

8-Bit

XC858CA

8-Bit Single-Chip Microcontroller

Data Sheet V1.0 2010-03

Microcontrollers

Edition 2010-03

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8-Bit

XC858CA

8-Bit Single-Chip Microcontroller

Data Sheet V1.0 2010-03

Microcontrollers

XC858 D	KC858 Data Sneet							
Revision	n History:							
Page	Subjects (major changes since last revision)							
	·							

Trademarks

TriCore™ is a trademark of Infineon Technologies AG.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table of Contents

Table of Contents

1	Summary of Features	. 1
2	General Device Information	. 4
2.1	Block Diagram	
2.2	Logic Symbol	
2.3	Pin Configuration	
2.4	Pin Definitions and Functions	. 7
3	Functional Description	16
3.1	Processor Architecture	16
3.2	Memory Organization	17
3.2.1	Memory Protection Strategy	20
3.2.1.1	Flash Memory Protection	20
3.2.2	Special Function Register	22
3.2.2.1	Address Extension by Mapping	22
3.2.2.2	Address Extension by Paging	24
3.2.3	Bit Protection Scheme	
3.2.3.1	Password Register	29
3.2.4	XC858 Register Overview	30
3.2.4.1	CPU Registers	30
3.2.4.2	System Control Registers	31
3.2.4.3	WDT Registers	34
3.2.4.4	Port Registers	34
3.2.4.5	ADC Registers	37
3.2.4.6	Timer 2 Compare/Capture Unit Registers	41
3.2.4.7	Timer 21 Registers	43
3.2.4.8	UART1 Registers	43
3.2.4.9	SSC Registers	44
3.2.4.10	MultiCAN Registers	45
3.2.4.11	OCDS Registers	45
3.2.4.12	Flash Registers	47
3.3	Flash Memory	48
3.3.1	Flash Bank Pagination	50
3.4	Interrupt System	51
3.4.1	Interrupt Source	
3.4.2	Interrupt Source and Vector	57
3.4.3	Interrupt Priority	59
3.5	Parallel Ports	
3.6	Power Supply System with Embedded Voltage Regulator	62
3.7		63
3.7.1	Module Reset Behavior	63
3.7.2	Booting Scheme	64

Table of Contents

4.2.3

4.2.4

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

5 5.1

4.3

4.2.3.1

3.8	Clock Generation Unit
3.8.1 3.8.2	Recommended External Oscillator Circuits 67 Clock Management
3.9	Power Saving Modes
3.10	Watchdog Timer 72
3.11	UART and UART1
3.11.1	Baud-Rate Generator 75
3.11.2	Baud Rate Generation using Timer 1
3.12	Normal Divider Mode (8-bit Auto-reload Timer)
3.13	High-Speed Synchronous Serial Interface
3.14	Timer 0 and Timer 1
3.15	Timer 2 and Timer 21 82
3.16	Timer 2 Capture/Compare Unit
3.17	Controller Area Network (MultiCAN) 84
3.18	Analog-to-Digital Converter
3.18.1	ADC Clocking Scheme 86
3.18.2	ADC Conversion Sequence
3.19	On-Chip Debug Support
3.19.1	JTAG ID Register
3.20	Chip Identification Number91
4	Electrical Parameters
4.1	General Parameters 92
4.1.1	Parameter Interpretation 92
4.1.2	Absolute Maximum Rating
4.1.3	Operating Conditions
4.2	DC Parameters 95
4.2.1	Input/Output Characteristics95
4.2.2	Supply Threshold Characteristics

ADC Characteristics

External Clock Drive XTAL1 110

AC Parameters 104

	Table of Contents
5.2	Package Outline
5.3	Quality Declaration 110

8-Bit Single-Chip Microcontroller

XC858CA

1 Summary of Features

The XC858 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 8 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 3 Kbytes of XRAM
 - 64/52/36 Kbytes of Flash;
 (includes memory protection strategy)
- I/O port supply at 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

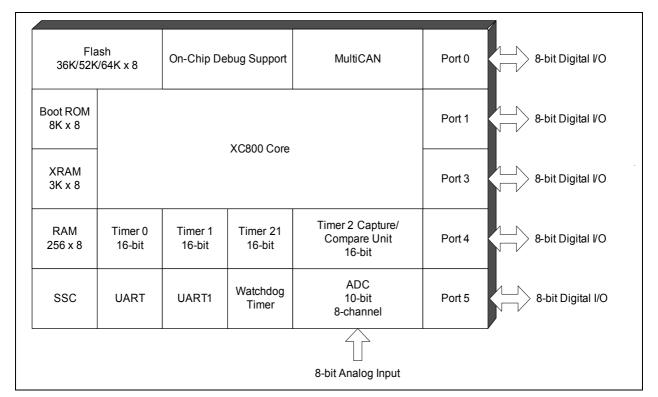


Figure 1 XC858 Functional Units

Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - Loss-of-Clock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Five ports
 - Up to 40 pins as digital I/O
 - 8 dedicated analog inputs used as A/D converter input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- MultiCAN with 2 nodes, 32 message objects
- Timer 2 Capture/compare unit for PWM signal generation (T2CCU)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 8-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- PG-LQFP-64 pin package
- Temperature range T_A:
 - SAF (-40 to 85 °C)

Summary of Features

XC858 Variant Devices

The XC858 product family features devices with different program memory sizes.

The list of XC858 devices and their difference are summarized in **Table 1**. The type of package available is the LQFP-64.

Table 1 Device Summary

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAF-XC858CA-9FFI 5V	Flash	36	5.0	-40 to 85	Industrial
SAF-XC858CA-13FFI 5V	Flash	52	5.0	-40 to 85	Industrial
SAF-XC858CA-16FFI 5V	Flash	64	5.0	-40 to 85	Industrial

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC858 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC858, please refer to your responsible sales representative or your local distributor.

Data Sheet 3 V1.0, 2010-03

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC858.

2.1 Block Diagram

The block diagram of the XC858 is shown in Figure 2.

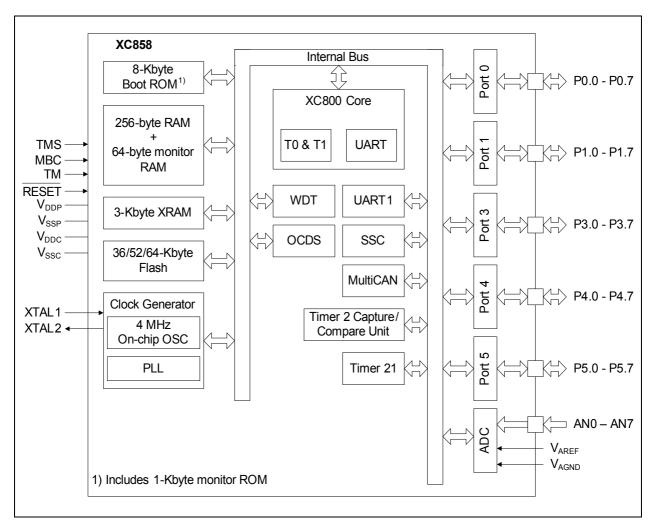


Figure 2 XC858 Block Diagram

2.2 Logic Symbol

The logic symbol of the XC858 is shown in Figure 3.

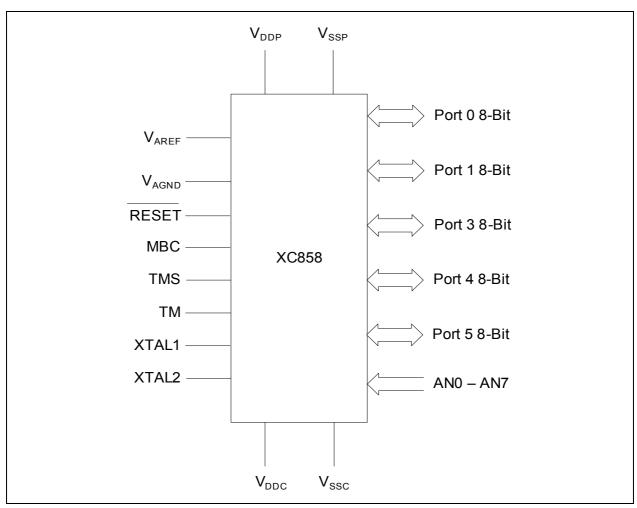


Figure 3 XC858 Logic Symbol

2.3 Pin Configuration

The pin configuration of the XC858 in Figure 4.

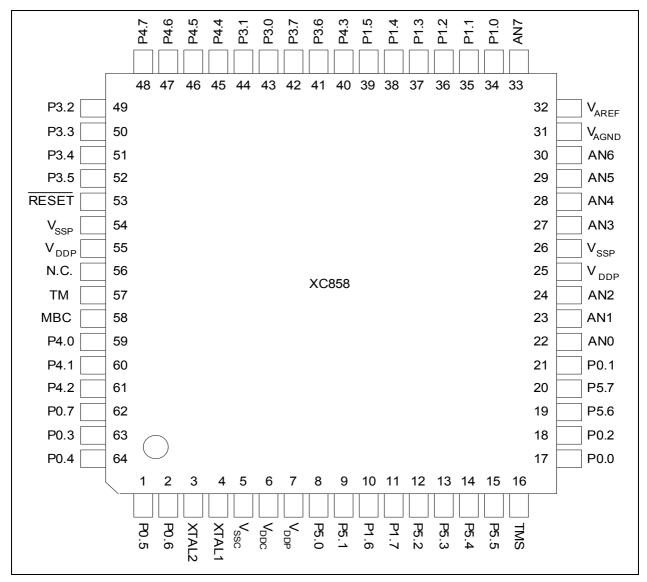


Figure 4 XC858 Pin Configuration, PG-LQFP-64 Package (top view)

2.4 Pin Definitions and Functions

The functions and default states of the XC858 external pins are provided in Table 2.

 Table 2
 Pin Definitions and Functions

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P0		I/O		Port 0 Port 0 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for the JTAG, UART, UART1, T2CCU, Timer 21, MultiCAN, SSC and External Interface.	
P0.0	17		Hi-Z	TCK_0 CLKOUT_0 RXDO_1	JTAG Clock Input Clock Output UART Transmit Data Output
P0.1	21		Hi-Z	TDI_0 RXD_1 RXDC1_0 EXF2_1	JTAG Serial Data Input UART Receive Data Input MultiCAN Node 1 Receiver Input Timer 2 External Flag Output
P0.2	18		PU	TDO_0 TXD_1 TXDC1_0	JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output
P0.3	63		Hi-Z	SCK_1 RXDO1_0 A17	SSC Clock Input/Output UART1 Transmit Data Output Address Line 17 Output
P0.4	64		Hi-Z	MTSR_1 TXD1_0 A18	SSC Master Transmit Output/ Slave Receive Input UART1 Transmit Data Output/Clock Output Address Line 18 Output
P0.5	1		Hi-Z	MRST_1 EXINT0_0 T2EX1_1 RXD1_0 A19	SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input Address Line 19 Output

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P0.6	2		PU	T2CC4_1 WR	Compare Output Channel 4 External Data Write Control Output
P0.7	62		PU	CLKOUT_1 T2CC5_1 RD	Clock Output Compare Output Channel 5 External Data Read Control Output

Data Sheet 8 V1.0, 2010-03

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P1		I/O		Port 1 Port 1 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for the JTAG, UART, Timer 0, Timer 1, T2CCU, Timer 21, MultiCAN, SSC and External Interface.	
P1.0	34		PU	RXD_0 T2EX_0 RXDC0_0 A8	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input Address Line 8 Output
P1.1	35		PU	EXINT3_0 T0_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output Address Line 9 Output
P1.2	36		PU	SCK_0 A10	SSC Clock Input/Output Address Line 10 Output
P1.3	37		PU	MTSR_0 SCK_2 TXDC1_3 A11	SSC Master Transmit Output/Slave Receive Input SSC Clock Input/Output MultiCAN Node 1 Transmitter Output Address Line 11 Output
P1.4	38		PU	MRST_0 EXINTO_1 RXDC1_3 MTSR_2 A12	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input SSC Master Transmit Output/Slave Receive Input Address Line 12 Output

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P1.5	39		PU	EXINT5_0 T1_1 MRST_2 EXF2_0 RXDO_0	External Interrupt Input 5 Timer 1 Input SSC Master Receive Input/ Slave Transmit Output Timer 2 External Flag Output UART Transmit Data Output
P1.6	10		PU	EXINT6_0 RXDC0_2 T21_1	External Interrupt Input 6 MultiCAN Node 0 Receiver Input Timer 21 Input
P1.7	11		PU	T2_1 TXDC0_2	Timer 2 Input MultiCAN Node 0 Transmitter Output
					.6 can be used as a software chip for the SSC.

Data Sheet 10 V1.0, 2010-03

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P3		I/O		Port 3 Port 3 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART1, T2CCU, Timer 21, MultiCAN and External Interface.	
P3.0	43		Hi-Z	RXDO1_1 T2CC0_1/ EXINT3_2	UART1 Transmit Data Output External Interrupt Input 3/T2CCU Capture/Compare Channel 0
P3.1	44		Hi-Z	TXD1_1	UART1 Transmit Data Output/Clock Output
P3.2	49		Hi-Z	RXDC1_1 RXD1_1 T2CC1_1/ EXINT4_2	MultiCAN Node 1 Receiver Input UART1 Receive Data Input External Interrupt Input 4/T2CCU Capture/Compare Channel 1
P3.3	50		Hi-Z	TXDC1_1 T2CC2_1/ EXINT5_2 A13	MultiCAN Node 1 Transmitter Output External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 13 Output
P3.4	51		Hi-Z	RXDC0_1 T2EX1_0 T2CC3_1/ EXINT6_3 A14	MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Address Line 14 Output
P3.5	52		Hi-Z	EXF21_0 TXDC0_1 A15	Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output Address Line 15 Output
P3.6	41		PU	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
P3.7	42		Hi-Z	EXINT4_0 A16	External Interrupt Input 4 Address Line 16 Output

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P4		I/O		Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for Timer 0, Timer 1, T2CCU, Timer 21, MultiCAN and External Interface.	
P4.0	59		Hi-Z	RXDC0_3 T2CC0_0/ EXINT3_1 D0	MultiCAN Node 0 Receiver Input External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Data Line 0 Input/Output
P4.1	60		Hi-Z	TXDC0_3 T2CC1_0/ EXINT4_1 D1	MultiCAN Node 0 Transmitter Output External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Data Line 1 Input/Output
P4.2	61		PU	EXINT6_1 T21_0 D2	External Interrupt Input 6 Timer 21 Input Data Line 2 Input/Output
P4.3	40		Hi-Z	T2EX_1 EXF21_1 D3	Timer 2 External Trigger Input Timer 21 External Flag Output Data Line 3 Input/Output
P4.4	45		Hi-Z	T0_0 T2CC2_0/ EXINT5_1 D4	Timer 0 Input External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Data Line 4 Input/Output
P4.5	46		Hi-Z	T1_0 T2CC3_0/ EXINT6_2 D5	Timer 1 Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Data Line 5 Input/Output
P4.6	47		Hi-Z	T2_0 T2CC4_0 D6	Timer 2 Input Compare Output Channel 4 Data Line 6 Input/Output
P4.7	48		Hi-Z	T2CC5_0 D7	Compare Output Channel 5 Data Line 7 Input/Output

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P5		I/O		Port 5 Port 5 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART, UART1, T2CCU, JTAG and External Interface.	
P5.0	8		PU	EXINT1_1 A0	External Interrupt Input 1 Address Line 0 Output
P5.1	9		PU	EXINT2_1 A1	External Interrupt Input 2 Address Line 1 Output
P5.2	12		PU	RXD_2 T2CC2_2/ EXINT5_3 A2	UART Receive Data Input External Interrupt Input 5/T2CCU Capture/Compare Channel 2 Address Line 2 Output
P5.3	13		PU	EXINT1_0 TXD_2 T2CC5_2 A3	External Interrupt Input 1 UART Transmit Data Output/Clock Output Compare Output Channel 5 Address Line 3 Output
P5.4	14		PU	EXINT2_0 RXDO_2 T2CC4_2 A4	External Interrupt Input 2 UART Transmit Data Output Compare Output Channel 4 Address Line 4 Output
P5.5	15		PU	TDO_1 TXD1_2 T2CC0_2/ EXINT3_3 A5	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output External Interrupt Input 3/T2CCU Capture/Compare Channel 0 Address Line 5 Output
P5.6	19		PU	TCK_1 RXDO1_2 T2CC1_2/ EXINT4_3 A6	JTAG Clock Input UART1 Transmit Data Output External Interrupt Input 4/T2CCU Capture/Compare Channel 1 Address Line 6 Output

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function	
P5.7	20		PU	TDI_1 RXD1_2 T2CC3_2/ EXINT6_4 A7	JTAG Serial Data Input UART1 Receive Data Input External Interrupt Input 6/T2CCU Capture/Compare Channel 3 Address Line 7 Output

Data Sheet 14 V1.0, 2010-03

 Table 2
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (LQFP-64)	Туре	Reset State	Function
V_{DDP}	7, 25, 55	_	_	I/O Port Supply (5.0 V) Also used by EVR and analog modules. All pins must be connected.
V_{SSP}	26, 54	_	_	I/O Ground All pins must be connected.
$\overline{V_{DDC}}$	6	_	_	Core Supply Monitor (2.5 V)
$\overline{V_{SSC}}$	5	_	_	Core Supply Ground
$\overline{V_{AREF}}$	32	_	_	ADC Reference Voltage
$\overline{V_{AGND}}$	31	_	_	ADC Reference Ground
AN0	22	I	Hi-Z	Analog Input 0
AN1	23	I	Hi-Z	Analog Input 1
AN2	24	I	Hi-Z	Analog Input 2
AN3	27	I	Hi-Z	Analog Input 3
AN4	28	I	Hi-Z	Analog Input 4
AN5	29	I	Hi-Z	Analog Input 5
AN6	30	I	Hi-Z	Analog Input 6
AN7	33	I	Hi-Z	Analog Input 7
XTAL1	4	I	Hi-Z	External Oscillator Input (Feedback resistor required, normally NC)
XTAL2	3	0	Hi-Z	External Oscillator Output (Feedback resistor required, normally NC)
TMS	16	I	PD	JTAG Test Mode Select
RESET	53	I	PU	Reset Input
МВС	58	I	PU	Monitor & BootStrap Loader Control
ТМ	57	_	_	Test Mode (External pull down device required)
NC	56	_	_	No Connection

3 Functional Description

Chapter 3 provides an overview of the XC858 functional description.

3.1 Processor Architecture

The XC858 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC858 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC858 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 5 shows the CPU functional blocks.

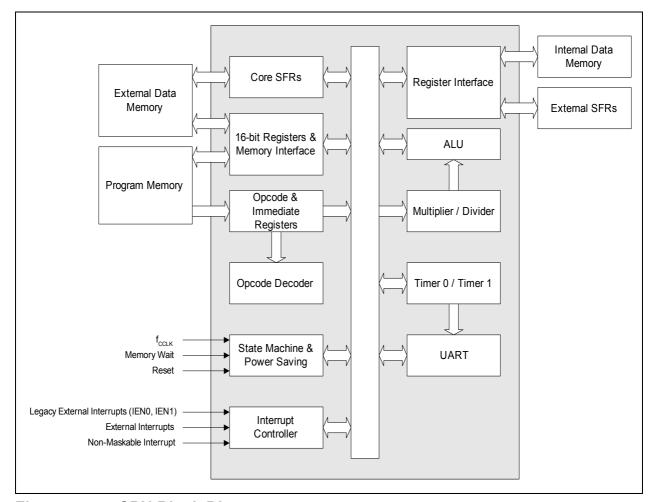


Figure 5 CPU Block Diagram

3.2 Memory Organization

The XC858 CPU operates in the following address spaces:

- 8 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 3 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- A 128-byte Special Function Register area
- 64/52/36 Kbytes of Flash program memory (Flash devices)

Figure 6, Figure 7 and Figure 8 illustrates the memory address spaces of the XC858 with 64Kbytes, 52Kbytes and 36Kbytes embedded Flash respectively.

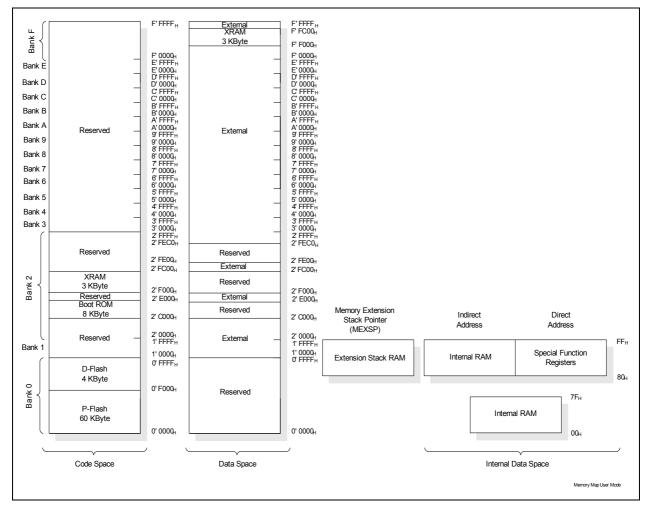


Figure 6 Memory Map of XC858 with 64K Flash Memory in user mode

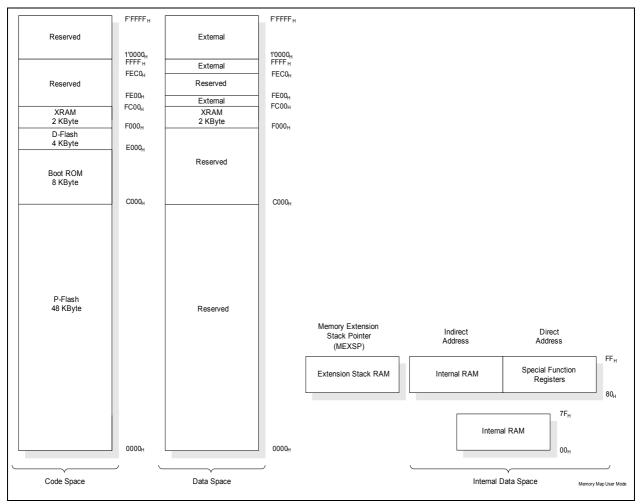


Figure 7 Memory Map of XC858 with 52K Flash Memory in user mode

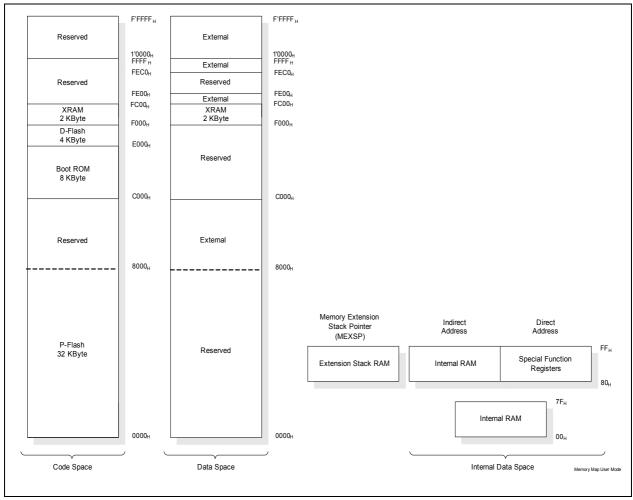


Figure 8 Memory Map of XC858 with 36K Flash Memory in user mode

3.2.1 Memory Protection Strategy

The XC858 memory protection strategy includes:

- Basic protection: The user is able to block any external access via the boot option to any memory
- Read-out protection: The user is able to protect the contents in the Flash
- Flash program and erase protection

These protection strategies are enabled by programming a valid password (16-bit non-one value) via Bootstrap Loader (BSL) mode 6.

3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 3**.

Table 3 Flash Protection Modes

Flash Protection	Without hardware protection	With hardware protection				
Hardware Protection Mode	-	0	1			
Activation Program a valid password via BSL mode 6						
Selection	Bit 13 of password = 0	Bit 13 of password = 1 MSB of password = 0	Bit 13 of password = 1 MSB of password = 1			
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D- Flash			
External access to P-Flash	Not possible	Not possible	Not possible			

Table 3 Flash Protection Modes (cont'd)

Flash Protection	Without hardware protection	With hardware protection			
P-Flash program and erase	Possible	Possible only on the condition that MSB - 1 of password is set to 1	Possible only on the condition that MSB - 1 of password is set to 1		
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash		
External access to D-Flash	Not possible	Not possible	Not possible		
D-Flash program	Possible	Possible	Possible, on the condition that MSB - 1 of password is set to 1		
D-Flash erase	Possible	Possible, on these conditions: • MISC_CON.DFLASH EN bit is set to 1 prior to each erase operation; or • the MSB - 1 of password is set to 1	Possible, on the condition that MSB - 1 of password is set to 1		

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. To disable the flash protection, a password match is required. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. With a valid password, the Flash hardware protection is then enabled or disabled upon next reset. For the other protection strategies, no reset is necessary.

Although no protection scheme can be considered infallible, the XC858 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Data Sheet 21 V1.0, 2010-03

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_H to FF_H . All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 9**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

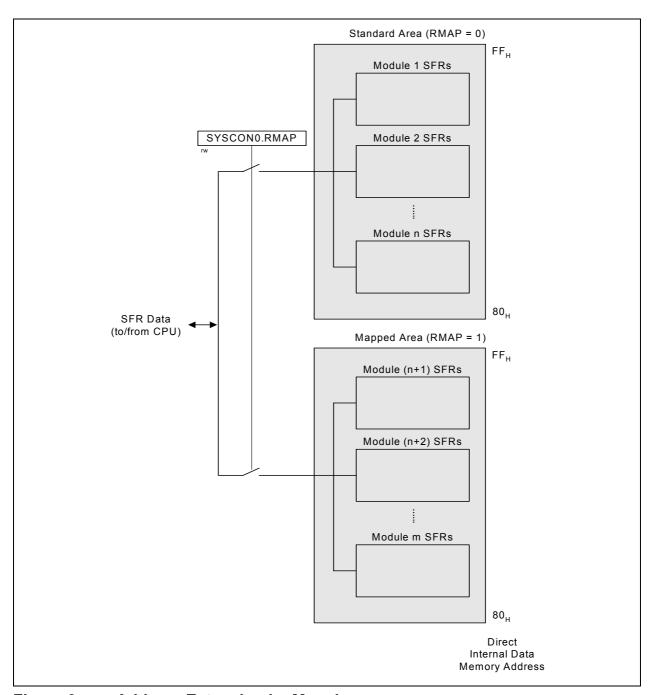


Figure 9 Address Extension by Mapping

Reset Value: 04 L

SYSCON0 System Control Register 0

7	6	5	4	3	2	1	0
	0	1	IMODE	0	1	0	RMAP
<u> </u>	r		rw	r	r	r	rw

Field	Bits	Type	Description
RMAP	0	rw	Interrupt Node XINTR0 Enable O The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions. The rest bits of SYSCON0 should not be modified.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC858 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in Figure 10.

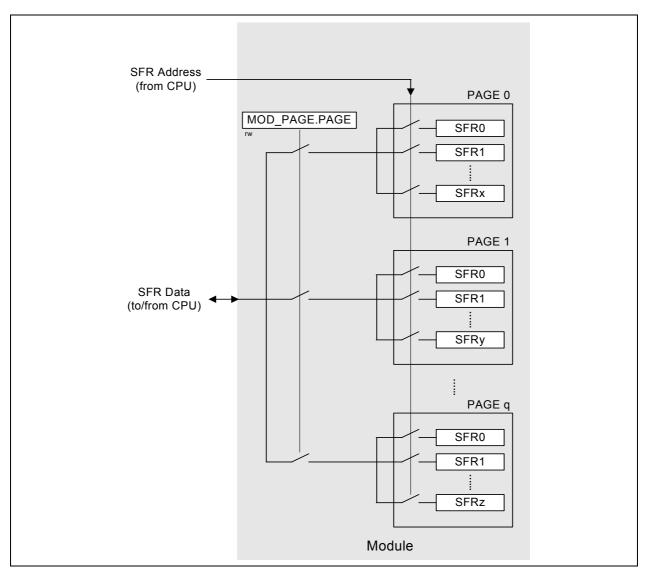


Figure 10 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

 Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

- Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE
 - (this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

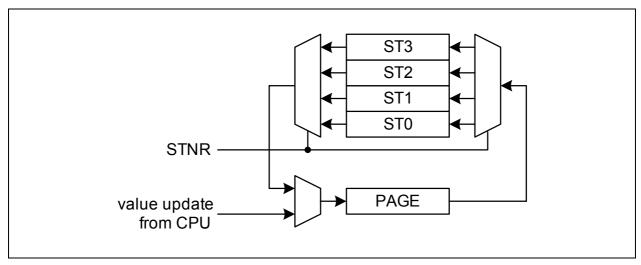


Figure 11 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC858 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- System Control Registers

Data Sheet 26 V1.0, 2010-03

Reset Value: 00_H

The page register has the following definition:

MOD_PAGE Page Register for module MOD

7	6	5	4	3	2	1	0
0	P	STNR		0		PAGE	
W		r		rw			

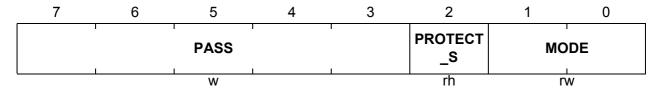
Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage Number This number indicates which storage bit field is the target of the operation defined by bit field OP. If OP = 10 _B , the contents of PAGE are saved in STx before being overwritten with the new value. If OP = 11 _B , the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored. OO ST0 is selected. OO ST0 is selected. OO ST2 is selected. TS73 is selected.

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing $D0_H$ to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.


Data Sheet 28 V1.0, 2010-03

3.2.3.1 Password Register

PASSWD

Password Register Reset Value: 07_H

Field	Bits	Type	Description
MODE	[1:0]	rw	Bit Protection Scheme Control Bits O Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11 _B and 00 _B , the bit field PASS must be written with 11000 _B ; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	Bit Protection Signal Status Bit This bit shows the status of the protection. O Software is able to write to all protected bits. Software is unable to write to any protected bits.
PASS	[7:3]	w	Password Bits The Bit Protection Scheme only recognizes three patterns. 11000 _B Enables writing of the bit field MODE. 10011 _B Opens access to writing of all protected bits. 10101 _B Closes access to writing of all protected bits

3.2.4 XC858 Register Overview

The SFRs of the XC858 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.12**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Table 4 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0 or 1	1	ı	I.	Į.	I.	I.	Į.	Į.	
81 _H	SP Reset: 07 _H	Bit Field				S	Р			
	Stack Pointer Register	Туре				r	w			
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE
	Power Control Register	Туре	rw		r		rw	rw	r	rw
88 _H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1	IM	GATE 0	T0S	TO	OM
		Туре	rw	rw	r	W	rw	rw	r	w
8A _H	TL0 Reset: 00 _H	Bit Field				V	٩L			
	Timer 0 Register Low	Туре				rv	vh			
8B _H	TL1 Reset: 00 _H	Bit Field				V	٩L			
	Timer 1 Register Low	Туре				rv	vh			
8C _H	THO Reset: 00 _H	Bit Field				V	٩L			
	Timer 0 Register High	Туре				rv	vh			
8D _H	TH1 Reset: 00 _H	Bit Field				V	٩L			
	Timer 1 Register High	Туре				rv	vh			
94 _H	MEX1 Reset: 00 _H	Bit Field		С	В			N	IB	
	Memory Extension Register 1	Туре			r			r	W	
95 _H	MEX2 Reset: 00 _H	Bit Field	MCM		MCB			I	В	
	Memory Extension Register 2	Туре	rw		rw			r	W	
96 _H	MEX3 Reset: 00 _H Memory Extension Register 3	Bit Field	MCB1 9	(0	MXB1 9	MXM		MXB	
		Туре	rw		r	rw	rw		rw	

Table 4 CPU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
97 _H	MEXSP Reset: 7F _H	Bit Field	0				MXSP			
	Memory Extension Stack Pointer Register	Туре	r				rwh			
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Type	rw	rw	rw	rw	rw	rwh	rwh	rwh
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL			
	Serial Data Buffer Register	Type				rv	vh			
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN		0		DPSE L0
		Type		r		rw		r		rw
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Type	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	()	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре	ı	r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	()	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Type	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Type	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	В6	B5	B4	В3	B2	B1	В0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

3.2.4.2 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Table 5 SCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 0 or 1									
8F _H	SYSCON0 Reset: 04 _H System Control Register 0	Bit Field		0		IMOD E	0	1	0	RMAP
		Туре		r		rw	r	r	r	rw

Table 5 SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0			l .	I.	l.	I.	I.	l .	
BFH	SCU_PAGE Reset: 00H	Bit Field	С	P	ST	NR	0		PAGE	
	Page Register	Туре	١	V	١	N	r		rwh	
RMAP =	= 0, PAGE 0									
B3 _H	MODPISEL Reset: 00 _H Peripheral Input Select Register	Bit Field	0	URRIS H	JTAGT DIS	JTAGT CKS	EXINT 2IS	EXINT 1IS	EXINT 0IS	URRIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
B4 _H	IRCON0 Reset: 00 _H Interrupt Request Register 0	Bit Field	0	EXINT 6	EXINT 5	EXINT 4	EXINT 3	EXINT 2	EXINT 1	EXINT 0
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B5 _H	IRCON1 Reset: 00 _H Interrupt Request Register 1	Bit Field	0	CANS RC2	CANS RC1	ADCS R1	ADCS R0	RIR	TIR	EIR
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
B6 _H	IRCON2 Reset: 00 _H Interrupt Request Register 2	Bit Field		0		CANS RC3		0		CANS RC0
		Туре		r		rwh		r		rwh
B7 _H	EXICON0 Reset: F0H	Bit Field	EXI	NT3	EXI	NT2	EXI	NT1	EXI	NT0
	External Interrupt Control Register 0	Туре	r	W	r	w	r	w	r	V
BA _H	EXICON1 Reset: 3F _H	Bit Field	()	EXI	NT6	EXI	NT5	EXI	NT4
	External Interrupt Control Register 1	Туре		ſ	r	w	r	w	r	W
BBH	NMICON Reset: 00 _H NMI Control Register	Bit Field	0	NMI ECC	NMI VDDP	0	NMI OCDS	NMI FLASH	NMI PLL	NMI WDT
		Туре	r	rw	rw	r	rw	rw	rw	rw
всН	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	0	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	r	rwh	rwh	rwh	rwh
^{BD} H	BCON Reset: 20 _H Baud Rate Control Register	Bit Field	BG	SEL	NDOV EN	BRDIS		BRPRE		R
		Туре	r	W	rw	rw		rw		rw
BE _H	BG Reset: 00 _H	Bit Field				BR_V	'ALUE			
	Baud Rate Timer/Reload Register	Туре				rv	vh			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре				r	w			
EBH	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре				r	h			
RMAP =	= 0, PAGE 1	•								

 Table 5
 SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B3 _H	ID Reset: 49 _H	Bit Field			PRODID				VERID	
	Identity Register	Туре			r				r	
B4 _H	PMCON0 Reset: 80 _H Power Mode Control Register 0	Bit Field	VDDP WARN	WDT RST	WKRS	WK SEL	SD	PD	W	/S
		Туре	rh	rwh	rwh	rw	rw	rwh	r	W
B5 _H	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	()	CAN_ DIS	0	T2CC U_DIS	0	SSC_ DIS	ADC_ DIS
		Туре		r	rw	r	rw	r	rw	rw
B6 _H	OSC_CON Reset: XX _H OSC Control Register	Bit Field	PLLRD RES	PLLBY P	PLLPD	0	XPD	OSC SS	EORD RES	EXTO SCR
		Туре	rwh	rwh	rw	r	rw	rwh	rwh	rh
B7 _H	PLL_CON Reset: 18 _H PLL Control Register	Bit Field			NE	OIV			PLLR	PLL_L OCK
		Туре			r	W			rh	rh
BA _H	CMCON Reset: 10 _H Clock Control Register	Bit Field	KE	ΟΙV	0	FCCF G		CLK	REL	
		Туре	r	w	r	rw		r	W	
ВВН	PASSWD Reset: 07 _H Password Register	Bit Field			PASS			PROT ECT_S	MC	DE
		Туре			W			rh	r	W
BE _H	COCON Reset: 00 _H	Bit Field	CO	UTS	TLEN	0		CO	REL	
	Clock Output Control Register	Туре	r	w	rw	r		r	W	
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field	ADCE TR0_ MUX	ADCE TR1_ MUX			0			DFLAS HEN
		Туре	rw	rw			r			rwh
EAH	PLL_CON1 Reset: 20 _H	Bit Field		NDIV				PDIV		
	PLL Control Register 1	Туре		rw				rw		
EBH	CR_MISC Reset: 00 _H or 01 _H Reset Status Register	Bit Field		0		T2CCF G		0		HDRS T
		Туре		r		rw		r		rwh
RMAP =	= 0, PAGE 3									
вз _Н	XADDRH Reset: F0 _H	Bit Field				ADI	ORH			
	On-chip XRAM Address Higher Order	Туре				r	W			
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	()	CANS RC5		0		CANS RC4	0
		Туре		r	rwh		r		rwh	r
B5 _H	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	()	CANS RC7		0		CANS RC6	0
		Туре		r	rwh		r		rwh	r
B6 _H	MODIEN Reset: 07 _H Peripheral Interrupt Enable	Bit Field		0		CM5E N	CM4E N	RIREN	TIREN	EIREN
	Register	Туре		r		rw	rw	rw	rw	rw

Table 5 SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field		EXINT6IS	3	UR1	RIS	T21EX IS	(0
	1	Туре		rw		r	W	rw		r
BA _H	MODPISEL2 Reset: 00 _H Peripheral Input Select Register	Bit Field		0		T2EXI S	T21IS	T2IS	T1IS	TOIS
	2	Туре		r		rw	rw	rw	rw	rw
ВВН	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field			()			UART 1_DIS	T21_D IS
		Туре			ı	r			rw	rw
BD _H	MODSUSP Reset: 01 _H Module Suspend Control	Bit Field)	CCTS USP	T21SU SP	T2SUS P	()	WDTS USP
	Register	Туре		r	rw	rw	rw	ı	r	rw
BE _H	MODPISEL3 Reset: 00 _H	Bit Field)	С	IS	S	IS	М	IS
	Peripheral Input Select Register 3	Туре		r	n	W	r	W	r	w
EA _H	MODPISEL4 Reset: 00H	Bit Field	()	EXIN	IT5IS	EXIN	IT4IS	EXIN	IT3IS
	Peripheral Input Select Register 4	Туре		r	n	W	r	W	r	w

3.2.4.3 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6 WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
ВВН	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field	()	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
	Register	Туре	ı	Г	rw	rh	r	rw	rwh	rw
вс _Н	WDTREL Reset: 00 _H	Bit Field				WDT	REL			
	Watchdog Timer Reload Register	Туре				r	w			
вD _Н	WDTWINB Reset: 00 _H	Bit Field				WDT	WINB			
	Watchdog Window-Boundary Count Register	Туре				r	w			
BE _H	WDTL Reset: 00 _H	Bit Field				W	DT			
	Watchdog Timer Register Low	Туре				r	h			
BFH	WDTH Reset: 00 _H	Bit Field				W	DT			
	Watchdog Timer Register High	Туре				r	h			

3.2.4.4 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 7 Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0	l.		1						
B2 _H	PORT_PAGE Reset: 00H	Bit Field	C)P	ST	NR	0		PAGE	
	Page Register	Туре	,	W	١	V	r		rwh	
RMAP =	= 0, PAGE 0				•			•		
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rwh	rwh						
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw						
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rwh	rwh						
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw						
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rwh	rwh						
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw						
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rwh	rwh						
В1 _Н	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw	rw						
C8H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rwh	rwh						
C9H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw	rw						
RMAP =	= 0, PAGE 1									
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw	rw						
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw	rw						
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw	rw						
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw	rw						
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw	rw						
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw	rw						

 Table 7
 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B0 _H	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
В1 _Н	P3_PUDEN Reset: 40H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2				•	•	•	•	•	•
80 _H	P0_ALTSEL0 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 0 Register	Туре	rw							
91 _H	P1_ALTSEL1 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Alternate Select 1 Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 0 Register	Туре	rw							
93 _H	P5_ALTSEL1 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Alternate Select 1 Register	Туре	rw							
во _Н	P3_ALTSEL0 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 0 Register	Туре	rw							
В1 _Н	P3_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Alternate Select 1 Register	Туре	rw							
C8H	P4_ALTSEL0 Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 0 Register	Туре	rw							
C9 _H	P4_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Alternate Select 1 Register	Туре	rw							
RMAP =	= 0, PAGE 3									
80 _H	P0_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Open Drain Control Register	Туре	rw							
86 _H	P0_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Drive Strength Control Register	Туре	rw							
90 _H	P1_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Open Drain Control Register	Туре	rw							

Table 7 Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
91 _H	P1_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Drive Strength Control Register	Туре	rw							
92 _H	P5_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Open Drain Control Register	Туре	rw							
93 _H	P5_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Drive Strength Control Register	Туре	rw							
во _Н	P3_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Open Drain Control Register	Туре	rw							
B1 _H	P3_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Drive Strength Control Register	Туре	rw							
C8H	P4_OD Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Open Drain Control Register	Туре	rw							
C9 _H	P4_DS Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Drive Strength Control Register	Туре	rw							

3.2.4.5 ADC Registers

The ADC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 8 ADC Register Overview

	•										
Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0	•	•		•	•	•	•	•		
D1 _H	ADC_PAGE Reset: 00H	Bit Field	С	P	ST	NR	0		PAGE		
	Page Register	Туре	١	V	\	N	r		rw		
RMAP =	= 0, PAGE 0										
CA _H	ADC_GLOBCTR Reset: 30H	Bit Field	ANON	DW	C.	ТС		()		
	Global Control Register	Туре	rw	rw	r	W			r		
СВН	ADC_GLOBSTR Reset: 00 _H Global Status Register	Bit Field	()		CHNR		0	SAMP LE	BUSY	
		Туре		г		rh		r	rh	rh	
cc _H	ADC_PRAR Reset: 00 _H Priority and Arbitration Register	Bit Field	ASEN 1	ASEN 0	0	ARBM	CSM1	PRIO1	CSM0	PRIO0	
		Туре	rw	rw	r	rw	rw	rw	rw	rw	
CDH	ADC_LCBR Reset: B7 _H	Bit Field		BOU	IND1			BOL	IND0		
	Limit Check Boundary Register	Туре		r	W			r	w		
CEH	ADC_INPCR0 Reset: 00H	Bit Field				S	-C				
	Input Class 0 Register	Туре		•		r	W				

Table 8 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE N0		ETRSEL1			ETRSELO)
	Register	Туре	rw	rw		rw			rw	
RMAP =	= 0, PAGE 1	•	I.	ı	Į.			I.		
CA _H	ADC_CHCTR0 Reset: 00H	Bit Field	0		LCC		(כ	RES	RSEL
	Channel Control Register 0	Туре	r		rw			r	r	W
СВН	ADC_CHCTR1 Reset: 00H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register 1	Туре	r		rw			r	r	W
сс _Н	ADC_CHCTR2 Reset: 00H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register 2	Туре	r		rw			r	r	W
CDH	ADC_CHCTR3 Reset: 00H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register 3	Туре	r		rw			r	r	W
CEH	ADC_CHCTR4 Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register 4	Туре	r		rw			r	r	W
CF _H	ADC_CHCTR5 Reset: 00H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register 5	Туре	r		rw			r	r	W
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0		LCC		()	RES	RSEL
	Channel Control Register 6	Туре	r		rw			r	r	W
D3 _H	ADC_CHCTR7 Reset: 00 _H Channel Control Register 7	Bit Field	0		LCC		()	RES	RSEL
	Charmer Control Register 7	Туре	r		rw			r	r	W
RMAP =	= 0, PAGE 2									
CA _H	ADC_RESR0L Reset: 00 _H Result Register 0 Low	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register o Low	Туре	r	h	r	rh	rh		rh	
св _Н	ADC_RESR0H Reset: 00 _H Result Register 0 High	Bit Field				RES	ULT			
	Result Register o High	Туре			1	r	h			
ссН	ADC_RESR1L Reset: 00 _H Result Register 1 Low	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	result register 1 Low	Туре	r	h	r	rh	rh		rh	
CDH	ADC_RESR1H Reset: 00 _H Result Register 1 High	Bit Field				RES	ULT			
	Tresuit register i riigii	Туре				r	h	1		
CEH	ADC_RESR2L Reset: 00 _H Result Register 2 Low	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 2 Low	Туре	r	h	r	rh	rh		rh	
CF _H	ADC_RESR2H Reset: 00 _H Result Register 2 High	Bit Field				RES	ULT			
	Tresult register 2 High	Туре				r	h			
D2 _H	ADC_RESR3L Reset: 00 _H Result Register 3 Low	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	_	Туре	r	h	r	rh	rh		rh	
D3 _H	ADC_RESR3H Reset: 00 _H Result Register 3 High	Bit Field				RES	ULT			
l	Treatile register of high	Type				r	h			

Table 8 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CA _H	ADC_RESRA0L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 0, View A Low	Туре		rh		rh	rh		rh	
СВН	ADC_RESRA0H Reset: 00H	Bit Field				RES	ULT			
	Result Register 0, View A High	Туре				r	h			
ССН	ADC_RESRA1L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 1, View A Low	Туре		rh		rh	rh		rh	
CDH	ADC_RESRA1H Reset: 00H	Bit Field				RES	ULT			
	Result Register 1, View A High	Туре				r	h			
CEH	ADC_RESRA2L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00H	Bit Field				RES	ULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	ADC_RESRA3L Reset: 00H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 3, View A Low	Туре		rh		rh	rh	CHI TH CHI CHI		
D3 _H	ADC_RESRA3H Reset: 00H	Bit Field				RES	ULT			
	Result Register 3, View A High	Туре				r	h			
RMAP =	0, PAGE 4	I.	I							
CA _H	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
СВН	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
cc _H	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CDH	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CEH	ADC_VFCR Reset: 00H	Bit Field		(0		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		W	w	w	w
RMAP =	= 0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3		CHINF 1	CHINF 0
		Туре	rh	rh	rh	rh	rh	rh	rh	rh
СВН	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3		CHINC 1	CHINC 0
		Туре	W	W	W	W	W	W	W	W
сс _Н	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	W	W	w	w	W	w	w	w

Table 8 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CDH	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
CEH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	()	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	()	EVINC 1	EVINC 0
	Register	Туре	W	W	W	W		ſ	W	W
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	()	EVINS 1	EVINS 0
		Туре	W	W	W	W		ſ	W	W
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	(0 EVINP 1 r rw		EVINP 0
	Register	Туре	rw	rw	rw	rw		ſ	rw	rw
RMAP =	0, PAGE 6									
CA _H	ADC_CRCR1 Reset: 00 _H Conversion Request Control	Bit Field	CH7	CH6	CH5	CH4		(
	Register 1	Туре	rwh	rwh	rwh	rwh		l	r	
СВН	ADC_CRPR1 Reset: 00H	Bit Field	CHP7	CHP6	CHP5	CHP4		()	
	Conversion Request Pending Register 1	Туре	rwh	rwh	rwh	rwh		-	r	
cc _H	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	W	rw	rw	rw	r	rw
CDH	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	W	W	W	W	r	rw	r	rw
CEH	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	()	FI	LL
		Туре	r	r	rh	rh	ı	r	r	h
CF _H	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	٦
	Queue 0 Register 0	Туре	rh	rh	rh	rh	r	rh		
D2 _H	ADC_QBUR0 Reset: 00H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	2
	Queue Backup Register 0	Туре	rh	rh	rh	rh	r	rh		
D2 _H	ADC_QINR0 Reset: 00H	Bit Field	EXTR	ENSI	RF	()	REQCHNR		
	Queue Input Register 0	Type	w	w	w		r		w	

3.2.4.6 Timer 2 Compare/Capture Unit Registers

The Timer 2 Compare/Capture Unit SFRs can be accessed in the standard memory area (RMAP = 0).

Table 9 T2CCU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0			I		I.	Į.	I.	Į.	•		
C7 _H	T2_PAGE Reset: 00H	Bit Field	0	P	ST	NR	0		PAGE			
	Page Register	Туре	V	V	٧	V	r		rwh			
RMAP =	= 0, PAGE 0	•					•					
C0H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2		
		Туре	rwh	rwh	ı	r	rw	rwh	rw	rw		
C1 _H	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN		
		Туре	rw	rw	rw	rw		rw		rw		
C2 _H	T2_RC2L Reset: 00 _H	Bit Field				R	C2					
	Timer 2 Reload/Capture Register Low	Туре				rv	vh					
СЗН	T2_RC2H Reset: 00H	Bit Field				R	C2					
	Timer 2 Reload/Capture Register High	Туре				rv	vh					
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2					
	Timer 2 Register Low	Туре				rv	vh					
C5 _H	T2_T2H Reset: 00 _H	Bit Field				TH	IL2					
	Timer 2 Register High	Туре				rv	vh					
C6 _H	T2_T2CON1 Reset: 03 _H Timer 2 Control Register 1	Bit Field			()			TF2EN	EXF2E N		
		Туре			l	r			rw	rw		
RMAP =	0, PAGE 1											
C0H	T2CCU_CCEN Reset: 00 _H T2CCU Capture/Compare	Bit Field	CC	:M3	CC	M2	CC	:M1	CC	:M0		
	Enable Register	Туре	n	W	r	W	r	W	r	W		
C1 _H	T2CCU_CCTBSELReset: 00 _H T2CCU Capture/Compare Time	Bit Field	CASC	CCTT OV	CCTB 5	CCTB 4	CCTB 3	CCTB 2	CCTB 1	CCTB 0		
	Base Select Register	Туре	rw	rwh	rw	rw	rw	rw	rw	rw		
C2 _H	T2CCU_CCTRELLReset: 00H	Bit Field				ССТ	REL					
	T2CCU Capture/Compare Timer Reload Register Low	Туре				r	w					
C3 _H	T2CCU_CCTRELHReset: 00H	Bit Field				ССТ	REL					
	T2CCU Capture/Compare Timer Reload Register High	Туре				r	w					
C4 _H	T2CCU_CCTL Reset: 00H	Bit Field				C	CT					
	T2CCU Capture/Compare Timer Register Low	Туре				rv	vh					

Table 9 T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T2CCU_CCTH Reset: 00H	Bit Field				C	СТ			
	T2CCU Capture/Compare Timer Register High	Туре				rv	vh			
C6 _H	T2CCU_CCTCON Reset: 00 _H T2CCU CaptureCcompare	Bit Field		ССТ	PRE		CCTO VF	CCTO VEN	TIMSY N	CCTS T
	Timer Control Register	Туре		r	w		rwh	rw	rw	rw
RMAP =	= 0, PAGE 2									
C0 _H	T2CCU_COSHDWReset: 00 _H T2CCU Capture/compare	Bit Field	ENSH DW	TXOV	COOU T5	COOU T4	COOU T3	COOU T2	COOU T1	COOU T0
	Enable Register	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
C1 _H	T2CCU_CC0L Reset: 00 _H T2CCU Capture/Compare	Bit Field				CC/	/ALL			
	Register 0 Low	Туре				rv	vh			
C2 _H	T2CCU_CC0H Reset: 00 _H T2CCU Capture/compare	Bit Field				CCV	/ALH			
	Register 0 High	Туре				rv	vh			
C3 _H	T2CCU_CC1L Reset: 00 _H T2CCU Capture/compare	Bit Field				CC/	/ALL			
	Register 1 Low	Туре				rv	vh			
C4 _H	T2CCU_CC1H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 1 High	Туре				rv	vh			
C5 _H	T2CCU_CC2L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 2 Low	Туре				rv	vh			
C6 _H	T2CCU_CC2H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 2 High	Туре				rv	vh			
RMAP =	= 0, PAGE 3									
C0H	T2CCU_COCON Reset: 00H	Bit Field	CCM5	CCM4	CM5F	CM4F	POLB	POLA	COM	MOD
	T2CCU Compare Control Register	Туре	rw	rw	rwh	rwh	rw	rw	r	w
C1 _H	T2CCU_CC3L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 3 Low	Туре				rv	vh			
C2 _H	T2CCU_CC3H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 3 High	Туре				rv	vh			
СЗН	T2CCU_CC4L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 4 Low	Туре				rv	vh			
C4 _H	T2CCU_CC4H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 4 High	Туре				rv	vh			
C5 _H	T2CCU_CC5L Reset: 00H	Bit Field				CC/	/ALL			
	T2CCU Capture/compare Register 5 Low	Туре				rv	vh			
C6 _H	T2CCU_CC5H Reset: 00H	Bit Field				CCV	/ALH			
	T2CCU Capture/compare Register 5 High	Туре				rv	vh			

Table 9 T2CCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	0, PAGE 4									
C2 _H	T2CCU_CCTDTCLReset: 00H	Bit Field				Dī	ГМ			
	T2CCU Capture/Compare Timer Dead-Time Control Register Low	Туре				r	N			
C3 _H	T2CCU_CCTDTCHReset: 00 _H T2CCU Capture/Compare	Bit Field	DTRE S	DTR2	DTR1	DTR0	DTLEV	DTE2	DTE1	DTE0
	Timer Dead-Time Control Register High	Туре	rwh	rh	rh	rh	rw	rw	rw	rw

3.2.4.7 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 10 T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
C0H	T21_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh		r	rw	rwh	rw	rw
C1 _H	T21_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T21_RC2L Reset: 00H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register Low	Туре				rv	vh			
C3 _H	T21_RC2H Reset: 00H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T21_T2H Reset: 00H	Bit Field				T⊦	IL2			
	Timer 2 Register High	Туре				rv	vh			
C6 _H	T21_T2CON1 Reset: 03 _H Timer 2 Control Register 1	Bit Field			()			TF2EN	EXF2E N
		Туре				r			rw	rw

3.2.4.8 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	· 1			l.	I.	l.	l.	ı		
C8H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field				V	ΑL			
	Serial Data Buffer Register	Туре				rv	vh			
CA _H	BCON Reset: 00 _H	Bit Field		()			BRPRE		R
	Baud Rate Control Register	Туре			r			rw		rw
СВН	BG Reset: 00 _H	Bit Field				BR_V	'ALUE			
	Baud Rate Timer/Reload Register	Туре				rv	vh			
ССН	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре			r			rwh	rw	rw
CDH	FDSTEP Reset: 00 _H	Bit Field				ST	EP			
	Fractional Divider Reload Register	Туре				r	w			
CEH	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре				r	h			
CF _H	SCON1 Reset: 07 _H Serial Channel Control Register	Bit Field			0			NDOV EN	TIEN	RIEN
	1	Туре			r			rw	rw	rw

3.2.4.9 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12 SSC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0					•						
A9 _H	SSC_PISEL Reset: 00H	Bit Field			0			CIS	SIS	MIS		
	Port Input Select Register	Туре			r			rw	rw	rw		
AA_H	SSC_CONL Reset: 00H	Bit Field	LB	РО	PH	НВ		В	BM rw			
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw		r	rw			
AA _H	SSC_CONL Reset: 00H	Bit Field		()			В	BC			
	Control Register Low Operating Mode	Туре			r			r	BC rh			
AB _H	SSC_CONH Reset: 00H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN		
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw		
AB _H	SSC_CONH Reset: 00H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE		
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh		

 Table 12
 SSC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
AC _H	SSC_TBL Reset: 00H	Bit Field				TB_V	ALUE			
	Transmitter Buffer Register Low	Туре	rw							
AD _H	SSC_RBL Reset: 00H	Bit Field				RB_V	ALUE			
	Receiver Buffer Register Low	Туре				r	h			
ΑΕ _Η	SSC_BRL Reset: 00H	Bit Field	rh BR_VALUE							
	Baud Rate Timer Reload Register Low	Туре				r	W			
AF _H	SSC_BRH Reset: 00H	Bit Field	BR_VALUE							
	Baud Rate Timer Reload Register High	Туре	rw							

3.2.4.10 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 13 CAN Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0	•			•		•			•
D8 _H	ADCON Reset: 00H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	r	w	rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
DA _H	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10
	CAN Address Register High	Туре			r		rwh	rwh	rwh	rwh
DB _H	DATA0 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 0	Туре				rv	vh			
DCH	DATA1 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 1	Туре				rv	vh			
DDH	DATA2 Reset: 00 _H	Bit Field				С	D			
	CAN Data Register 2	Туре				rv	vh			
DEH	DATA3 Reset: 00 _H	Bit Field				C	D			
	CAN Data Register 3	Туре				rv	vh			

3.2.4.11 OCDS Registers

The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 14 OCDS Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	- 1		I		I	I .		I	I		
E9 _H	MMCR2 Reset: 8U _H Monitor Mode Control 2	Bit Field	STMO DE	EXBC	DSUS P	MBCO N	ALTDI	MMEP	MMOD E	JENA	
	Register	Туре	rw	rw	rw	rwh	rw	rwh	rh	rh	
EA _H	MEXTCR Reset: 0UH	Bit Field		()			BANI	KBPx		
	Memory Extension Control Register	Туре			r			r	W		
EBH	MMWR1 Reset: 00 _H	Bit Field				MM\	WR1				
	Monitor Work Register 1	Туре				n	W				
ECH	MMWR2 Reset: 00 _H	Bit Field				MM\	NR2				
	Monitor Work Register 2	Туре				n	W				
F1 _H	MMCR Reset: 00 _H Monitor Mode Control Register	Bit Field	MEXIT _P	MEXIT	0	MSTE P	MRAM S_P	MRAM S	RRF		
		Туре	w	rwh	r	rw	w	rwh	rh	rh	
F2 _H	MMSR Reset: 00 _H Monitor Mode Status Register	Bit Field	MBCA M	MBCIN	EXBF	SWBF	HWB3 F	HWB2 F	HWB1 F	HWB0 F	
		Туре	rw	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
F3 _H	MMBPCR Reset: 00 _H Breakpoints Control Register	Bit Field	SWBC	HW	B3C	HW	B2C	HWB1 C	HW	B0C	
		Туре	rw	r	W	n	W	rw	n	W	
F4 _H	MMICR Reset: 00 _H Monitor Mode Interrupt Control	Bit Field	DVEC T	DRET R	COMR ST	MSTS EL	MMUI E_P	MMUI E	RRIE_ P	RRIE	
	Register	Туре	rwh	rwh	rwh	rh	W	rw	W	rw	
F5 _H	MMDR Reset: 00 _H	Bit Field				MM	IRR				
	Monitor Mode Data Transfer Register Receive	Туре				ri	h				
F6 _H	HWBPSR Reset: 00 _H Hardware Breakpoints Select	Bit Field		0		BPSEL _P	BPSEL				
	Register	Туре		r		W		rw			
F7 _H	HWBPDR Reset: 00 _H	Bit Field				HWE	ВРхх				
	Hardware Breakpoints Data Register	Туре				n	W				

3.2.4.12 Flash Registers

The Flash SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 Flash Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1	•	l .					l.	l .	ı
D1 _H	FCON Reset: 10 _H P-Flash Control Register	Bit Field	0	FBSY	YE	1	NVST R	MAS1	ERAS E	PROG
		Туре	r	rh	rwh	r	rw	rw	rw	rw
D2 _H	EECON Reset: 10 _H D-Flash Control Register	Bit Field	0	EEBS Y	YE	1	NVST R	MAS1	ERAS E	PROG
		Туре	r	rh	rwh	r	rw	rw	rw	rw
D3 _H	FCS Reset: 80 _H Flash Control and Status	Bit Field	1	SBEIE	FTEN	0	EEDE RR	EESE RR	FDER R	FSER R
	Register	Туре	r	rw	rwh	r	rwh	rwh	rwh	rwh
D4 _H	FEAL Reset: 00H	Bit Field				ECCE	ADDR			
	Flash Error Address Register, Low Byte	Туре				r	h			
D5 _H	FEAH Reset: 00 _H	Bit Field				ECCE	ADDR			
	Flash Error Address Register, High Byte	Туре				r	h			
D6 _H	FTVAL Reset: 78 _H	Bit Field	MODE				OFVAL			
	Flash Timer Value Register	Туре	rw				rw			
DDH	FCS1 Reset: 00 _H Flash Control and Status	Bit Field				0				EEAB ORT
	Register 1	Туре				r				rwh

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The pagination of the Flash memory allows each page to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width
- of 1-byte for D-Flash and 2-bytes for P-Flash
- 1-page minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all ones)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $1 \times t_{CCLK} = 38 \text{ ns}^{1)}$
- Program time for 1 wordline: 1.6 ms²⁾
- Page erase time: 20 msMass erase time: 200 ms

¹⁾ Values shown here are typical values. f_{sys} = 144 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

²⁾ Values shown here are typical values. $f_{\rm sys}$ = 144 MHz ± 7.5% ($f_{\rm CCLK}$ = 24 MHz ± 7.5%) is the typical frequency range for Flash programming and erasing. $f_{\rm sysmin}$ is used for obtaining the worst case timing.

Table 16 shows the Flash data retention and endurance targets for Industrial profile.

Table 16 Flash Data Retention and Endurance for Industrial Profile (Operating Conditions apply)

Retention	Endurance ¹⁾²⁾	Size	Remarks
Program Flash	·	·	
15 years	1000 cycles	up to 60 Kbytes	
Data Flash	·	·	
15 years	1000 cycles	4 Kbytes	
10 years	10,000 cycles	4 Kbytes	
5 years	30,000 cycles	4 Kbytes	
1 year	100,000 cycles	4 Kbytes	

¹⁾ In Program Flash, one cycle refers to the programming of all pages in the flash bank and a mass erase.

Data Sheet 49 V1.0, 2010-03

²⁾ In Data Flash, one cycle refers to the programming of all wordlines in a page and a page erase.

3.3.1 Flash Bank Pagination

The XC858 product family offers Flash devices with 64 Kbytes, 52 Kbytes or 36Kbyte of embedded Flash memory. Each Flash device consists of a Program Flash (P-Flash) and a single Data Flash (D-Flash) bank. P-Flash has 120 pages of 8 wordlines per page with 64 bytes per wordline. D-Flash has 64 pages of 2 wordlines per page with 32 bytes per wordline. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different page width and wordline of each Flash bank.

The internal structure of each Flash bank represents a page architecture for flexible erase capability. The minimum erase width is always a complete page. The D-Flash bank is divided into smaller size for extended erasing and reprogramming capability; even numbers for each page size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC858 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 12 to Figure 16 give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

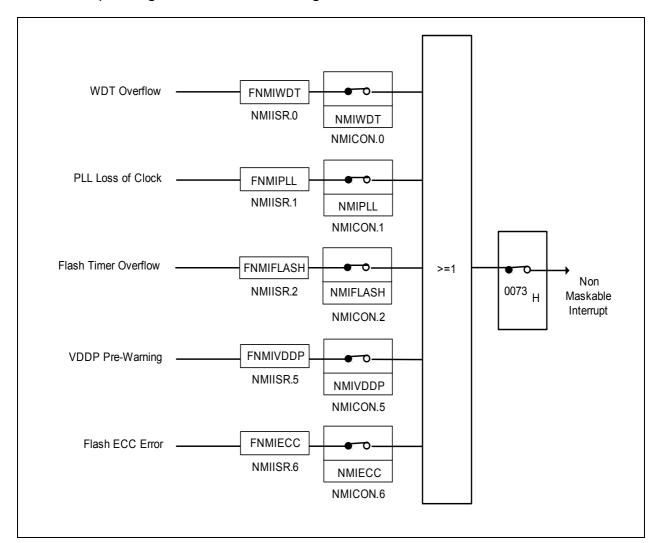


Figure 12 Non-Maskable Interrupt Request Sources

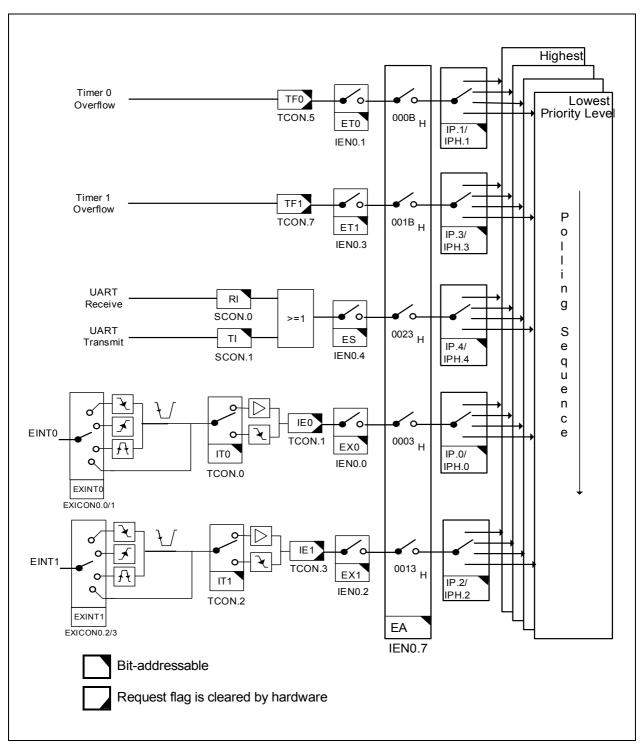


Figure 13 Interrupt Request Sources (Part 1)

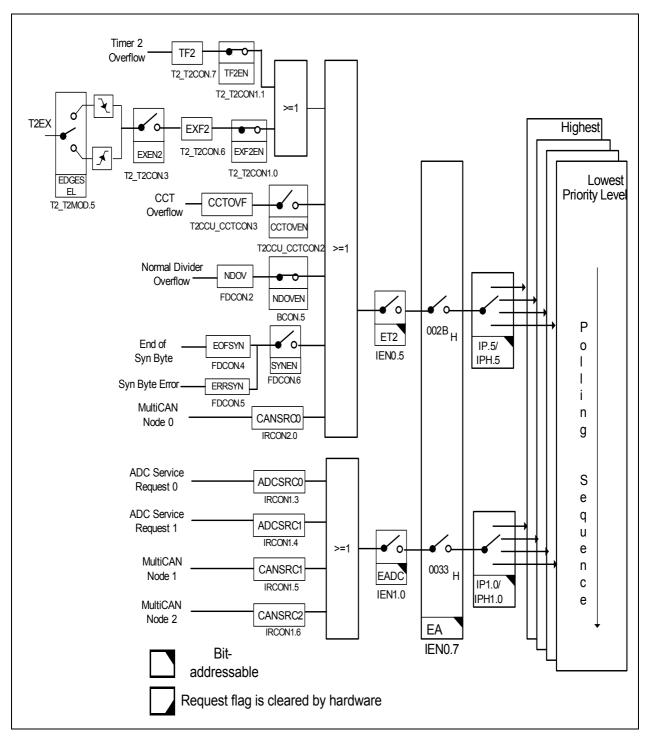


Figure 14 Interrupt Request Sources (Part 2)

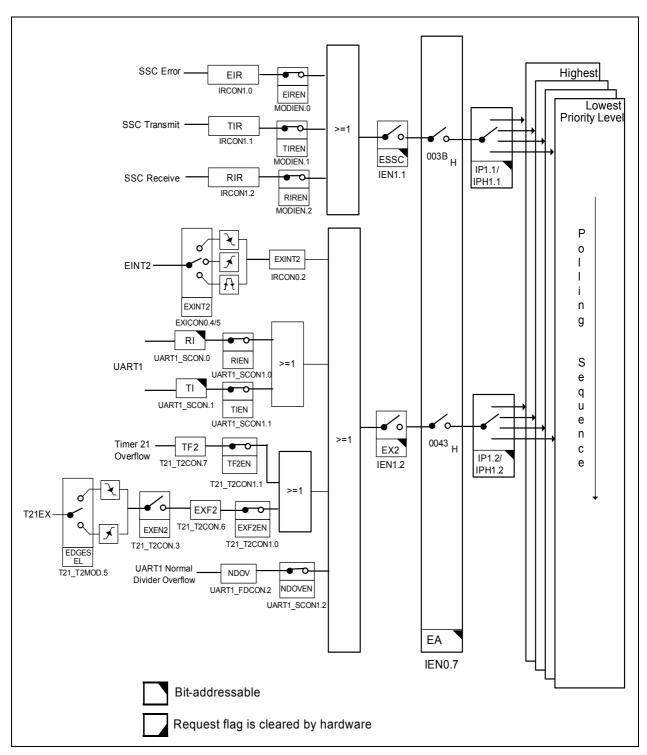


Figure 15 Interrupt Request Sources (Part 3)

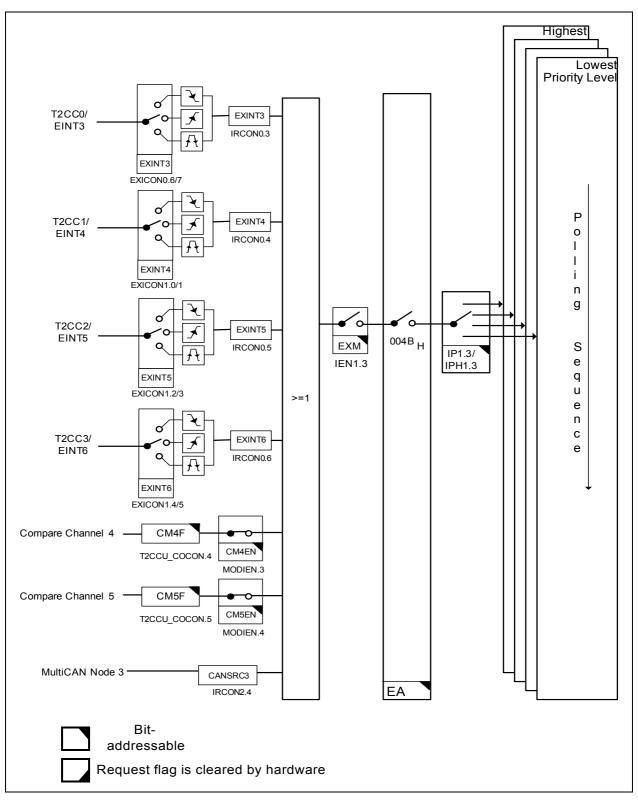


Figure 16 Interrupt Request Sources (Part 4)

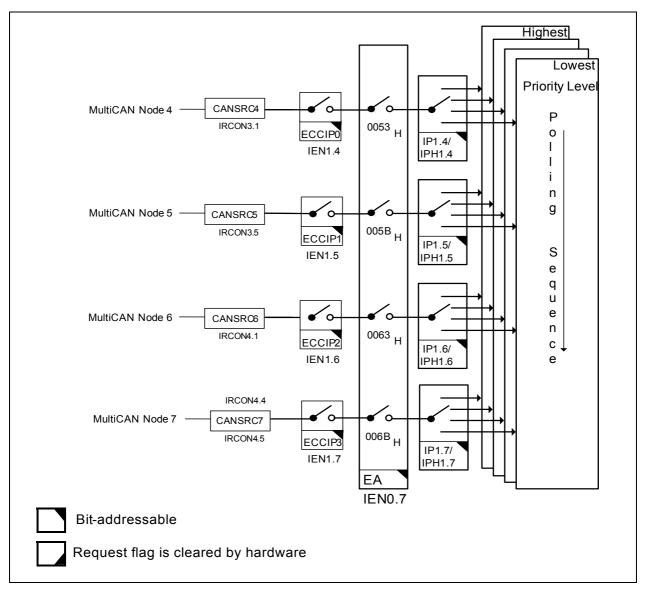


Figure 17 Interrupt Request Sources (Part 5)

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC858 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in **Table 17**.

Table 17 Interrupt Vector Addresses

Interrupt Source	Vector Address	Assignment for XC858	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash Timer NMI	NMIFLASH	
		V _{DDP} Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2CCU	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		

Table 17 Interrupt Vector Addresses (cont'd)

Interrupt Source	Vector Address	Assignment for XC858	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4		
		External Interrupt 5		
		External Interrupt 6		
		T2CCU		
		MultiCAN Node 3		
XINTR10	0053 _H	MultiCAN Node 4	ECCIP0	
XINTR11	005B _H	MultiCAN Node 5	ECCIP1	
XINTR12	0063 _H	MultiCAN Node 6	ECCIP2	
XINTR13	006B _H	MultiCAN Node 7	ECCIP3	

3.4.3 Interrupt Priority

An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 18**.

Table 18 Priority Structure within Interrupt Level

Source	Level
Non-Maskable Interrupt (NMI)	(highest)
External Interrupt 0	1
Timer 0 Interrupt	2
External Interrupt 1	3
Timer 1 Interrupt	4
UART Interrupt	5
T2CCU,UART Normal Divider Overflow, MultiCAN Interrupt	6
ADC, MultiCAN Interrupt	7
SSC Interrupt	8
External Interrupt 2, Timer 21, UART1, UART1 Normal Divider Overflow Interrupt	9
External Interrupt [6:3], MultiCAN Interrupt	10
MultiCAN interrupt	11
MultiCAN Interrupt	12
MultiCAN Interrupt	13
MultiCAN Interrupt	14

3.5 Parallel Ports

The XC858 has 40 port pins organized into five parallel ports: Port 0 (P0), Port 1 (P1), Port 3 (P3), Port 4 (P4) and Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. These ports are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected.

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Configurable drive strength
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Figure 18 shows the structure of a bidirectional port pin.

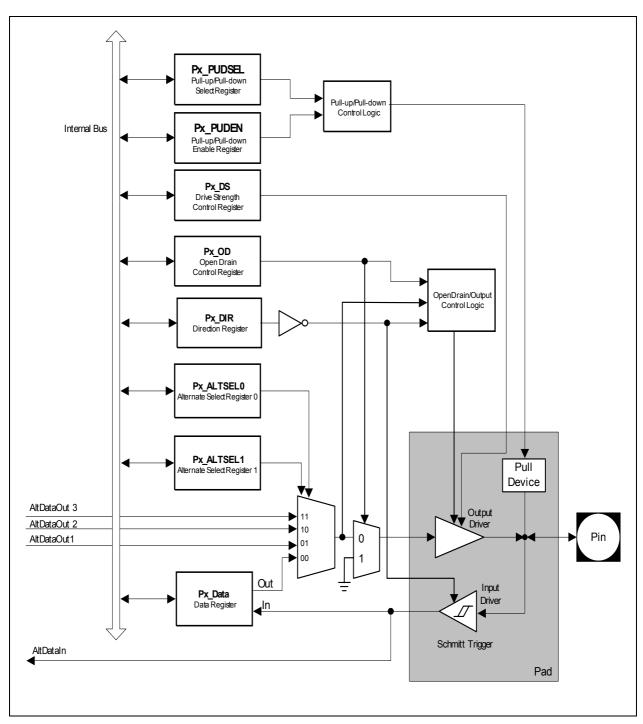


Figure 18 General Structure of Bidirectional Port

3.6 Power Supply System with Embedded Voltage Regulator

The XC858 microcontroller requires two different levels of power supply:

- 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 19 shows the XC858 power supply system. A power supply of 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

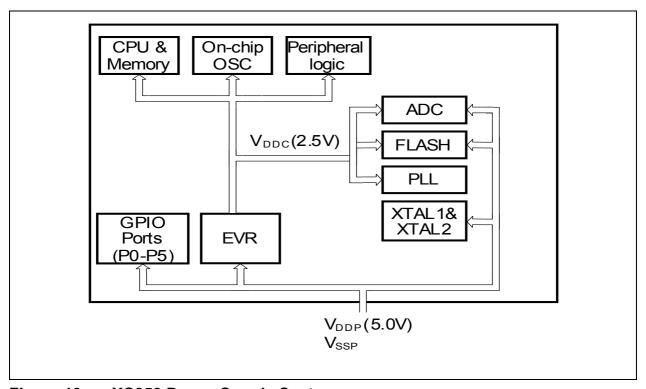


Figure 19 XC858 Power Supply System

EVR Features

- Input voltage (V_{DDP}) : 5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode
- V_{DDP} prewarning detection
- V_{DDC} brownout detection

3.7 Reset Control

The XC858 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC858 is first powered up, the status of certain pins (see **Table 20**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

The second type of reset in XC858 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.7.1 Module Reset Behavior

Table 19 lists the functions of the XC858 and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Table 19 Effect of Reset on Device Functions

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected	Not affected		
FLASH					
NMI	Disabled	Disabled			

3.7.2 Booting Scheme

When the XC858 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. **Table 20** shows the available boot options in the XC858.

Table 20 XC858 Boot Selection 1)

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	Х	User Mode ²⁾ ; on-chip OSC/PLL non-bypassed	0000 _H
0	0	Х	BSL Mode; (UART/ MultiCAN Mode ³⁾⁴⁾ and Alternate BSL Mode ⁵⁾); on-chip OSC/PLL non-bypassed	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	User (JTAG) Mode ⁶⁾ ; on-chip OSC/PLL non-bypassed (normal)	0000 _H

- 1) In addition to the pins MBC, TMS and P0.0, TM pin also requires an external pull down for all the boot options.
- 2) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 3) UART or MultiCAN BSL is decoded by firmware based on the protocol for product variant with MultiCAN. If no MultiCAN variant, UART BSL is used.
- 4) In MultiCAN BSL mode, the clock source is switched to XTAL by firmware, bypassing the on-chip oscillator. This avoids any frequency invariance with the on-chip oscillator and allows other frequency clock input, thus ensuring accurate baud rate detection (especially at high bit rates).
- 5) Alternate BSL Mode is a user defined BSL code programmed in Flash. It is entered if the AltBSLPassword is valid.
- 6) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

Data Sheet 64 V1.0, 2010-03

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC858. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC858, the oscillator can be from either of these two sources: the on-chip oscillator (4 MHz) or the external oscillator (2 MHz to 20 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

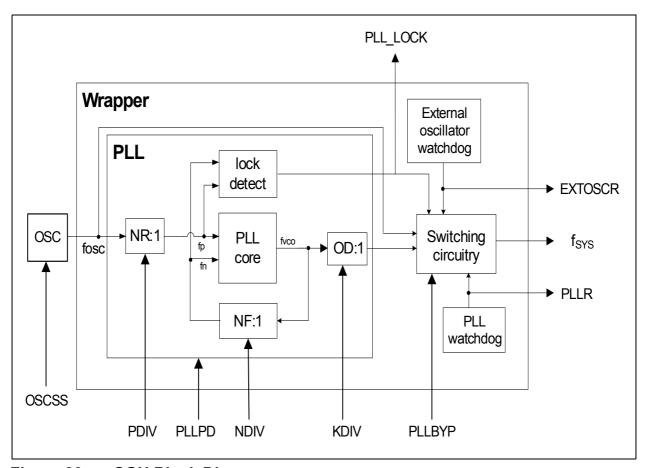


Figure 20 CGU Block Diagram

Direct Drive (PLL Bypass Operation)

During PLL bypass operation, the system clock has the same frequency as the external clock source.

(3.1)

$$f_{SYS} = f_{OSC}$$

PLL Mode

The CPU clock is derived from the oscillator clock, divided by the NR factor (PDIV), multiplied by the NF factor (NDIV), and divided by the OD factor (KDIV). PLL output must

not be bypassed for this PLL mode. The PLL mode is used during normal system operation.

(3.2)

$$f_{SYS} = f_{OSC} x \frac{NF}{NR \times OD}$$

System Frequency Selection

For the XC858, the value of NF, NR and OD can be selected by bits NDIV, PDIV and KDIV respectively for different oscillator inputs inorder to obtain the required fsys. But the combination of these factors must fulfill the following condition:

- $100 \text{ MHz} < f_{VCO} < 175 \text{ MHz}$
- 800 kHz < f_{OSC} / (2 * NR) < 8 MHz

Table 21 provides examples on how the typical system frequency of fsys = 144 MHz and maximum frequency of 160 MHz (CPU clock = 24 MHz)can be obtained for the different oscillator sources.

v _{sys} ······						
Oscillator	fos	С	N	Р	K	fsys
On-chip	4 M	Hz	72	2	1	144 MHz
	4 M	Hz	80	2	1	160 MHz
External	8 M	Hz	72	4	1	144 MHz
	6 M	Hz	72	3	1	144 MHz
	4 M	Hz	72	2	1	144 MHz

Table 21 System frequency (f_{sys} = 144 MHz)

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 2 MHz to 20 MHz. Additionally, it is necessary to have two load capacitances $C_{\rm X1}$ and $C_{\rm X2}$, and depending on the crystal type, a series resistor $R_{\rm X2}$, to limit the current. A test resistor $R_{\rm Q}$ may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. $R_{\rm Q}$ values are typically specified by the crystal vendor. An external feedback resistor $R_{\rm f}$ is also required in the external oscillator circuitry. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the crystal vendor using the negative

resistance method. Oscillation measurement with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 21** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

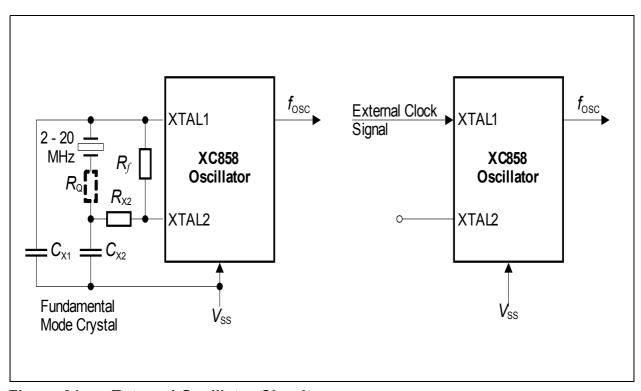


Figure 21 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

Data Sheet 68 V1.0, 2010-03

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, $f_{\rm sys}$. During normal system operation, the typical frequencies of the different modules are as follow:

CPU clock: CCLK, SCLK = 24 MHz

MultiCAN clock : MCANCLK = 24 or 48 MHz
 T2CCU clock : T2CCUCLK = 24 or 48 MHz

Peripheral clock: PCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 22** shows the clock distribution of the XC858.

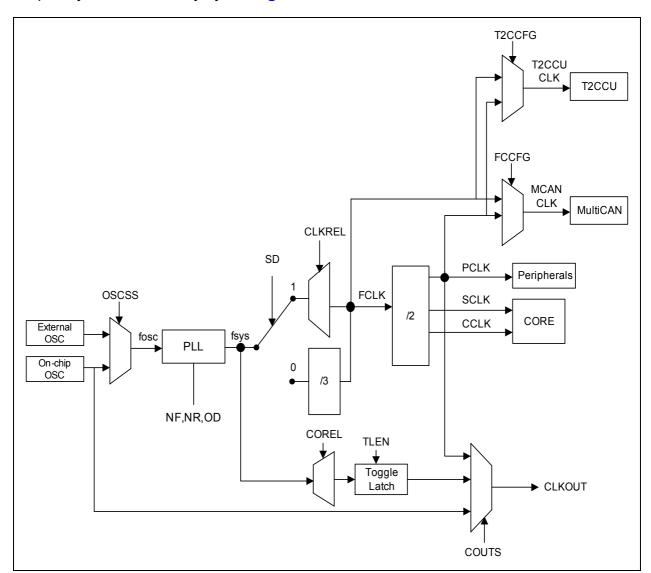


Figure 22 Clock Generation from f_{sys}

For power saving purposes, the clocks may be disabled or slowed down according to **Table 22**.

Table 22 System frequency ($f_{sys} = 144 \text{ MHz}$)

Power Saving Mode	Action		
Idle	Clock to the CPU is disabled.		
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.		
Power-down	Oscillator and PLL are switched off.		

Data Sheet 70 V1.0, 2010-03

3.9 Power Saving Modes

The power saving modes of the XC858 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- · Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see Figure 23) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

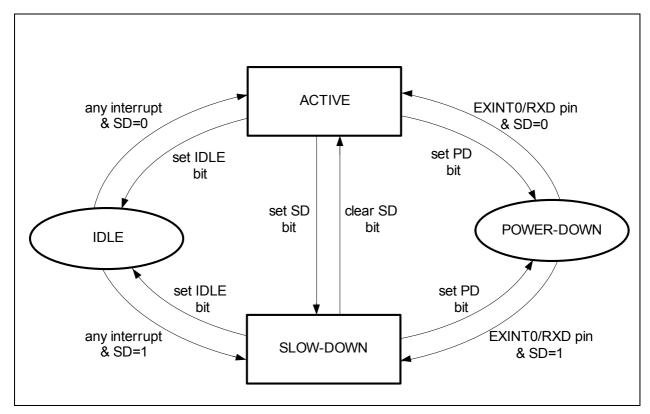


Figure 23 Transition between Power Saving Modes

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC858 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC858 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. Figure 24 shows the block diagram of the WDT unit.

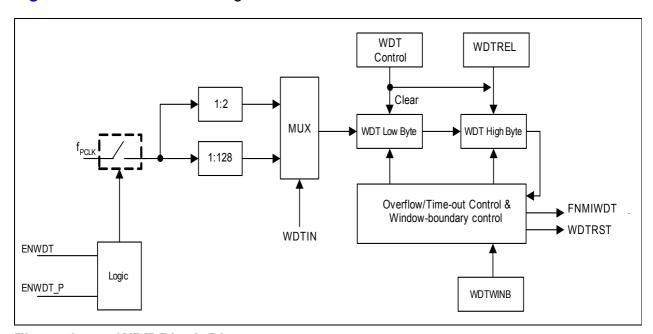


Figure 24 WDT Block Diagram

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value (<WDTREL> * 2⁸). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{\rm WDT} = \frac{2^{(1+{\rm WDTIN}\times 6)}\times (2^{16}-{\rm WDTREL}\times 2^8)}{f_{\rm PCLK}}$$

(3.3)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 25**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

Data Sheet 73 V1.0, 2010-03

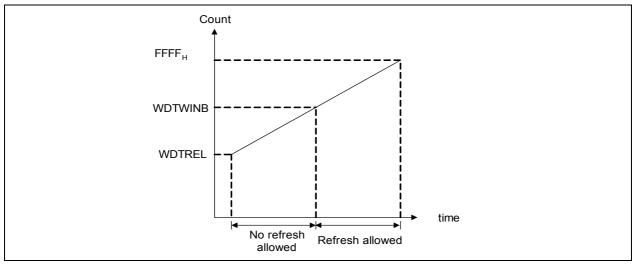


Figure 25 WDT Timing Diagram

Table 23 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 23 Watchdog Time Ranges

Reload value	Prescaler for $f_{\sf PCLK}$			
In WDTREL	2 (WDTIN = 0)	128 (WDTIN = 1)		
	24 MHz	24 MHz		
FF _H	21.3 μs	1.37 ms		
FF _H 7F _H	2.75 ms	176 ms		
00 _H	5.46 ms	350 ms		

3.11 UART and UART1

The XC858 provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - Fixed or variable baud rate
- Receive buffered
- Multiprocessor communication

• Interrupt generation on the completion of a data transmission or reception The UART modules can operate in the four modes shown in **Table 24**.

Table 24 UART Modes

Operating Mode	Baud Rate		
Mode 0: 8-bit shift register	$f_{PCLK}/2$		
Mode 1: 8-bit shift UART	Variable		
Mode 2: 9-bit shift UART	$f_{\text{PCLK}}/32 \text{ or } f_{\text{PCLK}}/64^{1)}$		
Mode 3: 9-bit shift UART	Variable		

¹⁾ For UART1 module, the baud rate is fixed at f_{PCLK}/64.

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{\rm PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{\rm PCLK}/32$ or $f_{\rm PCLK}/64$. For UART1 module, only $f_{\rm PCLK}/64$ is available. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1.

3.11.1 Baud-Rate Generator

Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and fractional divider) for generating a wide range of baud rates based on its input clock $f_{\rm PCLK}$, see **Figure 26**.

Data Sheet 75 V1.0, 2010-03

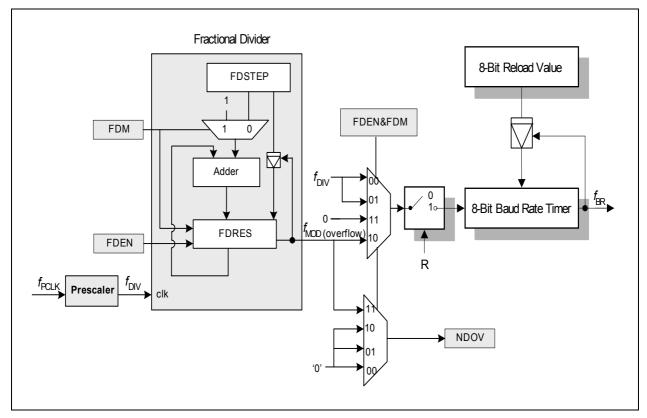


Figure 26 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.12**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

band rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR \text{ VALUE} + 1)} \times \frac{STEP}{256}$$

(3.5)

The maximum baud rate that can be generated is limited to $f_{\rm PCLK}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Table 25 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Table 25 Typical Baud rates for UART with Fractional Divider disabled

Baud rate	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %
2400 Baud	4 (BRPRE=010 _B)	156 (9C _H)	0.17 %

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 26** lists the resulting deviation errors from generating a baud rate of 57.6 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

Data Sheet 77 V1.0, 2010-03

Table 26 Deviation Error for UART with Fractional Divider enabled

$f_{ t PCLK}$	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	STEP	Deviation Error
24 MHz	1	6 (6 _H)	59 (3B _H)	+0.03 %
12 MHz	1	3 (3 _H)	59 (3B _H)	+0.03 %
8 MHz	1	2 (2 _H)	59 (3B _H)	+0.03 %
6 MHz	1	6 (6 _H)	236 (EC _H)	+0.03 %

3.11.2 Baud Rate Generation using Timer 1

In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3 band rate=
$$\frac{2^{\text{SMOD}} \times f_{\text{PCLK}}}{32 \times 2 \times (256 - \text{TH1})}$$

(3.6)

3.12 Normal Divider Mode (8-bit Auto-reload Timer)

Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see Figure 26). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock f_{MOD} that is 1/n of the input clock f_{DIV} , where n is defined by 256 - STEP.

The output frequency in normal divider mode is derived as follows:

$$f_{MOD} = f_{DIV} \times \frac{1}{256 - STEP}$$

(3.7)

3.13 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- · Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 27 shows the block diagram of the SSC.

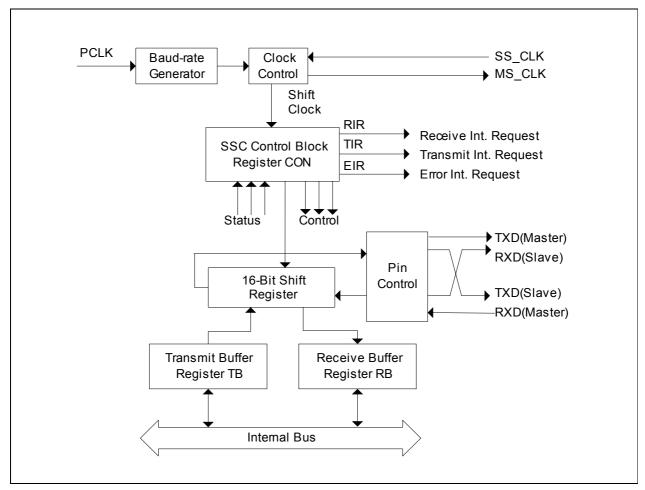


Figure 27 SSC Block Diagram

3.14 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 27**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Table 27 Timer 0 and Timer 1 Modes

Mode	Operation
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.
3	Timer 0 operates as two 8-bit timers The timer registers, TL0 and TH0, operate as two separate 8-bit counters. Timer 1 is halted and retains its count even if enabled.

3.15 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 28**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 28	Timer 2 Modes
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload value fixed at FFFF_H
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

3.16 Timer 2 Capture/Compare Unit

The T2CCU (Timer 2 Capture/Compare Unit) consists of the standard Timer 2 unit and a Capture/compare unit (CCU). The Capture/Compare Timer (CCT) is part of the CCU. Control is available in the T2CCU to select individually for each of its 16-bit capture/compare channel, either the Timer 2 or the Capture/Compare Timer (CCT) as the time base. Both timers have a resolution of 16 bits. The clock frequency of T2CCU, f_{T2CCU} , could be set at PCLK frequency or 2 times the PCLK frequency.

The T2CCU can be used for various digital signal generation and event capturing like pulse generation, pulse width modulation, pulse width measuring etc. Target applications include various automotive control as well as industrial (frequency generation, digital-to-analog conversion, process control etc.).

T2CCU Features

- Option to select individually for each channel, either Timer 2 or Capture/Compare Timer as time base
- Extremely flexible Capture/Compare Timer count rate by cascading with Timer 2
- Capture/Compare Timer may be 'reset' immediately by triggering overflow event
- 16-bit resolution
- Six compare channels in total
- Four capture channels multiplexed with the compare channels, in total
- Shadow register for each compare register
 - Transfer via software control or on timer overflow.
- Compare Mode 0: Compare output signal changes from the inactive level to active level on compare match. Returns to inactive level on timer overflow.
 - Active level can be defined by register bit for channel groups A and B.
 - Support of 0% to 100% duty cycle in compare mode 0.
- Compare Mode 1: Full control of the software on the compare output signal level, for the next compare match.
- Concurrent Compare Mode with channel 0
- Capture Mode 0: Capture on any external event (rising/falling/both edge) at the 4 pins T2CC0 to T2CC3.
- Capture Mode 1: Capture upon writing to the low byte of the corresponding channel capture register.
- Capture mode 0 or 1 can be established independently on the 4 capture channels.

3.17 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.



Figure 28 Overview of the MultiCAN

Features

Compliant to ISO 11898.

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

Data Sheet 85 V1.0, 2010-03

3.18 Analog-to-Digital Converter

The XC858 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at ANO - AN7.

Features

- · Successive approximation
- 8-bit or 10-bit resolution
- Eight analog channels
- Four independent result registers
- Result data protection for slow CPU access (wait-for-read mode)
- Single conversion mode
- Autoscan functionality
- · Limit checking for conversion results
- Data reduction filter (accumulation of up to 2 conversion results)
- Two independent conversion request sources with programmable priority
- · Selectable conversion request trigger
- Flexible interrupt generation with configurable service nodes
- Programmable sample time
- Programmable clock divider
- Cancel/restart feature for running conversions
- Integrated sample and hold circuitry
- Compensation of offset errors
- Low power modes

3.18.1 ADC Clocking Scheme

A common module clock $f_{\rm ADC}$ generates the various clock signals used by the analog and digital parts of the ADC module:

- f_{ADCA} is input clock for the analog part.
- $f_{\rm ADCI}$ is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock $f_{\rm ADCA}$ to generate a correct duty cycle for the analog components.
- f_{ADCD} is input clock for the digital part.

Figure 29 shows the clocking scheme of the ADC module. The prescaler ratio is selected by bit field CTC in register GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

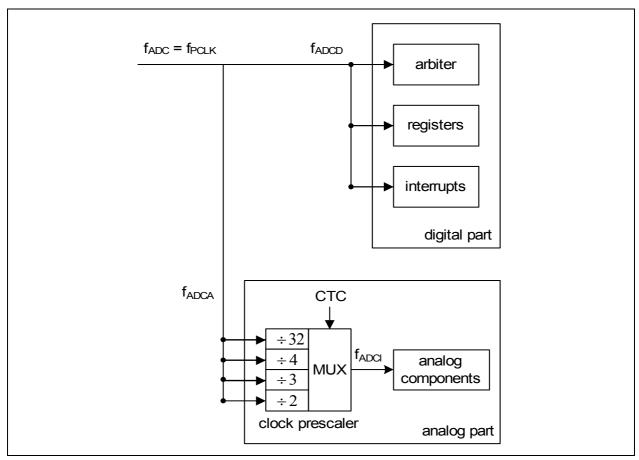


Figure 29 ADC Clocking Scheme

For module clock $f_{\rm ADC}$ = 24 MHz, the analog clock $f_{\rm ADCI}$ frequency can be selected as shown in **Table 29**.

Table 29 f_{ADCI} Frequency Selection

Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

During slow-down mode, $f_{\rm ADC}$ may be reduced further, for example, to 12 MHz or 6 MHz. However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if $f_{\rm ADC}$ becomes too low during slow-down mode.

3.18.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (t_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

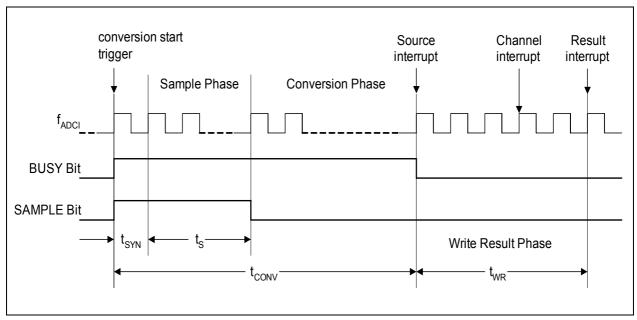


Figure 30 ADC Conversion Timing

3.19 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- · Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interfaces to communicate with the Host (a Debugger)

Features

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 31**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC858 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

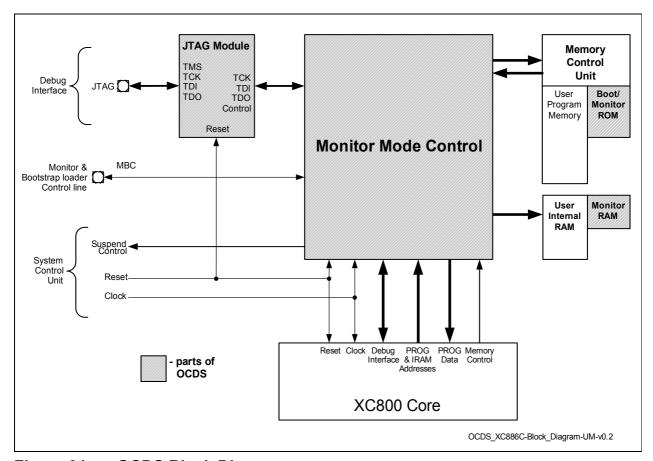


Figure 31 OCDS Block Diagram

3.19.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode $04_{\rm H}$), and the same is also true immediately after reset.

The JTAG ID register contents for the XC858 Flash devices are given in **Table 30**.

Table 30 JTAG ID Summary

Device Type	Device Name	JTAG ID	
Flash	XC858CA-16FF	1018 2083 _H	
	XC858CA-13FF	1018 3083 _H	
	XC858CA-9FF	1018 4083 _H	

3.20 Chip Identification Number

The XC858 identity (ID) register is located at Page 1 of address $B3_H$. The value of ID register is 49_H . However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 31 lists the chip identification numbers of available XC858 Flash device variants.

Table 31 Chip Identification Number

Product Variant	Chip Identification Number		
	AC-Step		
Flash Devices			
XC858CA-16FF	4B5800C3 _H		
XC858CA-13FF	4B5904C3 _H		
XC858CA- 9FF	4B5A08C3 _H		

Data Sheet 91 V1.0, 2010-03

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC858.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in Section 4.2 and Section 4.3.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC858 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

· cc

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC858 and must be regarded for a system design.

SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC858 is designed in.

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC858 can be subjected to without permanent damage.

Table 32 Absolute Maximum Rating Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Ambient temperature	T_{A}	-40	85	°C	under bias
Storage temperature	T_{ST}	-65	150	°C	
Junction temperature	T_{J}	-40	120	°C	under bias
Voltage on power supply pin with respect to V _{SS}	V_{DDP}	-0.5	6	V	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	Whatever is lower
Input current on any pin during overload condition	I_{IN}	-10	10	mA	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	_	50	mA	

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pin with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

4.1.3 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the XC858. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Table 33 Operating Condition Parameters

Parameter	Symbol	Limit Values		Unit	Notes/	
		min.	max.		Conditions	
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V Device	
Digital ground voltage	V_{SS}	0	•	V		
CPU Clock Frequency ¹⁾	f_{CCLK}		24	MHz		
Ambient temperature	T_{A}	-40	85	°C	SAF-XC858	

¹⁾ f_{CCLK} is the input frequency to the XC800 core. Please refer to **Figure 22** for detailed description.

Data Sheet 94 V1.0, 2010-03

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 34 provides the characteristics of the input/output pins of the XC858.

Table 34 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
$\overline{V_{\text{DDP}}}$ = 5 V Range	•			·			
Output low voltage	V_{OL}	CC	_	0.6	V	$I_{\rm OL}$ = 9 mA (DS = 0) ¹⁾ $I_{\rm OL}$ = 12 mA (DS = 1) ²⁾	
Output high voltage	V_{OH}	CC	2.4	_	V	I_{OH} = -20 mA (DS = 0) ¹⁾ I_{OH} = -25 mA (DS = 1) ²⁾	
Input low voltage	V_{IL}	SR	-0.3	0.8	V	CMOS Mode	
Input high voltage	V_{IH}	SR	2.2	V_{DDP}	V	CMOS Mode	
Input Hysteresis	HYS	CC	0.35	_	V	CMOS Mode ³⁾⁴⁾	
Input low voltage at XTAL1	V_{ILX}	SR	-0.3	0.8	V		
Input high voltage at XTAL1	V_{IHX}	SR	3.4	V_{DDP}	V		
Pull-up current	I_{PU}	SR	_	-20	μΑ	$V_{IH,min}$	
			-88	_	μΑ	$V_{\mathrm{IL,max}}$	
Pull-down current	I_{PD}	SR	_	10	μΑ	$V_{IL,max}$	
			66	_	μΑ	$V_{IH,min}$	
Input leakage current	$I_{\rm OZ1}$	CC	-1	1	μА	$0 < V_{IN} < V_{DDP},$ $T_A \le 85^{\circ}C^{5)}$	
Overload current on any pin	I_{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{OV} $	SR	_	25	mA	6)	
Voltage on any pin during $V_{\rm DDP}$ power off	V_{PO}	SR	_	0.3	V	7)	

Table 34 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter Syr		Symbol		Values	Unit	Test Conditions	
			min.	max.			
Maximum current per pin (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$I_{M}SR$	SR	-	25	mA		
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	_	150	mA		
	I_{MVDDP}	SR	_	200	mA	6)	
	I_{MVSS}	SR	_	200	mA	6)	

- 1) DS = 0 refers to the pin having a weak drive strength which is programmable via Px_DS register.
- 2) DS = 1 refers to the pin having a strong drive strength which is programmable via Px_DS register.
- 3) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.
- 4) P0.1 has a minimum input hysteresis of 0.25V.
- 5) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.
- 6) Not subjected to production test, verified by design/characterization.
- 7) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when $V_{\rm DDP}$ is powered off.

Data Sheet 96 V1.0, 2010-03

4.2.2 Supply Threshold Characteristics

Table 35 provides the characteristics of the supply threshold in the XC858.

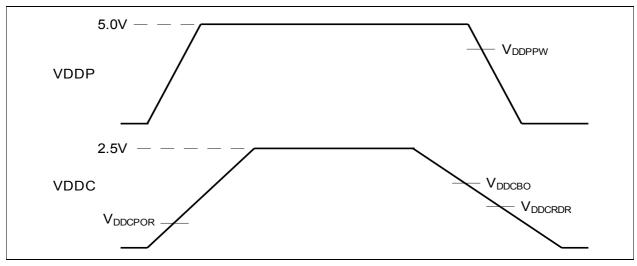


Figure 32 Supply Threshold Parameters

 Table 35
 Supply Threshold Parameters (Operating Conditions apply)

Parameters	Symbol			Unit		
			min.	typ.	max.	
$\overline{V_{\rm DDC}}$ brownout voltage ¹⁾	V_{DDCBO}	CC	1.7	1.9	2.2	V
RAM data retention voltage	$V_{\mathtt{DDCRDR}}$	CC	1.2	_	_	V
$\overline{V_{\text{DDP}}}$ prewarning voltage	V_{DDPPW}	CC	3.8	4.2	4.5	V
Power-on reset voltage ¹⁾²⁾	V_{DDCPOR}	CC	1.7	1.9	2.2	V

¹⁾ Detection is enabled in both active and power-down mode.

²⁾ The reset of EVR is extended by 300 μ s typically after the VDDC reaches the power-on reset voltage.

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ($V_{\rm SS}$) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Table 36 ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Analog reference voltage	V_{AREF}	SR	V _{AGND} + 1	V_{DDP}	V _{DDP} + 0.05	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V_{SS}	V _{AREF}	V	1)	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V		
ADC clocks	f_{ADC}		_	24	_	MHz	module clock ¹⁾	
	f_{ADCI}		_	_	14 ²⁾	MHz	internal analog clock ¹⁾ See Figure 29	
Sample time	$t_{\rm S}$	CC	$(2 + INPCR0.STC) \times t_{ADCI}$		μS	1)		
Conversion time	t_{C}	CC	See Se	See Section 4.2.3.1		μS	1)	
Differential Nonlinearity	$ EA_{DNL} $	CC	_	_	1.5	LSB	10-bit conversion	
Integral Nonlinearity	$ EA_{INL} $	CC	_	_	2.5	LSB	10-bit conversion	
Offset	$ EA_{OFF} $	CC	_	_	3	LSB	10-bit conversion	
Gain	$ EA_{GAIN} $	CC	_	_	2.5	LSB	10-bit conversion	
Switched capacitance at the reference voltage input	C_{AREFSW}	CC	_	10	14	pF	1)3)	
Switched capacitance at the analog voltage inputs	C_{AINSW}	CC	_	4	5	pF	1)4)	

Table 36 ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/
			min.	typ.	max.		Remarks
Input resistance of the reference input	R_{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R_{AIN}	CC	_	1	3	kΩ	1)

- 1) Not subjected to production test, verified by design/characterization.
- 2) This value includes the maximum oscillator deviation.
- 3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 4) The sampling capacity of the conversion C-Network is pre-charged to $V_{\mathsf{AREF}}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{\mathsf{AREF}}/2$.

Data Sheet 99 V1.0, 2010-03

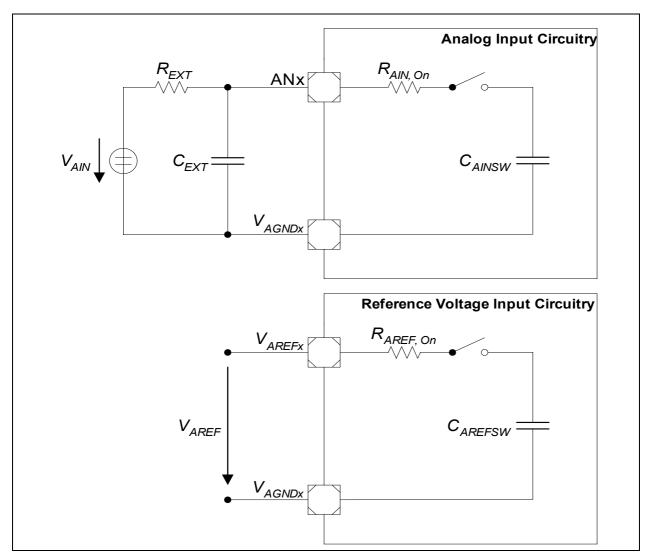


Figure 33 ADC Input Circuits

4.2.3.1 ADC Conversion Timing

Conversion time, $t_{\rm C}$ = $t_{\rm ADC}$ × (1 + r × (3 + n + STC)), where r = CTC + 2 for CTC = $00_{\rm B}$, $01_{\rm B}$ or $10_{\rm B}$, r = 32 for CTC = $11_{\rm B}$, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), $t_{\rm ADC}$ = 1 / $f_{\rm ADC}$

4.2.4 Power Supply Current

Table 37 and Table 38 provide the characteristics of the power supply current in the XC858.

Table 37 Power Supply Current Parameters (Operating Conditions apply; $V_{\text{DDP}} = 5V \text{ range}$)

DDF G	,					
Parameter	Symbol	Limit	Values	Unit	Test Conditions	
		typ. ¹⁾	max. ²⁾			
V_{DDP} = 5V Range						
Active Mode	I_{DDP}	37.5	45	mA	3)	
Idle Mode	I_{DDP}	29.2	35	mA	4)	
Active Mode with slow-down enabled	I_{DDP}	10	15	mA	5)	
Idle Mode with slow-down enabled	I_{DDP}	9.2	14	mA	6)	

¹⁾ The typical $I_{\rm DDP}$ values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at $T_{\rm A}$ = + 25 °C and $V_{\rm DDP}$ = 5.0 V.

- 2) The maximum $I_{\rm DDP}$ values are measured under worst case conditions ($T_{\rm A}$ = + 85 °C and $V_{\rm DDP}$ = 5.5 V).
- 3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz with onchip oscillator of 4 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.
- 4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$; all other pins are disconnected, no load on ports.
- 5) $I_{\rm DDP}$ (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 1 MHz by setting CLKREL in CMCON to $1000_{\rm B}$, RESET = $V_{\rm DDP}$; all other pins are disconnected, no load on ports.
- 6) $I_{\rm DDP}$ (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 1 MHz by setting CLKREL in CMCON to 1000_B, $\overline{\rm RESET} = V_{\rm DDP}$; all other pins are disconnected, no load on ports.

Data Sheet 102 V1.0, 2010-03

Table 38 Power Down Current (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		typ. ¹⁾	max. ²⁾		
V_{DDP} = 5V Range					
Power-Down Mode	I_{PDP}	20	60	μΑ	$T_{A} = + 25 {}^{\circ}\text{C}^{3)4)}$
		-	200	μΑ	$T_{\rm A}$ = + 85 °C ⁴⁾⁵⁾

¹⁾ The typical $I_{\rm PDP}$ values are based on preliminary measurements and are to be used as reference only. These values are measured at $V_{\rm DDP}$ = 5.0 V.

- 2) The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 5.5 V.
- 3) IPDP has a maximum value of 350 μ A at TA = + 85 °C.
- 4) I_{PDP} is measured with: $\overline{\text{RESET}} = V_{\text{DDP}}$, $V_{\text{AGND}} = V_{\text{SS}}$, RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.
- 5) Not subjected to production test, verified by design/characterization.

Data Sheet 103 V1.0, 2010-03

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 34, Figure 35 and Figure 36.

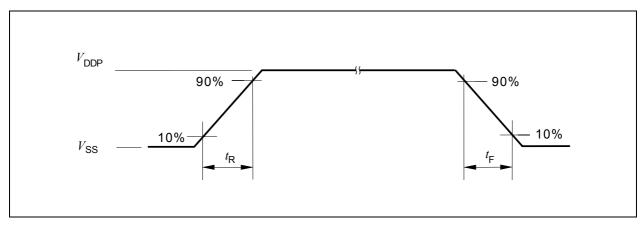


Figure 34 Rise/Fall Time Parameters

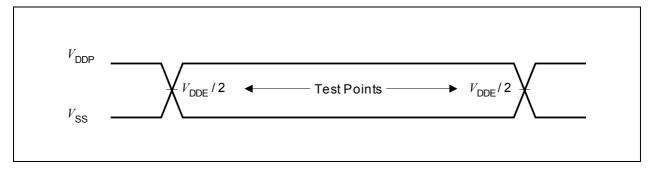


Figure 35 Testing Waveform, Output Delay

Figure 36 Testing Waveform, Output High Impedance

4.3.2 Output Rise/Fall Times

Table 39 provides the characteristics of the output rise/fall times in the XC858.

Table 39 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values min. max.		Unit	Test Conditions	11.37
$V_{\rm DDP}$ = 5V Range	•	1		•		
Rise/fall times	t _R , t _F	_	10	ns	20 pF. ^{1) 2)3)}	

- 1) Rise/Fall time measurements are taken with 10% 90% of pad supply.
- 2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.
- 3) Additional rise/fall time valid for $C_{\rm L}$ = 20pF 100pF @ 0.125 ns/pF.

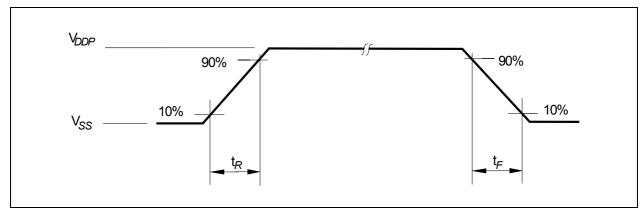


Figure 37 Rise/Fall Times Parameters

4.3.3 Power-on Reset and PLL Timing

Table 40 provides the characteristics of the power-on reset and PLL timing in the XC858.

Table 40 Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol		Limit Values			Unit	Test Conditions
			min.	typ.	max.		
On-Chip Oscillator start-up time	t_{OSCST}	CC	_	_	500	ns	1)
PLL lock-in in time	t_{LOCK}	CC	_	_	200	μS	1)
PLL accumulated jitter	D_{P}		_	_	1.8	ns	1)2)

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

²⁾ PLL lock at 144 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 72 and P = 1.

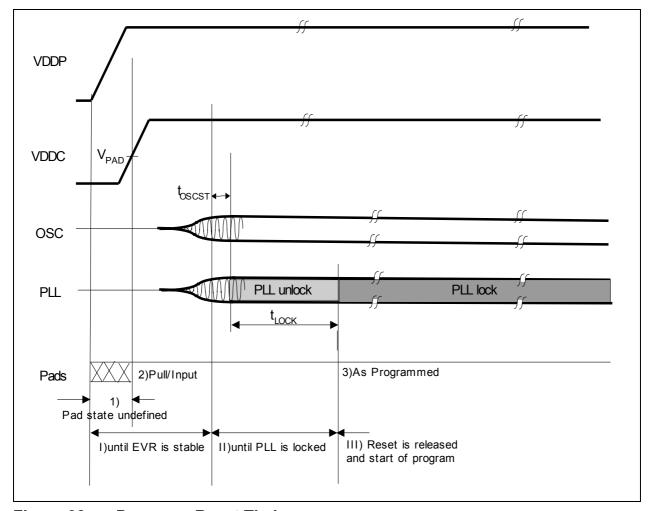


Figure 38 Power-on Reset Timing

4.3.4 On-Chip Oscillator Characteristics

Table 41 provides the characteristics of the on-chip oscillator in the XC858.

 Table 41
 On-chip Oscillator Characteristics (Operating Conditions apply)

Parameter	rameter Symbol Limit Values		lues	Unit	Test Conditions		
			min.	typ.	max.		
Nominal frequency	f_{NOM}	CC	3.88	4	4.12	MHz	under nominal conditions ¹⁾ after IFX-backend trimming
Long term frequency deviation	Δf_{LT}	CC	-5	_	5	%	with respect to $f_{\rm NOM}$, over lifetime and temperature (-40°C to 85°C), for one given device after trimming
Short term frequency deviation	Δf_{ST}	CC	-1.0	_	1.0	%	with respect to $f_{\rm NOM}$, over core supply voltage (2.5 V ± 7.5%), for one given device after trimming

¹⁾ Nominal condition: $V_{\rm DDC}$ = 2.5 V, $T_{\rm A}$ = + 25°C.

4.3.5 External Data Memory Characteristics

Table 42 shows the timing of the external data memory read cycle.

Table 42 External Data Memory Read Timing (Operating Conditions apply)

Parameter	Symbol		Limit \	Values	Unit	Test
			Min.	Max.		Conditions
RD pulse width	t_1 C	CC	2*f _{CCLK} - 17	-	ns	1)
Address valid to RD	t_2 C	CC	<i>f</i> _{CCLK} - 12	-	ns	1)
RD to valid data in	t_3 S	SR	-	1.5* f_{CCLK} - 27	ns	1)
Address to valid data in	t_4 S	SR	-	3*f _{CCLK} - 7	ns	1)
Data hold after RD	<i>t</i> ₅ S	SR	0.5* f_{CCLK} -17	-	ns	1)

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

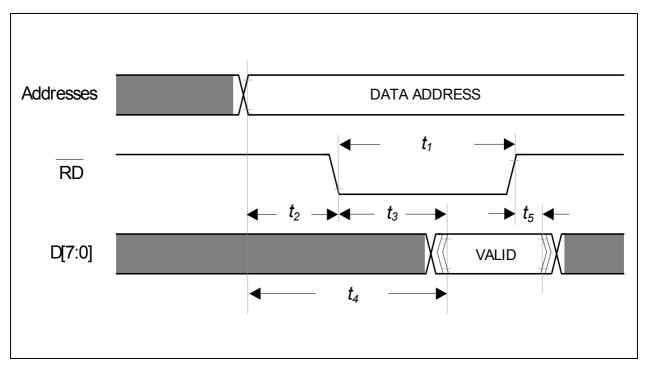


Figure 39 External Data Memory Read Cycle

Table 43 shows the timing of the external data memory write cycle.

Table 43 External Data Memory Write Timing (Operating Conditions apply)

Parameter	Symbol		Limit Va	lues	Unit	Test
			Min.	Max.		Conditions
WR pulse width	t_1	CC	$f_{\rm CCLK}$ - 10	-	ns	1)
Address valid to WR	t_2	CC	2*f _{CCLK} - 7	-	ns	1)
Data valid to WR transition	t_3	SR	$f_{ m CCLK}$ - 5	-	ns	1)
Data setup before WR	t_4	SR	9*f _{CCLK} - 13	_	ns	1)
Data hold after WR	t_5	SR	6*f _{CCLK} - 3	_	ns	1)

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

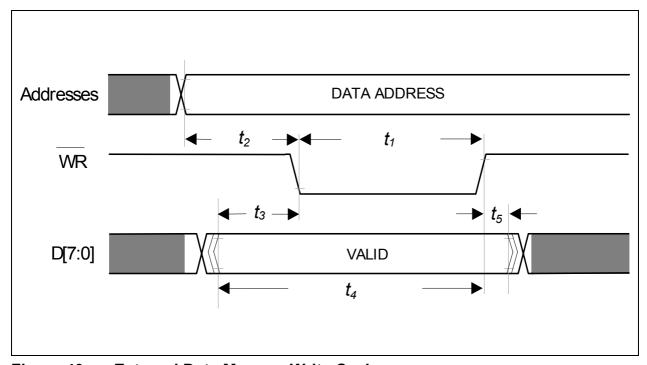


Figure 40 External Data Memory Write Cycle

4.3.6 External Clock Drive XTAL1

Table 44 shows the parameters that define the external clock supply for XC858. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Table 44 External Clock Drive Characteristics (Operating Conditions apply)

Parameter	Symbo	Symbol		t Values	Unit	Test Conditions	
			Min.	Max.			
Oscillator period	$t_{ m osc}$	SR	50	500	ns	1)2)	
High time	t_1	SR	15	-	ns	2)3)	
Low time	t_2	SR	15	-	ns	2)3)	
Rise time	t_3	SR	-	10	ns	2)3)	
Fall time	t_4	SR	-	10	ns	2)3)	

- 1) The clock input signals with 45-55% duty cycle are used.
- 2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.
- 3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

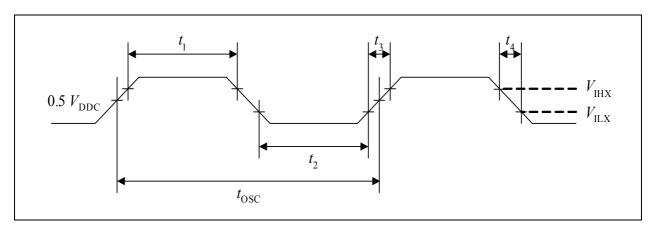


Figure 41 External Clock Drive XTAL1

4.3.7 JTAG Timing

Table 45 provides the characteristics of the JTAG timing in the XC858.

Table 45 TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Sym	bol	Lin	nits	Unit	Test Conditions
			min	max		
TCK clock period	t_{TCK}	SR	50	-	ns	1)
TCK high time	<i>t</i> ₁	SR	20	-	ns	1)
TCK low time	t_2	SR	20	-	ns	1)
TCK clock rise time	t_3	SR	-	4	ns	1)
TCK clock fall time	t_4	SR	-	4	ns	1)

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

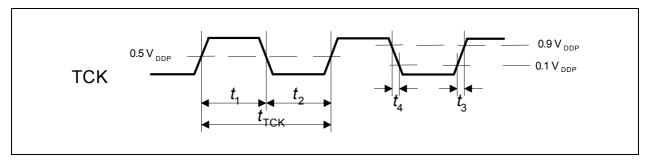


Figure 42 TCK Clock Timing

Table 46 JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter		nbol	Lir	nits	Unit	Test Conditions
			min	max		
TMS setup to TCK	t_1	SR	8	-	ns	1)
TMS hold to TCK _√	t_2	SR	0	-	ns	1)
TDI setup to TCK	t_1	SR	8	-	ns	1)
TDI hold to TCK	t_2	SR	4	-	ns	1)
TDO valid output from TCK	t_3	CC	-	24	ns	1)

Table 46 JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)

Parameter		nbol	Lir	nits	Unit	Test Conditions	
			min	max			
TDO high impedance to valid output from TCK	t_4	CC	-	18	ns	1)	
TDO valid output to high impedance from TCK	<i>t</i> ₅	CC	-	21	ns	1)	

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

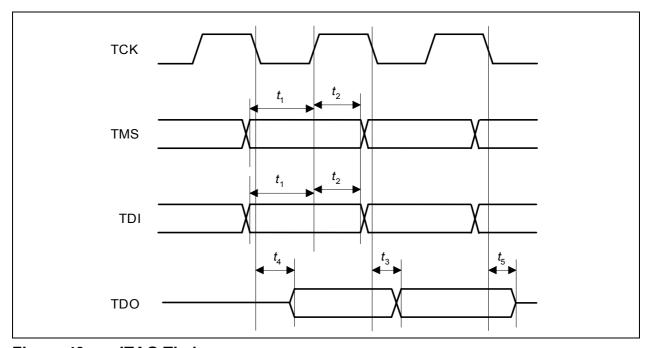


Figure 43 JTAG Timing

Data Sheet 112 V1.0, 2010-03

4.3.8 SSC Master Mode Timing

Table 47 provides the characteristics of the SSC timing in the XC858.

Table 47 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Syn	nbol	Limit	Values	Unit	Test Conditions
			min.	max.		
SCLK clock period	t_0	CC	2*T _{SSC}	_	ns	1)2)
MTSR delay from SCLK	t_1	CC	0	5	ns	2)
MRST setup to SCLK	t_2	SR	13	_	ns	2)
MRST hold from SCLK	t_3	SR	0	_	ns	2)

¹⁾ $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

^{2) 1}Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

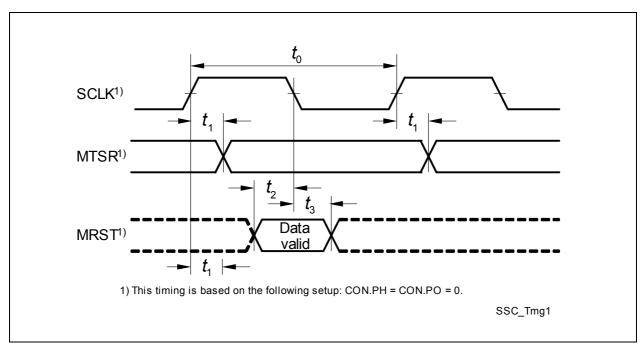


Figure 44 SSC Master Mode Timing

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC858 package and reliability section.

5.1 Package Parameters

Table 48 provides the thermal characteristics of the PG-LQFP-64-4 package used in XC858.

Table 48 Thermal Characteristics of the Packages

Parameter	Symbol	Lir	Limit Values		Notes
		Min.	Max.		
Thermal resistance junction case ¹⁾	R_{TJC} Co	C -	13.8	K/W	-
Thermal resistance junction lead ¹⁾	R_{TJL} Co	C -	34.6	K/W	-

¹⁾ The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

- a) simply adding only the two thermal resistances (junction lead and lead ambient), or
- b) by taking all four resistances into account, depending on the precision needed.

Data Sheet 114 V1.0, 2010-03

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

Package and Quality Declaration

5.2 Package Outline

Figure 45 shows the package outlines of the XC858.

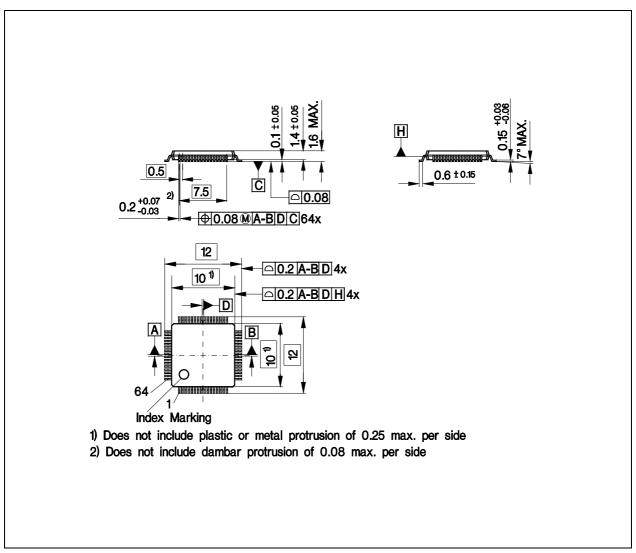


Figure 45 PG-LQFP-64-4 Package Outline

Package and Quality Declaration

5.3 Quality Declaration

Table 49 shows the characteristics of the quality parameters in the XC858.

Table 49 Quality Parameters

Parameter	Symbol Limit Values		Unit	Notes	
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V_{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	V_{CDM}	-	500	V	Conforming to JESD22-C101-C

Data Sheet 116 V1.0, 2010-03

www.infineon.com

Published by Infineon Technologies AG

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)