FEATURES

- Peak efficiency up to 95% at 1.2V
- Integrated pair of control and synchronous MOSFETs in a single PQFN package
- Proprietary package minimizes package parasitic and simplifies PCB layout
- Input voltage (VIN) range of 4.5V to 21V
- Output current capability of 60A/phase
- Switching frequency up to 1.0MHz
- Ultra-low Rg MOSFET technology minimizes switching losses for optimized high frequency performance
- Synchronous MOSFET with monolithic integrated Schottky diode reduces dead-time and diode reverse recovery losses
- Enhanced top side cooling through exposed pad
- Small 6mm x 6mm x 0.65mm PQFN package
- RoHS compliant, Halogen-Free

APPLICATIONS

- High current, low profile DC-DC converters
- Voltage Regulators for CPUs, GPUs, and DDR memory arrays

DESCRIPTION

The IRF3575DPbF exposed-top integrated Power Block is a single-phase synchronous buck converter with a pair of co-packed control and synchronous MOSFETs. It is optimized internally for PCB layout, heat transfer and package inductance. Coupled with the latest generation of IR MOSFET technology, the IRF3575DPbF provides higher efficiency at lower output voltages required by cutting edge CPU, GPU and DDR memory designs.

Up to 1.0MHz switching frequency enables high performance transient response, allowing miniaturization of output inductors, as well as input and output capacitors while maintaining industry leading efficiency. Integrates two high performance MOSFETs in one package while providing superior efficiency and thermals, the IRF3575DPbF enables smallest size and lower solution cost.

The IRF3575DPbF uses IR's latest generation of low voltage MOSFET technology providing ultra-low($< 0.5\Omega$) gate resistance (Rg) and gate charge that results in minimized switching losses. The low RDSon resistance of the synchronous MOSFET, optimizes conduction losses and features a monolithic integrated Schottky to significantly reduce dead-time and diode conduction and reverse recovery losses.

The IRF3575DPbF is optimized specifically for CPU core power delivery in 12Vin applications like servers, narrow VDC notebooks, GPU and DDR memory designs.

ORDERING INFORMATION

PINOUT DIAGRAM

BOTTOM VIEW

Figure 1: IRF3575DPbF Bottom View

PIN DESCRIPTIONS

IRF3575DPbF

FUNCTIONAL BLOCK DIAGRAM

Figure 2: Block Diagram

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied.

Note:

1. T_J = 25°C, L = 0.14mH, R_G = 50Ω, I_{AS} = 32A.

2. T_J = 25°C, L = 0.24mH, R_G = 50Ω, I_{AS} = 63A.

Note:

1. Thermal Resistance (θ_{JA}) is measured with the component mounted on a high effective thermal conductivity test board in free air. Refer to International Rectifier Application Note AN-994 for details.

ELECTRICAL SPECIFICATIONS

The electrical characteristics involve the spread of values guaranteed within the recommended operating conditions. Typical values represent the median values, which are related to 25°C.

ELECTRICAL CHARACTERISTICS

Notes

1. Guaranteed by design but not tested in production. 1. Guaranteed by

2. V_{IN}=12V, V_{OUT}=1.2V, f_{SW} = 300kHz, L=210nH (0.2mΩ), VDRV=6.8V, C_{IN}=47uF x 4, C_{OUT} =470uF x3, 400LFM airflow, no heat sink, 25°C ambient temperature, and 8-layer PCB of 3.7" (L) x 2.6" (W). PWM controller loss, driver loss and inductor loss are not included.

3. V_{IN}=12V, V_{OUT}=1.2V, *f*_{SW} = 400kHz, L=150nH (0.29mΩ), VDRV=6.8V, C_{IN}=47uF x 4, C_{OUT} =470uF x3, no airflow, no heat sink, 25°C ambient temperature, and 8-layer PCB of 3.7" (L) x 2.6" (W). PWM controller loss, driver loss and inductor loss are not included. 2. $V_{IN} = 12V$, $V_{OUT} = 1.2V$, $f_{SW} = 300$ kHz, L=210nH (0.2mΩ), VDRV=6.8V, $C_{IN} = 47$ uF x 4, $C_{OUT} = 470$ uF x3, 400LFM airflow, no heat ambient temperature, and 8-layer PCB of 3.7" (L) x 2.6" (W). PWM controller loss, drive

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

100000 V_{GS} = 0V, f = 1 MHZ $C_{\text{iss}} = C_{\text{gs}} + C_{\text{gd}}$, C_{ds} SHORTED $C_{rss} = C_{gd}$
 $C_{oss} = C_{ds}$ $=C_{ds} + C_{gd}$ C, Capacitance (pF) C, Capacitance (pF) 10000 $C_{\sf lSS}$ $C_{\rm{OSS}}^{-1}$ 1000 C_{rss} 100 1 10 10 100

V_{DS}, Drain-to-Source Voltage (V)

Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage **Fig 10.** Typical Gate Charge vs. Gate-to-Source Voltage

Fig 15. Typical Source-Drain Diode Forward Voltage

Fig 17. Typical On-Resistance vs. Gate Voltage

Fig 16. Typical Source-Drain Diode Forward Voltage

Downloaded From [Oneyac.com](https://www.oneyac.com)

Fig 20. Maximum Drain Current vs. Case Temperature

Fig 22. Threshold Voltage vs. Temperature

Fig 23. Maximum Avalanche Energy vs. Drain Current **Fig 24.** Maximum Avalanche Energy vs. Drain Current

Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Q1)

Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Q2)

MARKING INFORMATION

Figure 6: PQFN 6mm x 6mm

PACKAGE INFORMATION

FRONT VIEW

Figure 6: PQFN 6mm x 6mm

GENERAL DESCRIPTION

The IRF3575DPbF contains integrated high and low side N-channel MOSFETs. It is suitable for high switching frequency up to 1MHz. The IRF3575DPbF contains integrated high and low side
N-channel MOSFETs. It is suitable for high switching
frequency up to 1MHz.

**APPLICATION INFORMATION
SUPPLY DECOUPLING CAPACITOR**

SUPPLY DECOUPLING CAPACITOR

At least two 10uF 1206 ceramic capacitors and one 0.1uF 0402 ceramic capacitor are recommended for decoupling the VIN to PGND connection. The 0.1uF 0402 capacitor should be on the same side of the PCB as the IRF3546 and next to the VIN and PGND pins. Adding additional capacitance and use of capacitors with lower ESR and mounted with low inductance routing will improve efficiency and reduce overall system noise, especially in high current applications. east two 10uF 1206 ceramic capacitors and one 0.1uF
2 ceramic capacitor are recommended for decoupling
VIN to PGND connection. The 0.1uF 0402 capacitor
uld be on the same side of the PCB as the IRF3546
next to the VIN and The IRFS750PbF contains integrated high and towatide

M-channel MOSFET. It is suitable for high switching

the minimized to prevent Cdv/dt turn-on of the

Hequency up to 1MHz.
 APPLICATION INFORMATION

Uses as possible

PCB LAYOUT CONSIDERATIONS

PCB layout and design is important to driver performance in voltage regulator circuits due to the high current slew rate (di/dt) during MOSFET switching.

- Locate all power components in each phase as close to each other as practically possible in order to minimize parasitics and losses, allowing for reasonable airflow.
- Input supply decoupling and bootstrap capacitors should be physically located close to their respective IC pins.
- High current paths like the gate driver traces should be as wide and short as practically possible.
- GATEL interconnect trace inductances should be minimized to prevent Cdv/dt turn-on of the low side MOSFET.
- The ground connection of the IC should be as close as possible to the low-side MOSFET source.
- Use of a copper plane under and around the IC and thermal vias to connect to buried copper layers improves the thermal performance substantially.

METAL AND COMPONENT PLACEMENT

- Lead land width should be equal to nominal part lead width. The minimum lead to lead spacing should be ≥ 0.2mm to prevent shorting.
- Lead land length should be equal to maximum part lead length +0.15 - 0.3 mm outboard extension and 0 to + 0.05mm inboard extension. The outboard extension ensures a large and visible toe fillet, and the inboard extension will accommodate any part misalignment and ensure a fillet.
- Center pad land length and width should be equal to maximum part pad length and width.
- Only 0.30mm diameter via shall be placed in the area of the power pad lands and connected to power planes to minimize the noise effect on the IC and to improve thermal performance.

Figure 3: Metal and component placement

* Contact International Rectifier to receive an electronic PCB Library file in Cadence Allegro or CAD DXF/DWG format.

SOLDER RESIST SOLDER RESIST

- The solder resist should be pulled away from the metal lead lands by a minimum of 0.06mm. The solder resist miss-alignment is a maximum of 0.05mm and it is recommended that the low power signal lead lands are all Non Solder Mask Defined (NSMD). Therefore pulling the S/R 0.06mm will always ensure NSMD pads. from the metal lead lands by a minimum
of 0.06mm. The solder resist miss-alignment is a
maximum of 0.05mm and it is recommended that
the low power signal lead lands are all Non Solder
Mask Defined (NSMD). Therefore pulling The solder resist should be pulled away

from the metal lead lands by a minimum

of 0.06mm. The solder resist miss-alignment is a

maximum of 0.05mm and it is recommended that

the low power signal lead lands are all Non
- The minimum solder resist width is 0.13mm typical.
- At the inside corner of the solder resist where the lead land groups meet, it is recommended to provide a fillet so a solder resist width of ≥ 0.17mm remains.
- The power land pads VIN, PGND and SW should be Solder Mask Defined (SMD).
- Ensure that the solder resist in-between the lead lands and the pad land is ≥ 0.15 mm due to the high aspect ratio of the solder resist strip separating the lead lands from the pad land.

Figure 4: Solder resist

* Contact International Rectifier to receive an electronic PCB Library file in Cadence Allegro or CAD DXF/DWG format.

STENCIL DESIGN

- The stencil apertures for the lead lands should be approximately 65% to 75% of the area of the lead lands depending on stencil thickness. Reducing the amount of solder deposited will minimize the occurrence of lead shorts. Since for 0.5mm pitch devices the leads are only 0.25mm wide, the stencil apertures should not be made narrower; openings in stencils < 0.25mm wide are difficult to maintain repeatable solder release.
- The low power signal stencil lead land apertures should therefore be shortened in length to keep area ratio of 65% to 75% while centered on lead land.
- The power pads VIN, PGND and SW, land pad apertures should be approximately 65% to 75% area of solder on the center pad. If too much solder is deposited on the center pad the part will float and the lead lands will be open. Solder paste on large pads is broken down into small sections with a minimum gap of 0.2mm between allowing for out-gassing during solder reflow.
- The maximum length and width of the land pad stencil aperture should be equal to the solder resist opening minus an annular 0.2mm pull back to decrease the incidence of shorting the center land to the lead lands when the part is pushed into the solder paste.

Figure 5: Stencil Design

* Contact International Rectifier to receive an electronic PCB Library file in Cadence Allegro or CAD DXF/DWG format.

Qualification Information†

† Qualification standards can be found at International Rectifier's web site: <http://www.irf.com/product-info/reliability>

†† Applicable version of JEDEC standard at the time of product release.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit <http://www.irf.com/whoto-call/>

单击下面可查看定价,库存,交付和生命周期等信息

[>>Infineon Technologies\(英飞凌\)](https://www.oneyac.com/brand/990.html)