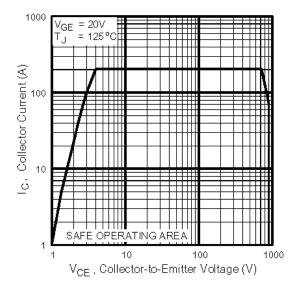




Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com

IRG4PF50WDPbF

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage




Fig. 10 - Typical Switching Losses vs. Junction Temperature

5

International

TOR Rectifier

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

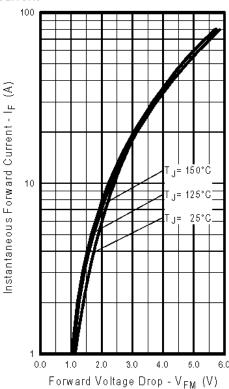
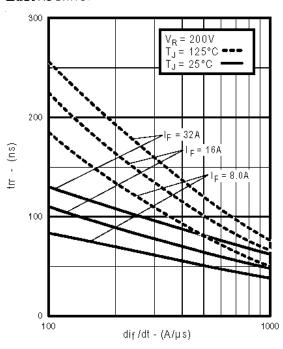
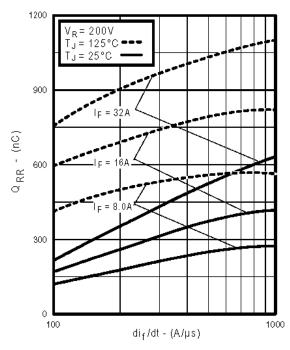



Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current

International TOR Rectifier


IRG4PF50WDPbF

40 V_R = 200V T_J = 125°C 30 I_F = 32A I_F = 8.0A I_F = 8.0A 100 di_f/dt - (A/μs)

 $\textbf{Fig. 14} \text{ - Typical Reverse Recovery vs. } di_{f}\!/dt$

Fig. 15 - Typical Recovery Current vs. di_f/dt

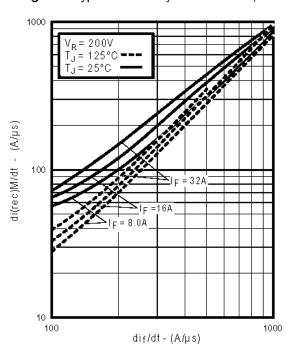


Fig. 16 - Typical Stored Charge vs. di_f/dt www.irf.com

Fig. 17 - Typical di_{(rec)M}/dt vs. di_f/dt

7

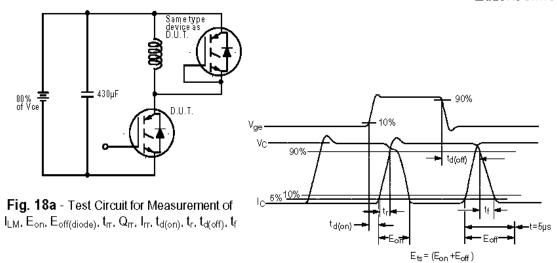
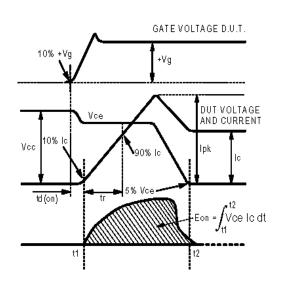



Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}}, t_{\text{d(off)}}, t_{\text{f}}$

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{ Defining E_{on}, $t_{d(on)}$, t_{r}}$

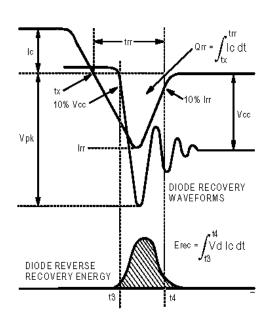


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E $_{\text{rec}},\,t_{\pi},\,Q_{\pi},\,l_{\pi}$

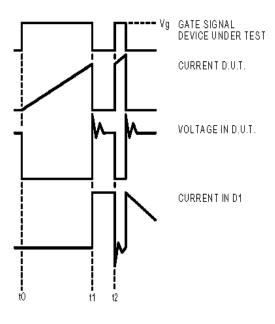


Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

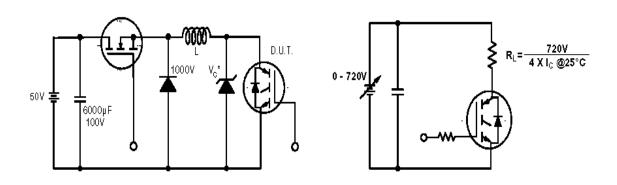
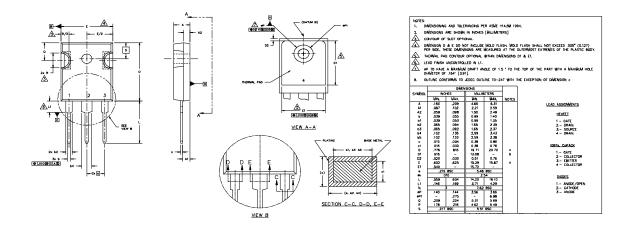


Figure 19. Clamped Inductive Load Test Circuit


Figure 20. Pulsed Collector Current Test Circuit

International

TOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information


EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)