

IGBT

TRENCHSTOPTM IGBT3 Chip SIGC04T60GE

Data Sheet

Industrial Power Control

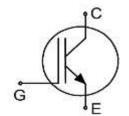
Downloaded From Oneyac.com

Table of Contents

Features and Applications	3
Mechanical Parameters	3
Maximum Ratings	4
Static and Electrical Characteristics	4
Further Electrical Characteristics	
Further Electrical Characteristics	5
Chip Drawing	6
Revision History	7
Relevant Application Notes	7
Legal Disclaimer	8

TRENCHSTOP[™] IGBT3 Chip

Features:


- 600V trench & field stop technology
- Low V_{CEsat}
- Low turn-off losses
- Short tail current
- Positive temperature coefficient
- Easy paralleling

Recommended for:

- Power modules
- Discrete components

Applications:

- Drives
- White goods
- Resonant applications

Chip Type	V _{CE}	I Cn	Die Size	Package
SIGC04T60GE	600V	6A	1.89mm x 2.17mm	Sawn on foil

Mechanical Parameters Die size 1.89 x 2.17 Emitter pad size See chip drawing $\,\mathrm{mm}^2$ Gate pad size 0.36 x 0.51 Area total 4.10 Silicon thickness 70 μm Wafer size 200 mm 6841 Maximum possible chips per wafer Passivation frontside Photoimide 3200nm AlSiCu Pad metal Ni Ag - system To achieve a reliable solder connection it is strongly Backside metal recommended not to consume the Ni layer completely during production process Die bond Electrically conductive epoxy glue and soft solder Wire bond Al, ≤500µm Reject ink dot size Ø 0.65mm; max. 1.2mm for original and Ambient atmosphere air, temperature 17°C - 25°C sealed MBB bags Storage environment (<6 months) for open MBB bags Acc. IEC 62258-3; Section 9.4 Storage Environment.

Maximum Ratings

In general, from reliability and lifetime point of view, the lower the operation junction temperature and/or the applied voltage, the greater the expected lifetime of any semiconductor device.

Parameter	Symbol	Value	Unit	
Collector-emitter voltage, T_{vj} =25°C	V _{CE}	600	V	
DC collector current, limited by $T_{\rm vj\;max}^{\;\;\;1}$	I _C	-	Α	
Pulsed collector current, t_p limited by $T_{vj \max}^2$	I _{C,puls}	18	Α	
Gate-emitter voltage	V_{GE}	±20	V	
Virtual junction temperature	$T_{\rm vj}$	-40 +175	°C	
Short circuit data $^{1/2/3}$ V_{GE} =15V, V_{CC} =360V, T_{vj} =150°C	t _{sc}	6	μs	
Reverse bias safe operating area (RBSOA) ²	$I_{C,max} = 12A, \ V_{CEmax} = 600V, \ T_{vj} \le 150^{\circ}C$			

Static Characteristics (tested on wafer), T_{vj} =25°C

Parameter	Symbol	Conditions	Value			Unit	
raiailietei	Symbol	Conditions	min.	typ.	max.		
Collector-emitter breakdown voltage	$V_{(BR)CES}$	V_{GE} =0V, I_{C} =2mA	600	-	-		
Collector-emitter saturation voltage	V _{CEsat}	V _{GE} =15V, I _C =6A	1.1	1.5	1.9	V	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C}$ =90 μ A, $V_{\rm GE}$ = $V_{\rm CE}$	5.0	5.8	6.5		
Zero gate voltage collector current	I _{CES}	V_{CE} =600V, V_{GE} =0V	1	ı	0.4	μA	
Gate-emitter leakage current	I _{GES}	$V_{CE} = 0V, V_{GE} = 20V$	-	-	300	nA	
Integrated gate resistor	r _G			none		Ω	

Electrical Characteristics ²

Parameter	Symbol	Conditions	Value			Unit
raiailietei		Conditions	min.	typ.	max.	Ullit
Input capacitance	C _{ies}	V _{CE} =25V,	-	368	-	
Output capacitance	Coes	$V_{GE}=0V$, $f=1MHz$	-	28	-	pF
Reverse transfer capacitance	C _{res}	T _{vj} =25°C	-	11	-	

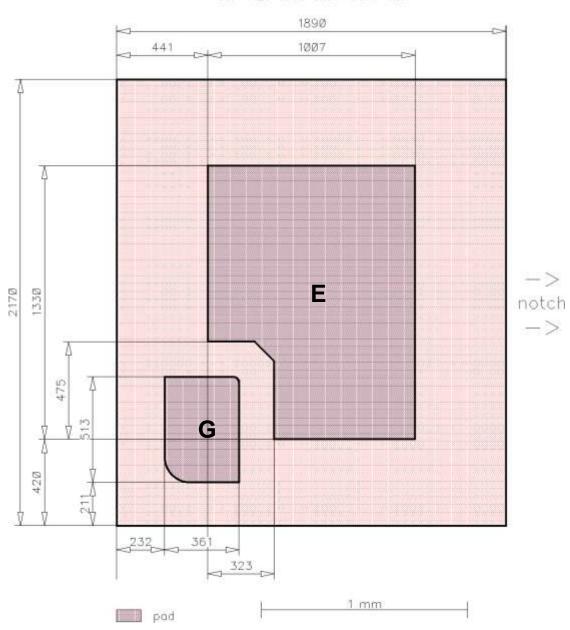
¹ Depending on thermal properties of assembly.

² Not subject to production test - verified by design/characterization.

³ Allowed number of short circuits: <1000; time between short circuits: >1s.

Further Electrical Characteristics

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.


Application example

L7501L, L7501T 5 Rev. 2.2, 19.07.2017

Chip Drawing

E = Emitter

G = Gate

Bare Die Product Specifics

Test coverage at wafer level cannot cover all application conditions. Therefore it is recommended to test all characteristics which are relevant for the application at package level, including RBSOA and SCSOA.

Description

AQL 0.65 for visual inspection according to failure catalogue

Electrostatic Discharge Sensitive Device according to MIL-STD 883

Revision History

Revision	Subjects (major changes since last revision)	Date
2.1	Wafer diameter change to 200 mm	06.07.2010
2.2	Additional Basic Type, editorial changes	19.07.2017

Relevant App	lication Notes

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2017. All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

 $w\ w\ w\ .\ i\ n\ f\ i\ n\ e\ o\ n\ .\ c\ o\ m$

Published by Infineon Technologies AG

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)