INTERNATIONAL RECTIFIER

REPETITIVE AVALANCHE RATED AND dv/dt RATED

HEXFET® TRANSISTOR

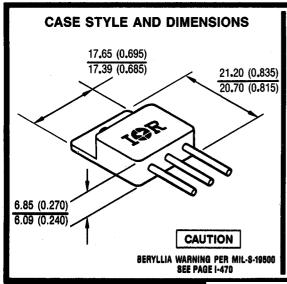
IRFV460

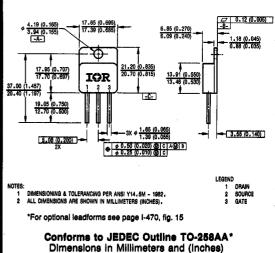
N-CHANNEL

500 Volt, 0.27 Ohm HEXFET

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies and virtually any application where military and/or high reliability is required.


Product Summary

Part Number	BVDSS	R _{DS(on)}	D
IRFV460	500V	0.27Ω	21A

FEATURES:

- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Isolated and Hermetically Sealed
- Alternative to TO-3 Package
- Simple Drive Requirements
- Ease of Paralleling
- Ceramic Eyelets

Absolute Maximum Ratings

Parame	eter	IRFV460	Units	
ID @ VGS = OV, TC = 25°C	Continuous Drain Current	21		
ID @ VGS = 0V, TC = 100°C Continuous Drain Current		13	A	
I _{DM}	Pulsed Drain Current ①	84		
PD @ TC = 25°C	Max. Power Dissipation	300	. w	
	Linear Derating Factor	2.4	W/K (5)	
V _{GS}	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy ②	480	mJ	
IAR	Avalanche Current ①	21	A	
EAR	Repetitive Avalanche Energy ①	30	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	3.5	V/ns	
T _J TSTG	Operating Junction Storage Temperature Range	-55 to 150	°C	
	Lead Temperature	300 (0.063 in. (1.6 mm) from case for 10s)		
	Weight	10.9 (typical)	g	

Electrical Characteristics @ T_J = 25°C (Unless Otherwise Specified)

Parameter		Min.	Тур.	Max.	Units	Test Cor	ditions	
BVDSS	Drain-to-Source Breakdown Voltage	500	_	-	V	V _{GS} = 0V, I _D = 1.0 mA		
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage		0.63	-	V/°C	Reference to 25°C, ID = 1.0 mA		
R _{DS(on)}	Static Drain-to-Source On-State Resistance	_		0.27	Ω	VGS = 10V, ID = 13A	(A)	
	Officiale resistance			0.31		V _{GS} = 10V, I _D = 21A		
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	٧	V _{DS} = V _{GS} , I _D = 250 μA		
9fs	Forward Transconductance	13		-	S (0)	VDS = 15V, IDS = 13A 4		
IDSS	Zero Gate Voltage Drain Current	_	_	25		VDS = Max. Rating, VGS	∞ 0V	
	4	_	_	250	μA	V _{DS} = 0.8 x Max. Rating		
						V _{GS} = 0V, T _J = 125°C		
lass	Gate-to-Source Leakage Forward	-	_	100	nA	V _{GS} = 20V		
lgss	Gate-to-Source Leakage Reverse	-	-	-100		VGS = -20V		
Q_g	Total Gate Charge	-		190		V _{GS} = 10V, I _D = 21A		
Qgs	Gate-to-Source Charge	_	-	27	nC	V _{DS} = 0.5 x Max. Rating		
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	T -	135		See Fig. 6 and 14		
^t d(on)	Turn-On Delay Time	_	-	35		V _{DD} = 250V, I _D = 21A, R ₀	3 = 2.350	
t _r	Rise Time	-	_	120	ns			
^t d(off)	Turn-Off Delay Time		<u> </u>	130	1 "	See Fig. 11		
tę	Fall Time	-	-	98	1			
LD	Internal Drain Inductance	-	8.7	-	nH	Measured from the drain lead, 6 mm (0.25 in.) from package to center of die.	Modified MOSFET symbol showing the internal inductances.	
Lg	Internal Source Inductance	-	8.7	-] ""	Measured from the source lead, 6 mm (0.25 in.) from package to source bonding pad.		
Ciss	Input Capacitance	-	4300	-		V _{GS} = 0V, V _{DS} = 25V		
C _{OSS}	Output Capacitance	-	1000	_	DF	f = 1.0 MHz		
Crss	Reverse Transfer Capacitance	<u> </u>	250	<u> </u>	1 "	See Fig. 5		

Source-Drain Diode Ratings and Characteristics

	Parameter		Typ.	Max.	Units	Test Conditions	
ls .	Continuous Source Current (Body Diode)	-	_	21		Modified MOSFET symbol showing the integral Reverse p-n junction rectifier.	
ISM	Pulsed Source Current (Body Diode) ①	-	_	84		NEW	
V _{SD}	Diode Forward Voltage	-	_	1.8	٧	T _J = 25°C, l _S = 21A, V _{GS} = 0V ⊕	
t _{rr}	Reverse Recovery Time	T -		580	nS	T _J = 25°C, I _F = 21A, di/dt ≤ 100 A/µs ④	
QRR	Reverse Recovery Charge		-	8.1	μC	V _{DD} ≤ 50V	
t _{on}	Forward Turn-On Time	Inti	insic turn-	on time is	negligible.	Turn-on speed is substantially controlled by L _S + L _D .	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
PithJC	Junction-to-Case	-	-	0.42		
RthCS	Case-to-Sink	-	0.21		к/w (5)	Mounting surface flat, smooth, and greased
RthJA	Junction-to-Ambient	-		30	1	Typical socket mount

- Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 9) Refer to current HEXFET reliability report
- ② @ V_{DD} = 50V, Starting T_J = 25°C, $L \ge 2.0$ mH, R_G = 250, Peak I_L = 21A
- ③ I_{SD} ≤ 21A, dl/dt ≤ 160 A/ μ s, V_{DD} ≤ BV_{DSS}, T_J ≤ 150°C Suggested R_G = 2.35 Ω
- ¶ Pulse width ≤ 300 μs; Duty Cycle ≤ 2%

(5) K/W = °C/W W/K = W/°C

Fig. 1 — Typical Output Characteristics, T_C = 25°C

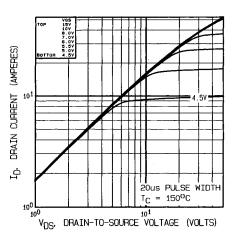


Fig. 2 — Typical Output Characteristics, T_C = 150°C

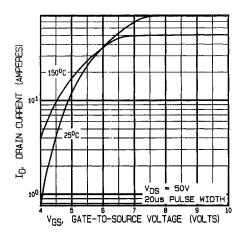


Fig. 3 - Typical Transfer Characteristics

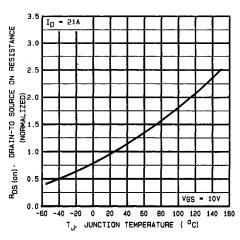


Fig. 4 — Normalized On-Resistance Vs. Temperature

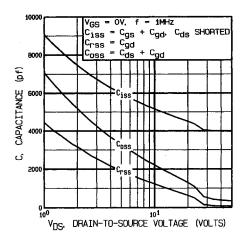


Fig. 5 --- Typical Capacitance Vs. Drain-to-Source Voltage

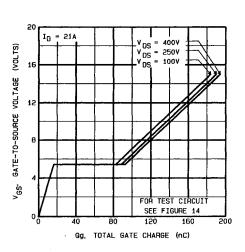


Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

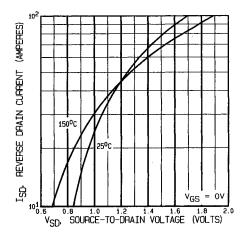


Fig. 7 — Typical Source-Drain Diode Forward Voltage

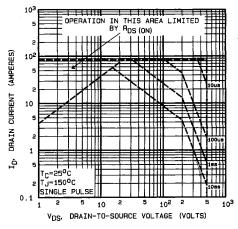


Fig. 8 - Maximum Safe Operating Area

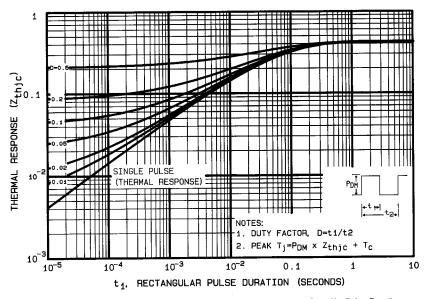
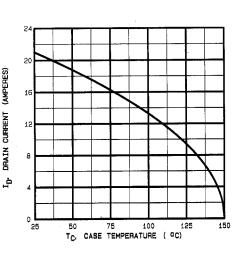



Fig. 9 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

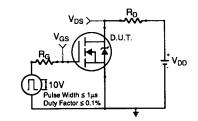


Fig. 11a — Switching Time Test Circuit

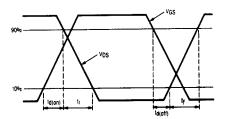


Fig. 10 — Maximum Drain Current Vs. Case Temperature

Fig. 11b — Switching Time Waveforms

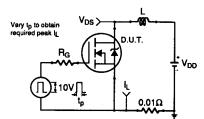


Fig. 12a - Unclamped Inductive Test Circuit

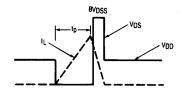


Fig. 12b — Unclamped Inductive Waveforms

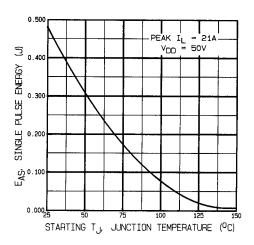


Fig. 12c — Maximum Avalanche Energy Vs. Starting Junction Temperature

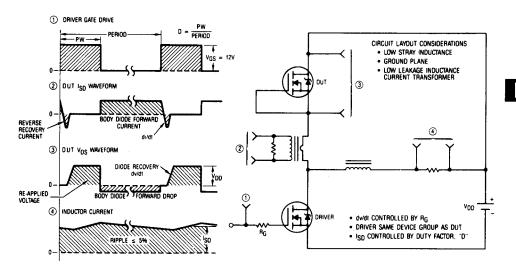


Fig. 13 — Peak Diode Recovery dv/dt Test Circuit

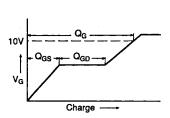


Fig. 14a - Basic Gate Charge Waveform

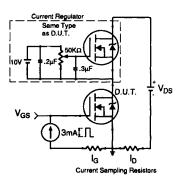


Fig. 14b - Gate Charge Test Circuit

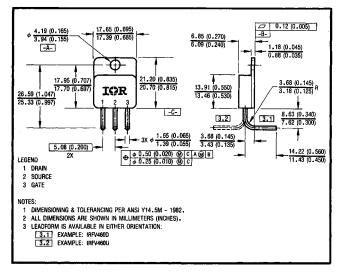


Fig. 15 - Optional Leadforms for Outline TO-258

BERYLLIA WARNING PER MIL-8-19500

Packages containing beryilla shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryilla or beryillam dust. Furthermore, beryillam oxide packages shall not be placed in acids that will produce furmes containing beryillium.

IRFY Series Data Sheet

The IRFY Data Sheet describes 12 devices, 8 N-Channel and 4 P-Channel, all contained in the TO-257AB package. This data sheet is arranged to show common tabular and graphical information between devices.

Absolute maximum ratings and parametric data are presented in tabular format with devices grouped according to generically shared parameters. For each parametric rating, devices are categorized by N and P channel and listed in alpha-numeric order. The conditions specified for a given parametric test are provided in the right hand column of each table.

Graphical information is grouped by devices in

alphabetical order. Where the information is device specific, we have assigned a numeric character for the graph type and an alpha character to a given device. (See Table A below). Where graphs are polarity specific as in figures 10, 12, 14 and 15, we have indicated N-Channel or P-Channel. The Thermal Impedance Graph (Fig. 11) is the only exception where a graph is common to both N-Channel and P-Channel devices since the thermal impedance is only dependent on the die size and package.

In Table A below, a legend is provided cross referencing the part number to its assigned alpha code. A given device will retain this alpha code for each device specific graph.

Table A

DEVICE	ALPHA DESIGNATION
IRFY044	а
IRFY120	b
IRFY130	С
IRFY140	d
IRFY240	е
IRFY340	f
IRFY430	g
IRFY440	h
IRFY9120	ì
IRFY9130	j
IRFY9140	k
IRFY9240	l

IRFF Series Devices

HEXFET, CECC Qualified — Europe

T0257/HEXFET/N-Channel

Basic Type	V _{DS}	RDS(en) (Ohms)	CECC Specification	issue No.	issue Date	Level of Quality Assessment and CECC 50 000 Screen Level Options	Case Outline
RFY044(M) RFY120(M) RFY130(M) RFY140(M) RFY240(M) RFY340(M) RFY340(M) RFY440(M)	60 100 100 100 200 400 500	0.03 0.31 0.19 0.092 0.19 0.55 1.50 0.85	50 012-062 50 012-060 50 012-061 50 012-062 50 012-062 50 012-062 50 012-061 50 012-062	1	10/91	E. EA.EB.EC.ED	TO-257AA Y-PAK
0257/HEXFE						5 54 50 50 50	1 2 3 1RFY 6 0 S
IRFY9120(M) IRFY9130(M) IRFY9140(M) IRFY9240(M)	-100 -100 -100 -200	0.60 0.31 0.21 0.50	50 012-063 50 012-064 50 012-065 50 012-065	1	10/91	E-,EA,EB,EC,ED E-,EA,EB,EC,ED E-,EA,EB,EC,ED E-,EA,EB,EC,ED	IRFY(M) D S G

FOR OTHER GOVERNMENT/SPACE QUALIFIED PRODUCTS SEE SECTION E.

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)