

Radiation Hardened, Solid-State Relay

RDHA720SF06A1NK 60V, 20A

Product Summary 3

Part Number	Breakdown Voltage	Current	tr / tf
RDHA720SF06A1NK	60V	20A	Fast

Description

The RDHA720SF06A1NK is a radiation hardened solid-state relay in a hermetic package. It is configured as a single-pole-single-throw (SPST) normally open relay. This device is characterized for 100 krad(Si) total ionizing dose. The RDHA720SF06A1NK is optically coupled and actuated by an input current.

Features:

- Total Dose Capability to 100krad(Si)
- Optically Coupled
- 1000V_{DC} Input to Output Isolation
- Hermetically Sealed Package

Absolute Maximum Ratings @ Tj=25°C (unless otherwise specified)

Parameter		Value	Units	
Output Supply Voltage ③	V _S	60	V	
Output Current ②,③	I _O	20	Α	
Input Supply Current	I _{DD}	50	mA	
Peak Input Supply Current (t ≤1ms)	I _{DD pk}	100	IIIA	
Power Dissipation ②,③	P _{DISS}	150	W	
Operating Temperature Range	T _J	-55 to +125		
Storage Temperature Range	T _S	-65 to +150	°C	
Lead Temperature	TL	300		

For notes, please refer to page 3 www.irf.com

General Characteristics @ -55°C \leq T_C \leq +125°C (Unless Otherwise Specified)

Parameter	Group A Subgroups	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Input Supply Current ①		I _O = 20A	I _{DD}	12	20	40	mA
Input Voltage Drop	1	I _{IN} = 10mA	VL	4.0	5.2	6.8	V
Input-to-Output Leakage Current	1	$V_{I-O} = 1.0KVdc$, dwell = 5.0s	I _{I-O}			1.0	μΑ
Output Capacitance ①		$I_{DD} \le 0.5$ mA, f =1.0MHz, V+= 25V $T_C = 25$ °C	Coss		2000		pF
Thermal Resistance①,②		I _{DD} = 20mA	R _{THJC}			0.65	°C/W
MTBF		MIL-HDBK-217F, SF@Tc= 25°C		4.4			MHrs

Pre-Irradiation

Electrical Characteristics @ -55°C \leq T $_{C}$ \leq +125°C (Unless Otherwise Specified)

Parameter	Group A	Test Conditions	Symbol	Min.	Тур.	Max.	Units	
	Subgroups							
Output On Resistance	1	- 20m4 - 204	_		0.030	0.040	Ω	
Output On-Resistance	2	$I_{DD} = 20 \text{mA}, I_{O} = 20 \text{A}$	R _{DS(ON)}	-	0.045	0.078	Ω	
Output Lookaga Current	1	$I_{DD} \le 0.5 \text{mA}, V_{OUT} = 60 \text{V}$	Io	,	ŀ	1	25	μА
Output Leakage Current	2	$I_{DD} \le 0.5 \text{mA}, V_{OUT} = 48 \text{V}$		-		250	μΑ	
Turn-On Delay @	1,2,3	$I_{DD} = 20$ mA, $V_{S} = 40$ V, $I_{O} = 20$ A	t _{on}		0.65	1.25	ms	
Turr On Belay	1,2,0	PW = 4.0ms, D ≤ 1%						
Turn-Off Delay ④	1,2,3	$V_S = 40V, I_O = 20A$	t _{off}		0.2	0.5		
	1,2,0	PW = 4.0ms, D ≤ 1%						
Rise Time ®	1,2,3	$I_{DD} = 20 \text{mA}, V_S = 40 \text{V}, I_O = 20 \text{A}$	t _r		0.85	1.65		
	1,2,0	PW = 4.0ms, D ≤ 1%			0.00	1.00		
Fall Time ④	1,2,3	$V_S = 40V, I_O = 20A$			0.06	0.15		
	1,2,3	PW = 4.0ms, D ≤ 1%	t _f	1	0.00	0.15		

For notes, please refer to page 3

Post Total Dose Irradiation

Electrical Characteristics @ 25°C (Unless Otherwise Specified) @, @, @

Parameter	Group A Subgroups	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output On-Resistance	1	I _{DD} = 20mA, I _O = 20A	R _{DS(ON)}		0.03	0.040	Ω
Output Leakage Current	1	$I_{DD} \le 0.5$ mA, $V_{OUT} = 60$ V	Io			25	μΑ
Turn-On Delay ⊕	1	I_{DD} = 20mA, V_S = 40V, I_O = 20A PW = 4.0ms, D ≤ 1%	t _{on}		0.8	1.6	
Turn-Off Delay ④	1 1	$V_S = 40V, I_O = 20A$ PW = 4.0ms, D \le 1%	t _{off}		0.05	0.13	
Rise Time ®	1	$I_{DD} = 20$ mA, $V_S = 40$ V, $I_O = 20$ A PW = 4.0ms, D \le 1%	t _r		1.1	2.2	ms
Fall Time ®	1	$V_S = 40V, I_O = 20A$ PW = 4.0ms, D \le 1%	t _f		0.06	0.15	

Notes for Maximum Rating, Electrical and General Characteristic Tables

- ① Specification is guaranteed by design
- ② Optically coupled Solid State Relays (SSRs) have relatively slow turn on and turn off times. Care must be taken to insure that transient currents do not cause violation of SOA. If transient conditions are present, IR recommends a complete simulation to be performed by the end user to ensure compliance with SOA requirements as specified in the IRHN7054 data sheet
- 3 While the SSR design meets the design requirements specified in MIL-PRF-38534, the end user is responsible for product derating, as required for the application
- Reference Figures 3 & 4 for Switching Test Circuit and Wave Form
- \odot Total Dose Irradiation with Input Bias 20mA I $_{\rm DD}$ applied and V $_{\rm DS}$ = 0 during Irradiation
- © Total Dose Irradiation with Output Bias 48 Volts V_{DS} applied and I_{DD} = 0 during Irradiation

 © International Rectifier does not currently have a DSCC certified Radiation Hardness Assurance Program

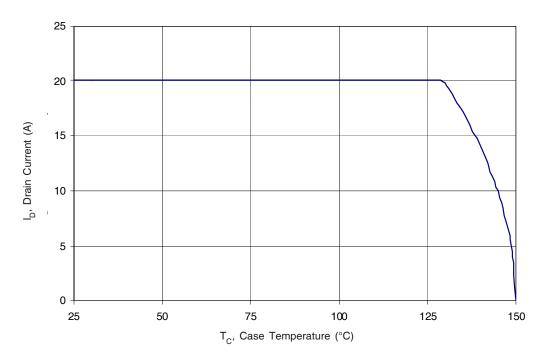


Fig 1: Maximum Drain Current Vs Case Temperature

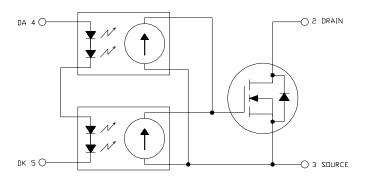


Fig 2: Typical Application

Radiation Performance

International Rectifier Radiation Hardened SSRs are tested to verify their hardness capability. The hardness assurance program at IR uses a Cobalt-60 (60Co) Source and heavy ion irradiation. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions to provide a direct comparison.

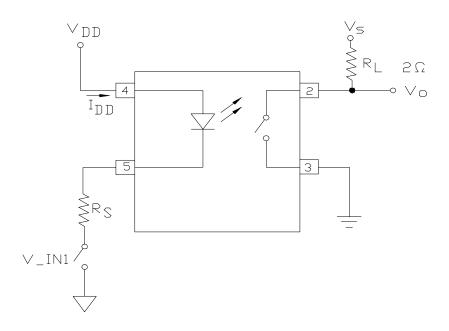
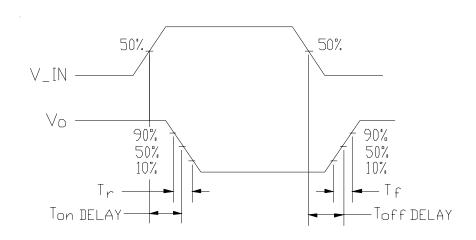
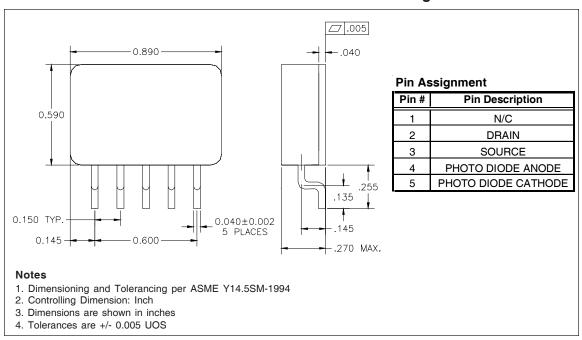
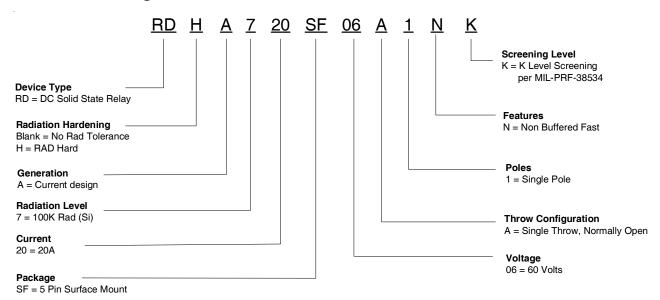


Fig 3: Switching Test Circuit


Fig 4: Switching Test Waveform

Case Outline and Dimensions — 5 Pin Surface Mount Package

Part Numbering Nomenclature

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/2012

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)