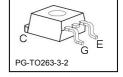

HighSpeed 2-Technology


- Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners
- 2nd generation HighSpeed-Technology for 1200V applications offers:
 - loss reduction in resonant circuits
 - temperature stable behavior
 - parallel switching capability
 - tight parameter distribution
 - E_{off} optimized for I_{C} =3A

Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Туре	V _{CE}	I _C	$oldsymbol{\mathcal{E}}_{off}$	T _j	Marking	Package
IGB03N120H2	1200V	3A	0.15mJ	150°C	G03H1202	PG-TO263-3-2

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	1200	V
Triangular collector current	I _C		Α
$T_{\rm C}$ = 25°C, f = 140kHz		9.6	
$T_{\rm C}$ = 100°C, f = 140kHz		3.9	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	9.9	
Turn off safe operating area	-	9.9	
$V_{CE} \le 1200 \text{V}, \ T_j \le 150^{\circ} \text{C}$			
Gate-emitter voltage	V_{GE}	±20	V
Power dissipation	P _{tot}	62.5	W
$T_{\rm C}$ = 25°C			
Operating junction and storage temperature	T _j , T _{stg}	-40+150	°C
Soldering temperature (reflow soldering, MSL1)	-	245	

² J-STD-020 and JESD-022

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R_{thJC}		2.0	K/W
junction – case				
Thermal resistance,	R_{thJA}		40	
junction – ambient ¹⁾				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

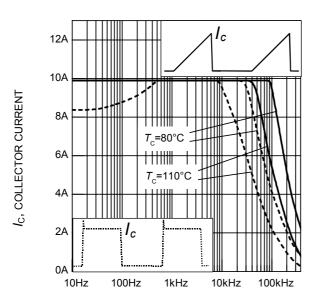
Parameter	Symbol Conditions -		Value			Unit
Parameter			min.	Тур.	max.	
Static Characteristic						•
Collector-emitter breakdown voltage	V _{(BR)CES}	$V_{\rm GE} = 0 \text{V}, I_{\rm C} = 300 \mu \text{A}$	1200	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE} = 15 \rm V, \ I_{\rm C} = 3 \rm A$				
		<i>T</i> _j =25°C	-	2.2	2.8	
		T _j =150°C	-	2.5	-	
		$V_{\rm GE} = 10 \rm V, I_{\rm C} = 3 \rm A,$				
		<i>T</i> _j =25°C	-	2.4	-	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C}$ =90 μ A, $V_{\rm CE}$ = $V_{\rm GE}$	2.1	3	3.9	
Zero gate voltage collector current	I _{CES}	V _{CE} =1200V, V _{GE} =0V				μΑ
		<i>T</i> _j =25°C	-	-	20	
		T _j =150°C	-	-	80	
Gate-emitter leakage current	I _{GES}	V _{CE} =0V, V _{GE} =20V	-	-	100	nA
Transconductance	g_{fs}	V_{CE} =20V, I_{C} =3A	-	2	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	205	-	pF
Output capacitance	Coss	V _{GE} =0V,	-	24	-	
Reverse transfer capacitance	Crss	f=1MHz	-	7	-	
Gate charge	Q _{Gate}	V _{CC} =960V, I _C =3A	-	22	-	nC
		V _{GE} =15V				
Internal emitter inductance	LE		-	7	-	nH
measured 5mm (0.197 in.) from case						

 $^{^{1)}}$ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70 μm thick) copper area for collector connection. PCB is vertical without blown air.

Switching Characteristic, Inductive Load, at T_i =25 °C

Parameter	Symbol	Conditions	Value			Unit
Farameter	Symbol	Conditions	min.	typ.	max.	Oilit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	T _j =25°C,	-	9.2	-	ns
Rise time	t_{r}	$V_{CC} = 800 \text{V}, I_{C} = 3 \text{A},$	-	5.2	-	
Turn-off delay time	$t_{d(off)}$	$V_{\rm GE}$ =15V/0V,	-	281	-	
Fall time	t_{f}	$R_{\rm G} = 82\Omega$,	-	29	-	
Turn-on energy	Eon	$L_{\sigma}^{(2)}$ =180nH, $C_{\sigma}^{(2)}$ =40pF Energy losses include	-	0.14	-	mJ
Turn-off energy	E_{off}		-	0.15	-	
Total switching energy	E _{ts}	"tail" and diode ⁴⁾ reverse recovery.	-	0.29	-	

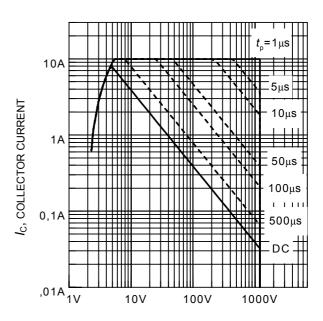
Switching Characteristic, Inductive Load, at T_i =150 °C


Parameter	Symbol	Conditions	Value			Unit	
Parameter	Symbol	Conditions	min.	typ.	max.	Oilit	
IGBT Characteristic							
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =150°C	-	9.4	-	ns	
Rise time	t_{r}	V _{CC} =800V,	-	6.7	-		
Turn-off delay time	$t_{d(off)}$	$I_{\rm C}$ =3A,	-	340	-		
Fall time	t_{f}	$V_{\rm GE}$ =15V/0V,	_	63	-		
Turn-on energy	Eon	$R_{\rm G}$ =82 Ω , $L_{\rm g}^{(2)}$ =180nH,	-	0.22	-	mJ	
Turn-off energy	E_{off}	$C_{\sigma}^{2)}$ =40pF	-	0.26	-		
Total switching energy	E _{ts}	Energy losses include "tail" and diode ³⁾ reverse recovery.	-	0.48	-		

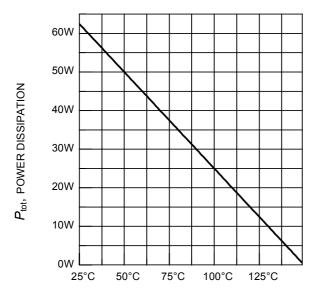
Switching Energy ZVT, Inductive Load

Parameter	Symbol	Conditions	Value			11:4:4
		Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-off energy	E _{off}	V _{CC} =800V,				mJ
		V _{CC} =800V, I _C =3A, V _{GE} =15V/0V,				
		$V_{GE} = 15 \text{V}/0 \text{V},$				
		$R_{\rm G}$ =82 Ω , $C_{\rm r}^{(2)}$ =4nF				
		<i>T</i> _i =25°C	_	0.05	-	
		T _i =150°C	_	0.09	-	

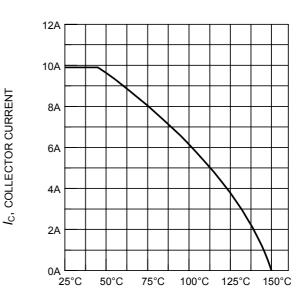
 $^{^{2)}}$ Leakage inductance L_σ and stray capacity C_σ due to dynamic test circuit in figure E $^{4)}$ Commutation diode from device IKP03N120H2



f, SWITCHING FREQUENCY


Figure 1. Collector current as a function of switching frequency

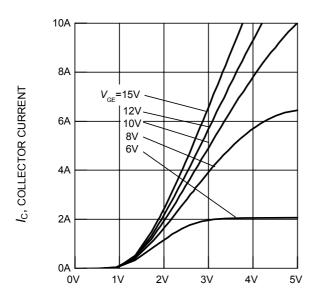
 $(T_{\rm j} \le 150^{\circ}\text{C}, D = 0.5, V_{\rm CE} = 800\text{V}, V_{\rm GE} = +15\text{V/OV}, R_{\rm G} = 82\Omega)$



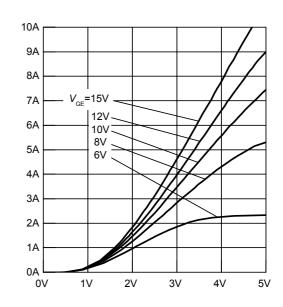
 V_{CE} , COLLECTOR-EMITTER VOLTAGE

Figure 2. Safe operating area $(D = 0, T_C = 25^{\circ}C, T_i \le 150^{\circ}C)$

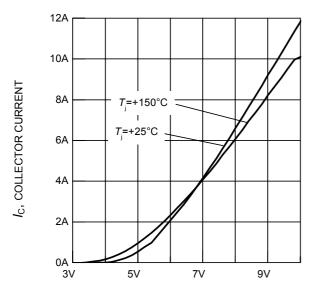
 $T_{\text{C}},$ CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature $(T_{i} \leq 150^{\circ}\text{C})$



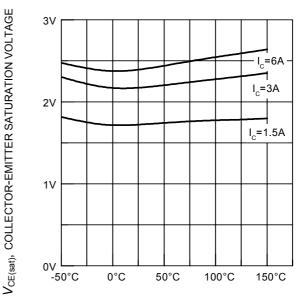
 $T_{\rm C}$, CASE TEMPERATURE


Figure 4. Collector current as a function of case temperature

 $(V_{GE} \le 15V, T_{i} \le 150^{\circ}C)$

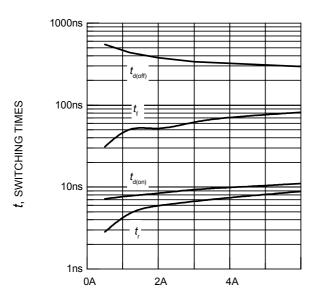


 V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics ($T_{\text{i}} = 25^{\circ}\text{C}$)



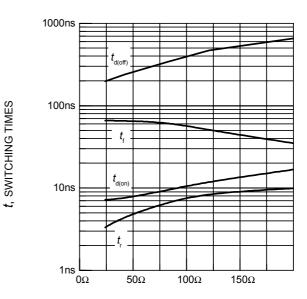
 $I_{
m c}$, collector current

 $V_{\rm CE}$, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics ($T_{\rm i}$ = 150°C)



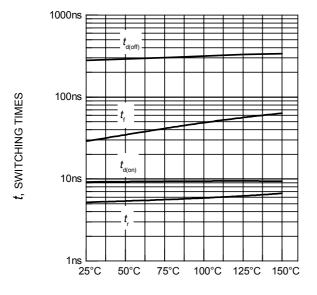
 $V_{\rm GE}$, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics ($V_{\rm CE}$ = 20V)

 $T_{\rm j},$ JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{\rm GE}$ = 15V)

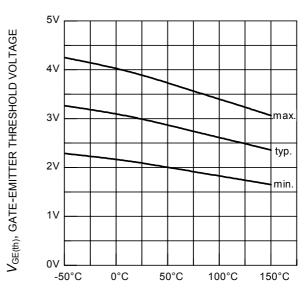


 $I_{\rm C}$, COLLECTOR CURRENT

Figure 9. Typical switching times as a function of collector current

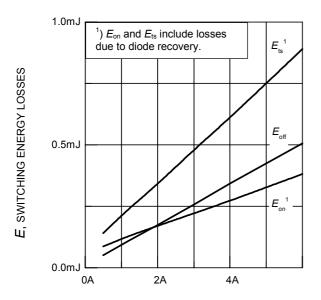

(inductive load, $T_i = 150^{\circ}$ C, V_{CE} = 800V, V_{GE} = +15V/0V, R_{G} = 82 Ω , dynamic test circuit in Fig.E)

 R_{G} , GATE RESISTOR


Figure 10. Typical switching times as a function of gate resistor

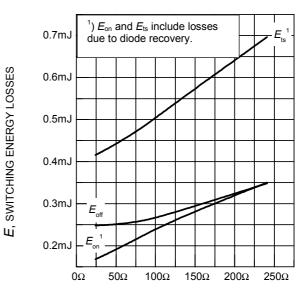
(inductive load, $T_i = 150^{\circ}$ C, $V_{CE} = 800V$, $V_{GE} = +15V/0V$, $I_{C} = 3A$, dynamic test circuit in Fig.E)

 $T_{\rm i}$, JUNCTION TEMPERATURE Figure 11. Typical switching times as a


function of junction temperature (inductive load, $V_{CE} = 800V$, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)

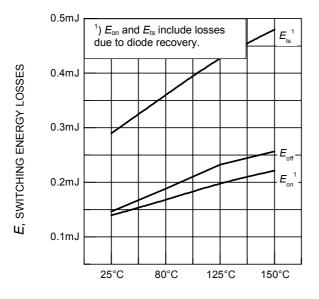
 $T_{\rm j}$, JUNCTION TEMPERATURE

Figure 12. Gate-emitter threshold voltage as a function of junction temperature $(I_{\rm C} = 0.09 \,{\rm mA})$



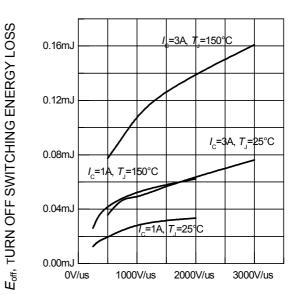
 $I_{\rm C}$, COLLECTOR CURRENT

Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_i = 150^{\circ}\text{C}$,


(inductive load, $T_{\rm j}$ = 150°C, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)

R_G, GATE RESISTOR

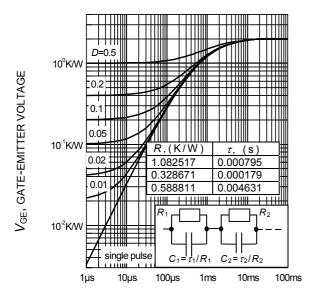
Figure 14. Typical switching energy losses as a function of gate resistor


(inductive load, $T_{\rm j}$ = 150°C, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, dynamic test circuit in Fig.E)

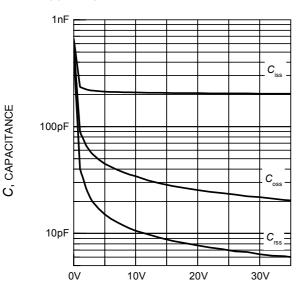
 $T_{\rm i}$, JUNCTION TEMPERATURE

Figure 15. Typical switching energy losses as a function of junction temperature

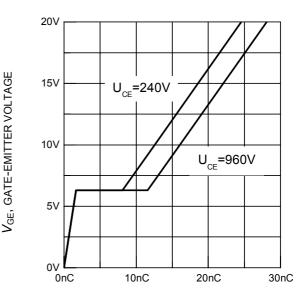
(inductive load, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)

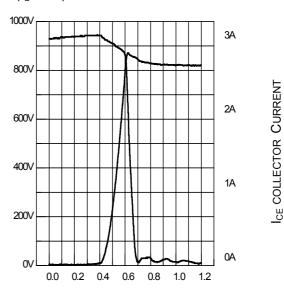

dv/dt, VOLTAGE SLOPE

Rev. 2.4 Oct. 07


Figure 16. Typical turn off switching energy loss for soft switching

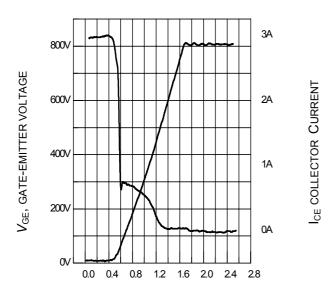
(dynamic test circuit in Fig. E)




 $$Q_{\rm GE},\,{\rm GATE}\,{\rm CHARGE}$$ Figure 17. Typical gate charge (/_c = 3A)

 $V_{\rm CE}$, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage ($V_{\rm GE}$ = 0V, f = 1MHz)

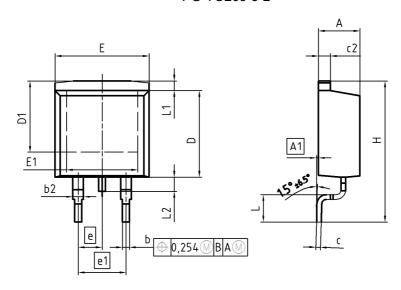
 $$Q_{\rm GE},\,{\rm GATE}\,{\rm CHARGE}$$ Figure 17. Typical gate charge ($I_C=3A)$

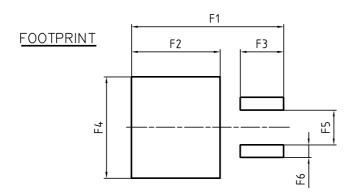


 $$t_{\rm p},\,{\rm PULSE}\,{\rm WIDTH}$$ Figure 20. Typical turn off behavior, hard switching

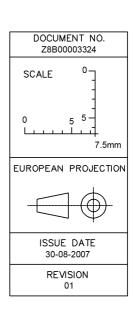
(V_{GE}=15/0V, R_G =82 Ω , T_j = 150°C, Dynamic test circuit in Figure E)

V_{CE}, COLLECTOR-EMITTER VOLTAGE

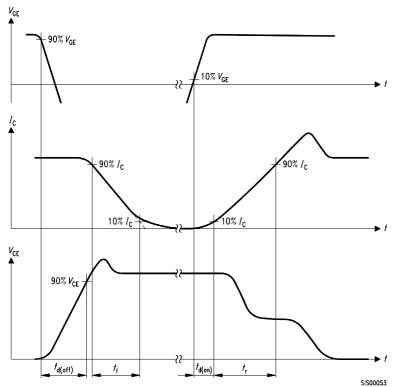



 $$t_{\rm p},\,{\rm PULSE\,WIDTH}$$ Figure 21. Typical turn off behavior, soft switching

 $(V_{GE}=15/0V, R_{G}=82Ω, T_{j}=150$ °C, Dynamic test circuit in Figure E)



PG-TO263-3-2



DIM	MILLIM	ETERS	INCH	HES	
I DIM	MIN	MAX	MIN	MAX	
Α	4.30	4.57	0.169	0.180	
A1	0.00	0.25	0.000	0.010	
Ь	0.65	0.85	0.026	0.033	
b2	0.95	1.15	0.037	0.045	
С	0.33	0.65	0.013	0.026	
c2	1.17	1.40	0.046	0.055	
D	8.51	9.45	0.335	0.372	
D1	7.10	7.90	0.280	0.311	
E	9.80	10.31	0.386	0.406	
E1	6.50	8.60	0.256	0.339	
е	2.5	54	0.100		
e1	5.0)8	0.200		
N		2	2		
Н	14.61	15.88	0.575	0.625	
L	2.29	3.00	0.090	0.118	
L1	0.70	1.60	0.028	0.063	
L2	1.00	1.78	0.039	0.070	
F1	16.05	16.25	0.632	0.640	
F2	9.30	9.50	0.366	0.374	
F3	4.50	4.70	0.177	0.185	
F4	10.70	10.90	0.421	0.429	
F5	3.65	3.85	0.144	0.152	
F6	1.25	1.45	0.049	0.057	

 $i_{,V}$ $di_{_{F}}/dt$ $t_{_{\Gamma\Gamma}} = t_{_{S}} + t_{_{F}}$ $Q_{_{\Gamma\Gamma}} = Q_{_{S}} + Q_{_{F}}$ $t_{_{\Gamma\Gamma}}$ $t_{_{\Gamma\Gamma}}$ $Q_{_{S}} = Q_{_{F}}$ $di_{_{\Gamma\Gamma}}/dt$ $V_{_{F}}$

Figure C. Definition of diodes switching characteristics

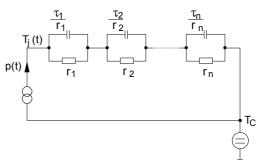


Figure A. Definition of switching times

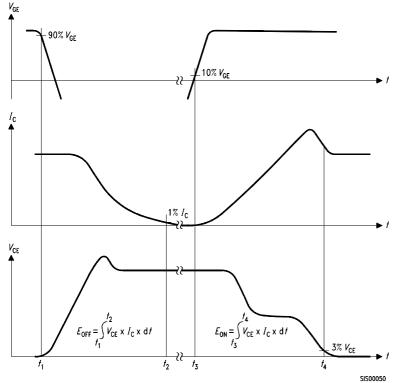
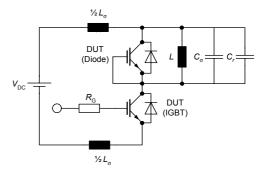



Figure D. Thermal equivalent circuit

Leakage inductance L_{σ} = 180nH, Stray capacitor C_{σ} = 40pF, Relief capacitor C_{r} = 4nF (only for ZVT switching)

Figure E. Dynamic test circuit

Figure B. Definition of switching losses

Edition 2006-01

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 11/6/07.

Attention please!

All Rights Reserved.

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

单击下面可查看定价,库存,交付和生命周期等信息

- >>Infineon Technologies(英飞凌)
- >>点击查看相关商品