Automotive Grade AUIRS2092S

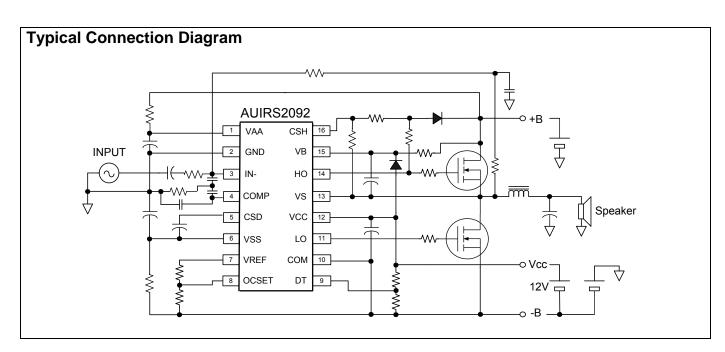
PROTECTED DIGITAL AUDIO AMPLIFIER

Features

- Integrated analog input Class D audio amplifier driver in a small 16 pin package
- Floating inputs enable easy half bridge implementation
- Programmable bidirectional over-current protection with self-reset function
- Programmable preset deadtime for improved THD performances
- Start and stop click noise reduction
- High noise immunity
- ±100 V ratings deliver up to 500 W in output power
- Operates up to 800 kHz
- Leadfree, RoHS compliant
- Automotive Qualified[†]

Typical Applications

- Automotive mini component stereo systems
- Automotive powered speaker systems
- Automotive audio power amplifiers


Product Summary

V _{OFFSET} (max)	± 100 V	
Gate driver	lo+ (typical)	1.0 A
Gate unvei	lo – (typical)	1.2 A
Selectable Dea	dtime	25/40/65/105 ns
OC protection of	lelay (max)	500 ns
DC offset	<20 mV	
PWM frequency	~800 kHz	
Error amplifier of	>60 dB	
THD+N* (1kHz,	0.01 %	
Residual Noise (AES-17 Filter)	200 μVrms	

^{*} measured with recommended circuit

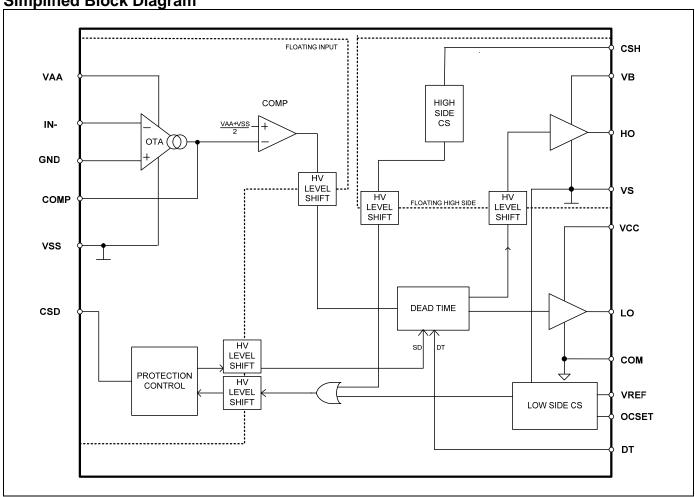
Package Options

AUIRS2092S

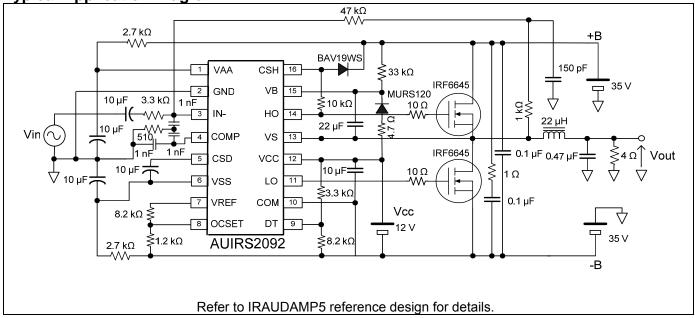
International TOR Rectifier

Table of Contents	Page
Description	3
Simplified Block Diagram	4
Typical Application Diagram	4
Qualification Information	5
Absolute Maximum Ratings	6
Recommended Operating Conditions	7
Electrical Characteristics	8-10
Waveform Definitions	11
Functional Block Diagram	12
Input/Output Pin Equivalent Circuit Diagram	13
Lead Definitions	14
Lead Assignments	14
Parameter Temperature Trends	15-19
Package Details	19
Tape and Reel Details	20
Part Marking Information	21
Ordering Information	21

AUIRS2092S


Description

The AUIRS2092 is a high voltage, high performance Class D audio amplifier driver with PWM modulator and protection. In conjunction with two external MOSFET and a few external components, a complete Class D audio amplifier with protection can be realized.


International Rectifier's proprietary noise isolation technology allows high current gate drive stage and high speed low noise error amplifier reside on a single small silicon die.

Open elements of PWM modulator section allow flexible PWM topology implementation.

Simplified Block Diagram

Typical Application Diagram

www.irf.com

Qualification Information[†]

		Automotive (per AEC-Q100 ^{††})			
Qualification Level		Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification leve is granted by extension of the higher Automotive level.			
Moisture Sensitivity Level		SOIC16N	MSL3 ^{†††} 260°C (per IPC/JEDEC J-STD-020)		
	Machine Model		Class M2 (+/-150V) (per AEC-Q100-003)		
ESD	Human Body Model	Class H1B (+/-750V) (per AEC-Q100-002)			
Charged Device Model		Class C3A (+/-750V) (per AEC-Q100-011)			
IC Latch-Up Test		Class II, Level B ††††			
To Later-op Test		(per AEC-Q100-004)			
RoHS Compliant			Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Exceptions to AEC-Q100 requirements are noted in the qualification report.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.
- †††† CSD pin stressed to +/-20mA, CSH pin stressed to +/-40mA, DT and OCSET pins stressed to +/-20mA

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM lead. Stresses beyond those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

Symbol	Definition	Min	Max	Units
V _B	High side floating supply voltage	-0.3	220	
Vs	High side floating supply voltage (Note2)	V _B -20	V _B +0.3	1
V_{HO}	High side floating output voltage	V _S -0.3	V _B +0.3	
V _{CSH}	CSH pin input voltage	V _S -0.3	V _B +0.3	1
V _{CC}	Low side fixed supply voltage (Note2)	-0.3	20	
V_{LO}	Low side output voltage	-0.3	Vcc+0.3	V
V_{AA}	Floating input positive supply voltage (Note2)	(See I _{AAZ})	210	
V _{SS}	Floating input negative supply voltage (Note2)	-1 (See I _{SSZ})	GND +0.3	
V_{GND}	Floating input supply ground voltage	V _{SS} -0.3 (See I _{SSZ})	V _{AA} +0.3 (See I _{AAZ})	
I _{IN-}	Inverting input current (Note1)		±3	mA
V _{CSD}	SD pin input voltage	V _{SS} -0.3	V _{AA} +0.3	
V_{COMP}	COMP pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
V_{DT}	DT pin input voltage	-0.3	V _{CC} +0.3]
V _{OCSET}	OCSET pin input voltage	-0.3	V _{CC} +0.3	
I _{AAZ}	Floating input positive supply zener clamp current (Note2)		20	
I _{SSZ}	Floating input negative supply zener clamp current (Note2)		20	
I _{CCZ}	Low side supply zener clamp current (Note3)		10	mA
I_{BSZ}	Floating supply zener clamp current (Note3)		10	
I _{OREF}	Reference output current		5	
dV _S /dt	Allowable Vs voltage slew rate		50	V/ns
dV _{SS} /dt	Allowable Vss voltage slew rate (Note3)		50	V/ms
Pd	Maximum power dissipation @ T _A ≤ +25°C		1.0	W
Rth _{JA}	Thermal resistance, Junction to ambient		115	°C/W
TJ	Junction Temperature		150	°C
Ts	Storage Temperature	-55	150	°C
T_L	Lead temperature (soldering, 10 seconds)		300	°C

Note1: IN- contains clamping diode to GND.

 V_{DD} – IN+, GND - V_{SS} , V_{CC} -COM and V_{B} - V_{S} contain internal shunt zener diodes. Please note that the Note2:

voltage ratings of these can be limited by the clamping current.

For the rising and falling edges of step signal of 10 V. V_{SS} =15 V to 200 V. Note3:

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions below. The Vs and COM offset ratings are tested with supplies biased at V_{AA} - V_{SS} =10 V, V_{CC} =12 V and V_{B} - V_{S} =12 V. All voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating supply absolute voltage	V _S +10	V _S +18	V	
Vs	High side floating supply offset voltage	(Note 1)	200	V	
I _{AAZ}	Floating input positive supply zener clamp current	1	11	mA	
I _{SSZ}	Floating input negative supply zener clamp current	1	11	IIIA	
V _{SS}	Floating input supply absolute voltage	0	200		
V _{HO}	High side floating output voltage	Vs	V_{B}		
V _{CC}	Low side fixed supply voltage	10	18		
V_{LO}	Low side output voltage	0	V_{CC}	V	
V_{GND}	GND pin input voltage	V _{SS} (Note 3)	V _{AA} (Note 3)	V	
V_{IN-}	Inverting input voltage	V _{GND} -0.5	V _{GND} +0.5	D +0.5	
V _{CSD}	CSD pin input voltage	V _{SS}	V _{AA}		
V_{COMP}	COMP pin input voltage	V _{SS}	V_{AA}		
C_COMP	COMP pin phase compensation capacitor to GND	1	-	nF	
V_{DT}	DT pin input voltage	0	V_{CC}	V	
I _{OREF}	Reference output current to COM (Note 2)	0.3	0.8	mA	
V _{OCSET}	OCSET pin input voltage	0.5	5	V	
V _{CSH}	CSH pin input voltage	CSH pin input voltage Vs V _B		V	
dVss/dt	Allowable Vss voltage slew rate upon power-up (Note4)	-	50	V/ms	
I _{PW}	Input pulse width	10 (Note 5)	-	ns	
f _{SW}	Switching Frequency	-	800	kHz	
T _A	Ambient Temperature	-40	125	°C	

Note 1: Logic operational for Vs equal to -5 V to +200 V. Logic state held for Vs equal to -5 V to $-V_{BS}$.

Note 2: Nominal voltage for V_{REF} is 5.1 V. I_{OREF} of 0.3 – 0.8 mA dictates total external resistor value on VREF to be 6.3 k Ω to 16.7 k Ω .

Note 3: GND input voltage is limited by I_{AAZ} and I_{SSZ}.

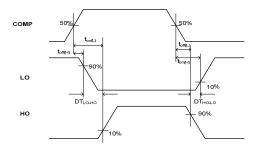
Note 4: V_{SS} ramps up from 0 V to 200 V.

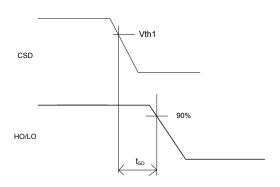
Note 5: Output logic status may not respond correctly if input pulse width is smaller than the minimum pulse width.

Electrical Characteristics

Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C with bias conditions of V_{CC},V_{BS}= 12 V, V_{SS}=V_S=COM=0 V, V_{AA}=10 V, C_L=1 nF.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Low Side	Supply				I.	
UV _{CC+}	Vcc supply UVLO positive threshold	8.4	8.9	9.8		
UV _{CC-}	Vcc supply UVLO negative threshold	8.2	8.7	9.4	V	
UV _{CCHYS}	UV _{CC} hysteresis	-	0.2	-		
I _{QCC}	Low side quiescent current	-	-	3	mA	V _{DT} =V _{CC}
V _{CLAMPL}	Low side zener diode clamp voltage	19.6	20.4	21.6	V	I _{CC} =5 mA
	Floating Supply				1	00
UV _{BS+}	High side well UVLO positive threshold	8.0	8.5	9.7		
UV _{BS-}	High side well UVLO negative threshold	7.8	8.3	9.0	V	
UV _{BSHYS}	UV _{BS} hysteresis	- 7.0	0.2		⊣	
I _{QBS}	High side quiescent current	_	-	1	mA	
I _{LKH}	High to Low side leakage current	_	_	50	μΑ	V _B =V _S =200 V
V _{CLAMPH}	High side zener diode clamp voltage	19.6	20.4	21.6	V	I _{BS} =5 mA
	Input Supply	19.0	20.4	21.0	V	IBS-3 IIIA
Floating				1	T	\/ -0\/ CND =:=
UV _{AA+}	VA+, VA- floating supply UVLO positive threshold from V _{SS}	8.2	8.7	9.7		V _{SS} =0 V, GND pin floating
UV_{AA}	VA+, VA- floating supply UVLO negative threshold from $V_{\rm SS}$	7.7	8.2	9.0	V	V _{SS} =0 V, GND pin floating
UV_{AAHYS}	UV _{AA} hysteresis	-	0.5	-		V _{SS} =0 V, GND pin floating
I _{QAA0}	Floating Input positive quiescent supply current	-	0.5	2		V _{AA} =10 V, V _{SS} =0 V, V _{CSD} =VSS
		-	6.5	11		V _{AA} =10 V, V _{SS} =0 V, V _{CSD} =VAA, Tj = - 40C
I _{QAA1}	Floating Input positive quiescent supply current	-	8	11	mA	V_{AA} =10 V, V_{SS} =0 V, V_{CSD} =VAA, Tj = 25C
		-	9.5	12.5		V _{AA} =10 V, V _{SS} =0 V, V _{CSD} =VAA, Tj = 125C
		-	6.5	11		V _{AA} =10 V, V _{SS} =0 V, V _{CSD} =GND, Tj = - 40C
I_{QAA2}	Floating Input positive quiescent supply current	-	8	11		V _{AA} =10 V, V _{SS} =0 V, V _{CSD} =GND, Tj = 25C
		-	9.5	12.5		V _{AA} =10 V, V _{SS} =0 V, V _{CSD} =GND, Tj = 125C
I _{LKM}	Floating input side to Low side leakage current	-	-	50	μA	V _{AA} =V _{SS} =V _{GND} = 100 V
V _{CLAMPM+}	V _{AA} floating supply zener diode clamp voltage, positive, with respect to GND	6.0	7.0	8.0	_ v	I_{AA} =5 mA, I_{SS} =5 mA, V_{GND} =0 V, V_{CSD} =VSS
V _{CLAMPM} -	V _{SS} floating supply zener diode clamp voltage, negative, with respect to GND			-6.0		I_{AA} =5 mA, I_{SS} =5 mA, V_{GND} =0 V, V_{CSD} =VSS
Audio Inr	out (V _{GND} =0, V _{AA} =5V, V _{SS} =-5V)		•	•	•	
	(SAD - 7 AN - 7 - 33 7	-20	0	20	mV	Tj = -40C
V_{OS}	Input offset voltage	-15	0	15	mV	Tj = 25C
00		-18	0	18	mV	Tj = 125C
I _{BIN}	Input bias current	-	-	40	nA	.,




BW	Cmall signal handwidth		9		MHz	C _{COMP} =2 nF,
	Small signal bandwidth	-	9	-		Rf=3.3 kΩ
V_{COMP}	OTA Output voltage	VAA-1	-	VSS+1	V	1/ 101/
g _m	OTA transconductance	60	100	-	mS	V _{IN-} =10 mV
G _V	OTA gain	60	-	-	dB	BW=20 kHz,
V _{Nrms}	OTA input noise voltage	-	250	-	mVrms	Resolution BW=22 Hz Fig.5
SR	Slew rate	-	±5	-	V/us	C _{COMP} =1 nF
CMRR	Common-mode rejection ratio	-	60	-	dB	
PSRR	Supply voltage rejection ratio	-	65	-	QD.	
	<u>mparator</u>			_		
Vth _{PWM}	PWM comparator threshold in COMP	-	$(V_{AA}-V_{SS})/2$	-	V	
f _{OTA}	COMP pin star-up local oscillation	0.7	1.0	1.3	MHz	V _{CSD} =GND
	frequency	0.7	1.0	1.0	1711 12	V CSD -OND
Protection	on					
V_{REF}	Reference output voltage	4.8	5.1	5.5		I _{OREF} =0.5 mA
Vth _{OCL}	Low side OC threshold in Vs	1.1	1.2	1.3		OCSET=1.2 V, Fig.6
Vth _{OCH}	High side OC threshold in V _{CSH}	1.1+ Vs	1.2+ Vs	1.3+ Vs	V	Vs=200 V,
Vth1	CSD pin shutdown release threshold	$0.62xV_{DD}$	$0.70xV_{DD}$	$0.78xV_{DD}$		
Vth2	CSD pin self reset threshold	$0.26xV_{DD}$	$0.30xV_{DD}$	$0.34xV_{DD}$		
I _{CSD+}	CSD pin discharge current	60	100	150		$V_{CSD} = V_{SS} + 5 V$
I _{CSD-}	CSD pin charge current	60	100	150	μA	$V_{CSD} = V_{SS} + 5 V$
t _{SD}	Shutdown propagation delay from $V_{CSD} > V_{SS} + Vth_{OCH}$ to Shutdown	-	-	250		
t _{och}	Propagation delay time from V _{CSH} > Vth _{OCH} to Shutdown	-	-	650	ns	Fig.3
t _{ocl}	Propagation delay time from Vs> Vth _{OCL} to Shutdown	-	-	650		Fig.4
Gate Driv		1			ı	
lo+	Output high short circuit current (Source)	-	1.0	-	Α	Vo=0 V, PW≤10 μs
lo-	Output low short circuit current (Sink)	_	1.2	_	A	Vo=12 V, PW<10 μs
V _{OL}	Low level out put voltage LO – COM, HO - VS	-	-	0.1		<u> </u>
V _{OH}	High level out put voltage VCC – LO, VB - HO	-	-	2.3	V	lo=2 mA
ton	High and low side turn-on propagation delay	-	360	-	ns	$V_{DT} = V_{CC}$
toff	High and low side turn-off propagation delay	-	335	-	-	V _{DT} = V _{CC}
tr	Turn-on rise time	_	20	50		
tf	Turn-off fall time	_	15	35	1	
u	Turn on fair time	5	20	35	-	V _{DT} >V _{DT1,} Tj = -40C
DT1	Deadtime: LO turn-off to HO turn-on (DT _{LO-HO}) & HO turn-off to LO turn-on	15	25	35		V _{DT} >V _{DT1,}
	(DT _{HO-LO})	20	35	50		$Tj = 25C$ $V_{DT} > V_{DT1}$
		20	35	55		$Tj = 125C$ $V_{DT1} > V_{DT} > V_{DT2,}$
DT2	Deadtime: LO turn-off to HO turn-on (DT _{LO-HO}) & HO turn-off to LO turn-on	25	40	55		$Tj = -40C$ $V_{DT1} > V_{DT} > V_{DT2},$
012	(DT _{HO-LO}) & HO tulli-oli to LO tulli-oli				_	$Tj = 25C$ $V_{DT1} > V_{DT} > V_{DT2}.$
DTO	Deadtime: LO turn-off to HO turn-on	30	50	70		$Tj = 125C$ $V_{DT2} > V_{DT3}$
DT3	(DT _{LO-HO}) & HO turn-off to LO turn-on (DT _{HO-LO})	40	65	95	-	$T_{\rm J} = -40C$ $V_{\rm DT2} > V_{\rm DT3}$
	(- · no-Lo)	50	65	85		Tj = 25C

AUIRS2092S

		50	80	105		$V_{DT2}>V_{DT}>V_{DT3,}$ Tj = 125C
	Deadtime: LO turn-off to HO turn-on	65	110	150		$V_{DT3}>V_{DT}>V_{DT4,}$ Tj = -40C
DT4	(DT _{LO-HO}) & HO turn-off to LO turn-on	85	105	135		$V_{DT3}>V_{DT}>V_{DT4,}$ $Tj = 25C$
	$(DT_{HO-LO})V_{DT} = V_{DT4}$	80	115	155		$V_{DT3}>V_{DT}>V_{DT4,}$ Tj = 125C
V _{DT1}	DT mode select threshold 2	0.51xVcc	0.57xVcc	0.63xVcc		
V_{DT2}	DT mode select threshold 3	0.32xVcc	0.36xVcc	0.40xVcc	V	
V_{DT3}	DT mode select threshold 4	0.21xVcc	0.23xVcc	0.25xVcc		

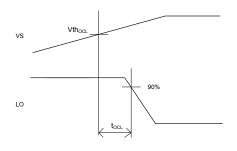

Waveform Definitions

Figure 1: Switching Time Waveform Definitions

Figure 2: CSD to Shutdown Waveform Definitions

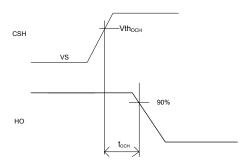


Figure 3: V_S > Vth_{OCL} to Shutdown Waveform

Figure 4: V_{CSH} > Vth_{OCH} to Shutdown Waveform

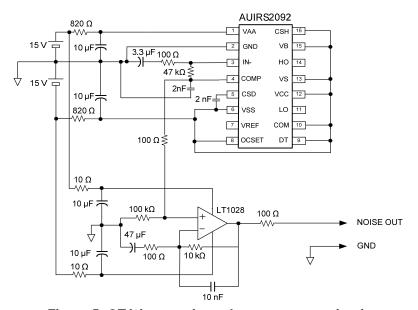
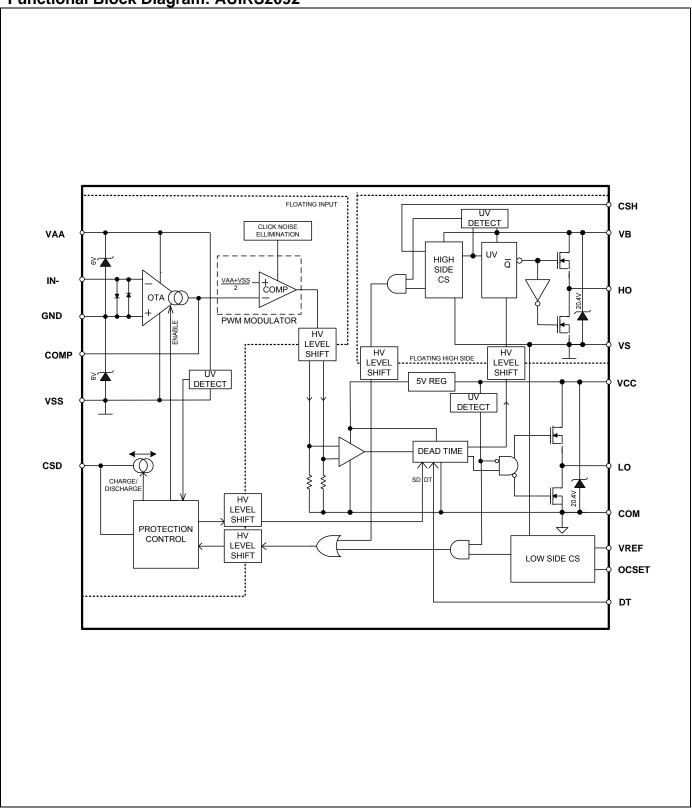
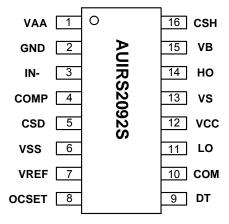



Figure 5: OTA input noise voltage mesurent circuit

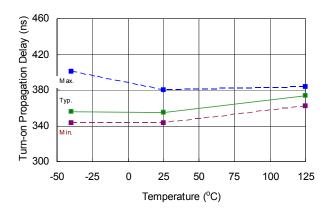
Functional Block Diagram: AUIRS2092



Input/Output Pin Equivalent Circuit Diagrams: AUIRS2092 V_B **ESD** Diode 20 V VAA НО Clamp **6V ESD ESD** Diode Zener 7 Diode Diode ۷s IN-200 V 🛦 V_{cc} V_{cc} GND ESD 6V **ESD** Diode Zener 🔼 20 V Diode Diode LO Clamp VSS **ESD** Diode COM VAA V_{CC} **ESD ESD** Diode Diode **COMP** DT, VREF or CSD **ESD ESD OCSET** Diode 4 Diode 4 VSS COM

Lead Definitions: AUIRS2092

Pin#	Symbol	Description		
1	VAA	Floating input positive supply		
2	GND	Floating input supply return		
3	IN-	Analog inverting input		
4	COMP	Phase compensation input, comparator input		
5	CSD	Shutdown timing capacitor		
6	VSS	Floating input negative supply		
7	VREF	5V reference voltage to program OCSET pin		
8	OCSET	Low side over current threshold setting		
9	DT	Deadtime program input		
10	COM	Low side supply return		
11	LO	Low side output		
12	VCC	Low side supply		
13	VS	High side floating supply return		
14	НО	High side output		
15	VB	High side floating supply		
16	CSH	High side over current sensing input		


Lead Assignments

SOIC16N

Parameter Temperature Trends

Figures illustrated in this chapter provide information on the experimental performance of the AUIRS2092S HVIC. The line plotted in each figure is generated from actual lab data. A large number of individual samples were tested at three temperatures (-40 °C, 25 °C, and 125 °C) in order to generate the experimental curve. The line consists of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood trend. The individual data points on the Typ. curve were determined by calculating the averaged experimental value of the parameter (for a given temperature).

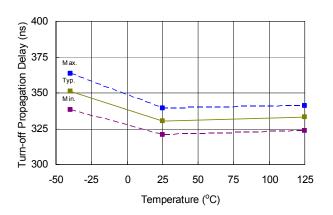


Figure 6: ton vs. temperature

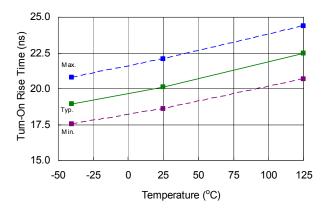


Figure 7: t_{OFF} vs. temperature

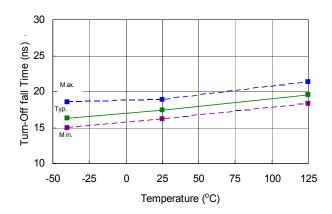
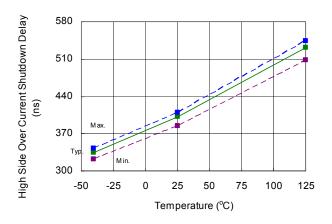



Figure 8: T_R vs. temperature

Figure 9: T_F vs. temperature

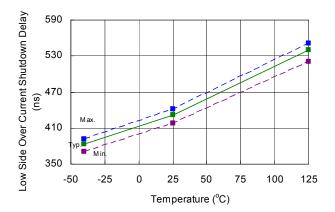
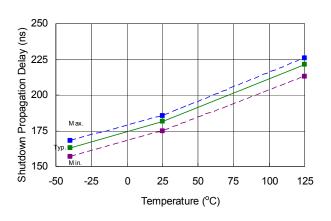



Figure 10: T_{OCH} vs. temperature

Figure 11: T_{OCL} vs. temperature

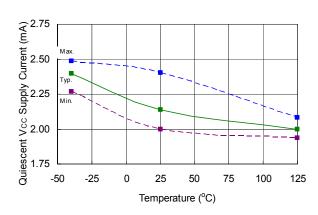
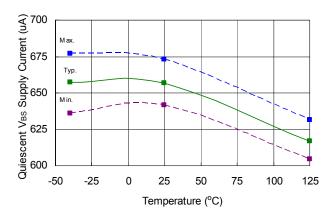



Figure 12: T_{SD} vs. temperature

Figure 13: I_{QCC} vs. temperature

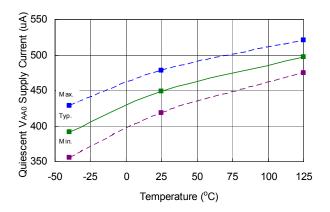
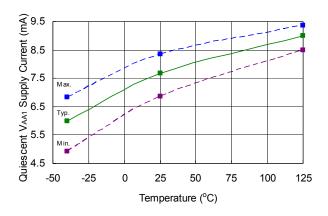



Figure 14: IQBS vs. temperature

Figure 15: IQAA0 vs. temperature

www.irf.com

© 2007 International Rectifier

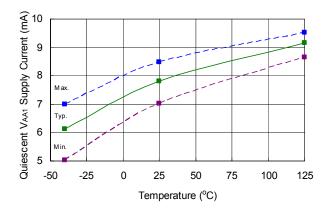
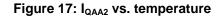
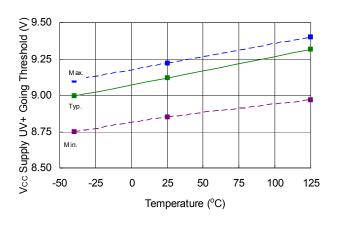




Figure 16: I_{QAA1} vs. temperature

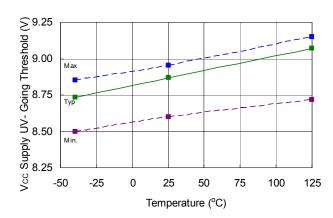
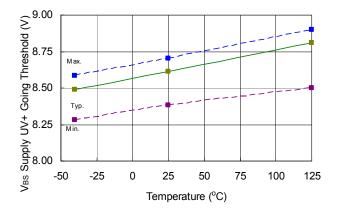



Figure 18: V_{CCUV+} vs. temperature

Figure 19: V_{CCUV-} vs. temperature

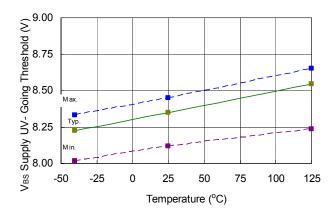
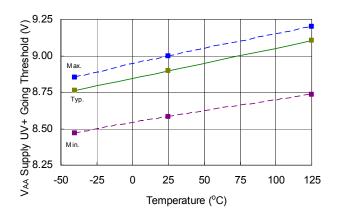



Figure 20: V_{BSUV+} vs. temperature

Figure 21: V_{BSUV}. vs. temperature

www.irf.com

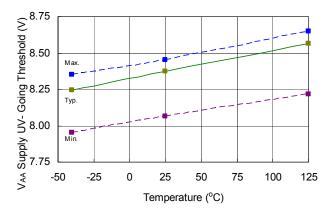
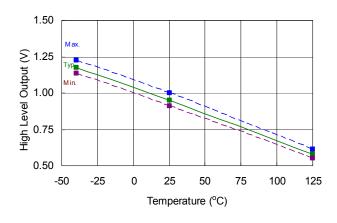



Figure 22: V_{AAUV+} vs. temperature

Figure 23: V_{AAUV}. vs. temperature

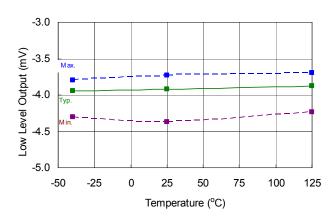
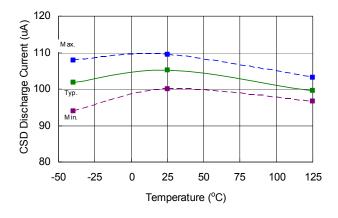



Figure 24: V_{OH} ($I_O = 0A$) vs. temperature

Figure 25: V_{OL} ($I_O = 0A$) vs. temperature

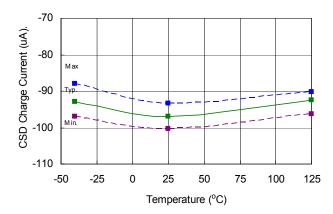


Figure 26: I_{CSD+} vs. temperature

Figure 27: I_{CSD}. vs. temperature

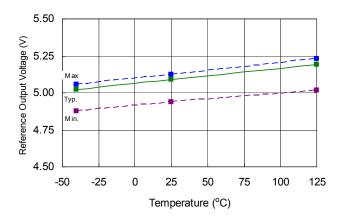
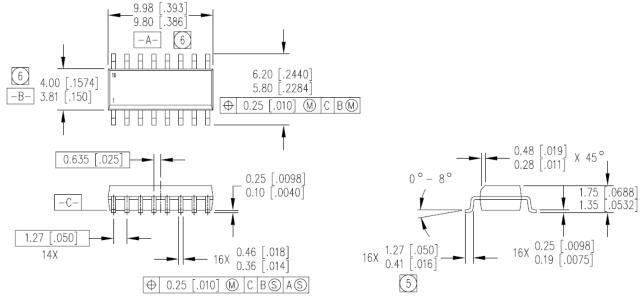
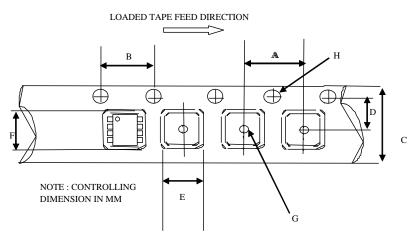
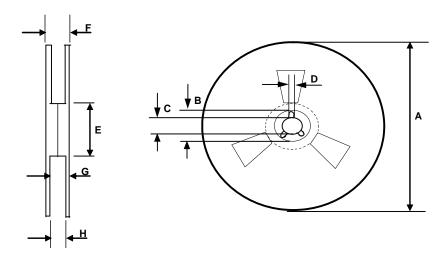



Figure 28: V_{REF} vs. temperature

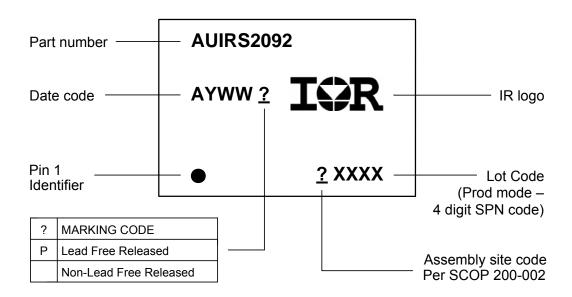

Package Details: SOIC16N

NOTES:


- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AC.
- (5) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
 - DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.15 [.006].

Tape and Reel Details: SOIC16N

CARRIER TAPE DIMENSION FOR 16SOICN


	Metric		Imperial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	10.20	10.40	0.402	0.409
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 16SOICN

	Me	tric	Imperial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
A B C	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
D E F	98.00	102.00	3.858	4.015	
	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
Н	16.40	18.40	0.645	0.724	

Part Marking Information

Ordering Information

Basa Bart Namalar	David and Tame	Standard Pack		Occupate Boot News Low	
Base Part Number	Package Type	Form	Quantity	Complete Part Number	
ALUDOSOS	SOIC16N	Tube/Bulk	45	AUIRS2092S	
AUIRS2092	SOIC16N	Tape and Reel	2500	AUIRS2092STR	

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105

Revision History

Date	Comment
April 30, 2010	Converted from Industrial version
Aug. 5, 2010	Added tri-temp graphs;
Aug. 23, 2010	Updated Iqaa1,2,VOH,VOL,DT1,2,3,4, TOCH,TOCL,VOS, ICSD+/-, VREF, UVAA/CC/BS+/-;
	added Iqaa1-25,Iqaa2-25,DT1,2,3,4-25 parameters.
Sep. 1, 2010	Corrected DT1-25 max to 35. Added ESD and latchup classification
Jan. 19, 2011	Updated DT1-to-4, Vos, Iqaa1,2 tri-temp spec
Jan. 20, 2011	Added leadfree and automotive grade heading
Jan. 21, 2011	Added typical for IO on front page, merged DT,Vos, Iqaa repeated descriptions.
Mar. 11,2011	Changed notice address

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)