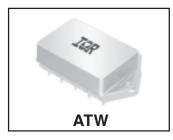
PD-97418

# International **IOR** Rectifier

# HYBRID HIGH-RELIABILITY DC-DC CONVERTER


### Description

The ATW28300S DC-DC converter features high power density and an extended temperature range for use in military and industrial applications. Designed to MIL-STD-704D input requirements, this device operates with a nominal 28VDc input with an adjustable output of 150 to 300V via external potentiometer. The circuit design incorporates a pulse width modulated push-pull topology operating in the feed-forward mode at a nominal switching frequency of 270KHz. Input to output isolation is achieved through the use of transformers in the forward and feedback circuits.

The advanced feedback design provides fast loop response for superior line and load transient characteristics and offers greater reliability than devices incorporating optical feedback circuits.

Manufactured in a facility fully gualified to MIL-PRF-38534, this converter is available in four screening grades to satisfy a wide range of requirements. The CH grade is fully compliant to the requirements of MIL-PRF-38534 for class H. The HB grade is processed and screened to the class H requirement, but may not necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and periodic inspection not required. Both grades are tested to meet the complete group "A" test specification over the full military temperature range without output power deration. Two grades with more limited screening are also available for use in less demanding applications. For screening options, refer to device screening table. Variations in electrical, mechanical and screening can be accommodated. Contact IR San Jose for special requirements.

ATW28300S (IR P/N 10207) 28V Input, 300V Single Output



#### **Features**

- 18V to 40VDC Input Range (28VDC Nominal)
- Short Circuit and Overload Protected
- 22.8W/in<sup>°</sup> Power Density
- 30W Output Power
- Adjustable Output Voltage
- Fast Loop Response
- Superior Transient Characteristics
- Operating Temperature Range of -55°C to +125°C
- Popular Industry Standard Pin-Out
- Resistance Seam Welded Case for Superior Long Term Hermeticity
- Shutdown from External Signal
- Full Military Screening
- MIL-PRF-38534 Compliant

www.irf.com

**1** 12/14/10

# ATW28300S (IR P/N 10207)

# International **100** Rectifier

# Specifications

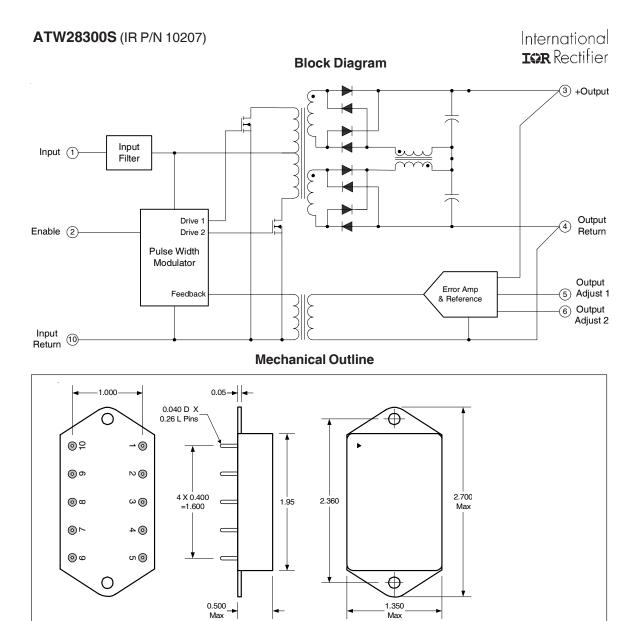
# Absolute Maximum Ratings

| Input voltage               | (-0.3V to +40V <sub>DC</sub> ) Continuous, (-0.5V to +50V <sub>DC</sub> ) Up to 1 second |
|-----------------------------|------------------------------------------------------------------------------------------|
| Soldering temperature, Lead | 300°C for 10 seconds                                                                     |
| Operating case temperature  | -55°C to +125°C                                                                          |
| Storage case temperature    | -65°C to +135°C                                                                          |

# **Electrical Performance Characteristics**

| Test                                                         | Symbol              | Conditions<br>-55°C ≤Tc ≤+125°C<br>Viℕ= 28Vpc ±5%, CL = 0<br>BADJ = 455 Ohms                              | Group A<br>Subgroups | Limits   |      | Unit  |
|--------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------|----------------------|----------|------|-------|
|                                                              |                     | Unless otherwise specified                                                                                |                      | Min      | Max  |       |
| Output voltage Min <sup>10</sup>                             | Vout                | V <sub>IN</sub> = 18, 28, and 40V <sub>DC</sub>                                                           | 1,2,3                | 130      | 145  | VDC   |
|                                                              | Min                 | I <sub>OUT</sub> = 5.0mA, RADJ = 30 Ohms                                                                  |                      |          |      |       |
| Output voltage Max 10                                        | V <sub>OUT</sub>    | V <sub>IN</sub> = 18, 28, and 40V <sub>DC</sub>                                                           | 1,2,3                | 305      | 320  | VDC   |
|                                                              | Max                 | I <sub>OUT</sub> = 5.0mA, RADJ = 940 Ohms                                                                 |                      |          |      |       |
| Output voltage stability                                     |                     | $I_{OUT} = 100 \text{mA}$ up to 1000 hrs                                                                  | 1,2,3                |          | 2.0  | %     |
| Output current 8                                             | IOUT                | $V_{IN} = 18, 28, and 40V_{DC}$                                                                           | 1,2,3                | 5.0      | 100  | mAdd  |
| Output current Output Current VRIP                           |                     | V <sub>IN</sub> = 18, 28, and 40V <sub>DC</sub> ,<br>lout = 50mA,<br>lout = 100mA,<br>B.W. = DC to 1.0MHz | 1,2,3                |          | 1000 | mVp-p |
| Output power 4,8                                             | Pout                | V <sub>IN</sub> = 18, 28, 40VDC.<br>RADJ = 940 Ohms                                                       | 1,2,3                | 30       |      | W     |
| Line regulation                                              | VR <sub>LINE</sub>  | V <sub>IN</sub> = 18, 28, and 40V <sub>DC</sub> ,<br>I <sub>OUT</sub> = 5.0, 50, and 100mA                | 1,2,3                |          | 1.0  | %     |
| Load regulation                                              |                     | V <sub>IN</sub> = 18, 28, and 40V <sub>DC</sub> ,<br>I <sub>OUT</sub> = 5.0, 50, and 100mA                | 1,2,3                |          | 1000 | mV    |
| Input current                                                | I <sub>IN</sub>     | I <sub>OUT</sub> = 0, Enable (pin 2) tied to<br>Input Return                                              | 1,2,3                |          | 18   | mAdd  |
|                                                              |                     | I <sub>OUT</sub> = 0, Enable (pin2) = open                                                                | 1,2,3                |          | 80   | mAdd  |
| Input ripple current                                         | I <sub>RIP</sub>    | I <sub>OUT</sub> = 100mA                                                                                  | 1,2,3                |          | 50   | mAp-p |
| Efficiency                                                   | E <sub>FF</sub>     | I <sub>OUT</sub> = 100mA,<br>RADJ = 940 Ohms                                                              | 1<br>2,3             | 80<br>78 |      | %     |
| Isolation                                                    | ISO                 | Input to output or any pin<br>to case (except pin 2) at 500Vpc,<br>Tc = 25°C                              | 1                    | 100      |      | MΩ    |
| Capacitive load 6, 9                                         | CL                  | No effect on DC performance                                                                               | 4                    |          | 10   | μF    |
| Power dissipation load fault                                 | PD                  | Overload <sup>3</sup>                                                                                     | 1                    |          | 14   | W     |
|                                                              |                     | Short circuit                                                                                             | 1                    |          | 9.0  | W     |
| Switching frequency                                          | Fs                  | I <sub>OUT</sub> = 100mA                                                                                  | 1,2,3                | 250      | 300  | KHz   |
| Output response to step transient load changes 5             | VO <sub>TLOAD</sub> | 50mA load to/from100mA load                                                                               | 4,5,6                | -3.0     | +3.0 | Vpk   |
|                                                              |                     | 5.0mA load to/from100mA load                                                                              | 4,5,6                | -10      | +10  | Vpk   |
| Recovery time step<br>transient load changes <sup>1, 5</sup> | TT <sub>LOAD</sub>  | 50mA load to/from100mA load                                                                               | 4,5,6                |          | 2.0  | ms    |
|                                                              |                     | 5.0mA load to/from100mA load                                                                              | 4,5,6                |          | 5.0  | ms    |

For Notes to Specifications, refer to page 3




## **Electrical Performance Characteristics - continued**

| Test                                                               | Symbol              | Conditions<br>-55°C ≤Tc ≤+125°C<br>VIN = 28VDC ±5%, CL = 0<br>RADJ = 455 Ohms | Group A<br>Subgroups | Limits |     | Unit |
|--------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------|----------------------|--------|-----|------|
|                                                                    |                     | Unless otherwise specified                                                    |                      | Min    | Max |      |
| Output response<br>transient step line<br>changes <sup>5, 9</sup>  | VO <sub>TLINE</sub> | Input step 18 to/from 40Vbc                                                   | 4,5,6                | -10    | +10 | Vpk  |
| Recovery time<br>transient step line<br>changes <sup>1, 5, 9</sup> | TT <sub>LINE</sub>  | Input step 18 to/from 40VDC                                                   | 4,5,6                |        | 2.0 | ms   |
| Turn on overshoot                                                  | VTonos              | $I_{OUT} = 0$ and 100mA,<br>RADJ = 940 Ohms                                   | 4,5,6                |        | 20  | Vpk  |
| Turn on delay <sup>2</sup>                                         | Ton <sub>D</sub>    | $I_{OUT} = 0$ and 100mA,<br>RADJ = 940 Ohms                                   | 4,5,6                |        | 350 | ms   |
| Load fault recovery <sup>9</sup>                                   | Tr <sub>LF</sub>    | $V_{IN} = 18$ to 40VDC,<br>RADJ = 940 Ohms                                    | 4,5,6                |        | 350 | ms   |
| Weight                                                             |                     | Flange                                                                        |                      |        | 75  | g    |

#### Notes to Specifications

- Recovery time is measured from the initiation of the transient to where Vout has returned to within ±1.0% of Vout at 50% load.
  Turn-on delay time measurement is for either a step application of power at the input or the removal of ground signal from the Enable pin (pin 2) while power is applied to the input.
- An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is a condition of maximum power dissipation.
- Above +125°C case, derate output power linearly to 0 to +135°C case.
- 5 Transition time >10μs.
- 6 Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit may disturb loop stability and may interfere with the operation of the load fault detection circuitry, appearing as an overload during turn-on.
- 7 Bandwidth guaranteed by design. Tested for 20KHz to 1.0MHz.
- 8 Parameter guaranteed by line and load regulation tests.
- 9 Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified in this table.
- Output voltage can be adjusted to the range of 150V to 300V with an external 1KOhms trim pot. The trim pot shall be connected to pin 5 (Output Adjust 1) and pin 6 (Output Adjust 2).

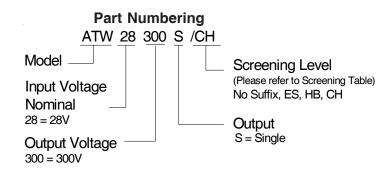


Notes: 1) All dimensions are in inches 2) The tolerance for X.XXX =  $\pm 0.005$ 

| Pin # | Designation     | Pin # | Designation     |
|-------|-----------------|-------|-----------------|
| 1     | +Input          | 6     | Output Adjust 2 |
| 2     | Enable          | 7     | Case            |
| 3     | + Output        | 8     | N/C             |
| 4     | Output Return   | 9     | N/C             |
| 5     | Output Adjust 1 | 10    | Input Return    |

#### ATW28300S (IR P/N 10207)




# **Device Screening**

| Requirement                  | MIL-STD-883 Method | No Suffix      | <b>ES</b> ②     | HB              | СН              |
|------------------------------|--------------------|----------------|-----------------|-----------------|-----------------|
| Temperature Range            |                    | -20°C to +85°C | -55°C to +125°C | -55°C to +125°C | -55°C to +125°C |
| Element Evaluation           | MIL-PRF-38534      | N/A            | N/A             | N/A             | Class H         |
| Non-Destructive<br>Bond Pull | 2023               | N/A            | N/A             | N/A             | N/A             |
| Internal Visual              | 2017               | 0              | Yes             | Yes             | Yes             |
| Temperature Cycle            | 1010               | N/A            | Cond B          | Cond C          | Cond C          |
| Constant Acceleration        | 2001, Y1 Axis      | N/A            | 500 Gs          | 3000 Gs         | 3000 Gs         |
| PIND                         | 2020               | N/A            | N/A             | N/A             | N/A             |
| Burn-In                      | 1015               | N/A            | 48 hrs@hi temp  | 160 hrs@125°C   | 160 hrs@125°C   |
| Final Electrical             | MIL-PRF-38534      | 25°C           | 25°C ②          | -55°C, +25°C,   | -55°C, +25°C,   |
| (Group A)                    | & Specification    |                |                 | +125°C          | +125°C          |
| PDA                          | MIL-PRF-38534      | N/A            | N/A             | N/A             | 10%             |
| Seal, Fine and Gross         | 1014               | Cond A         | Cond A, C       | Cond A, C       | Cond A, C       |
| Radiographic                 | 2012               | N/A            | N/A             | N/A             | N/A             |
| External Visual              | 2009               | 0              | Yes             | Yes             | Yes             |

Notes:

① Best commercial practice

② Sample tests at low and high temperatures



## **Part Definition**

IR P/N 10207EM = ATW28300S/ES IR P/N 10207FM = ATW28300S/HB



WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR SAN JOSE: 2520Junction Avenue, San Jose, California 95134, Tel: (408) 434-5000 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/2010



单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)