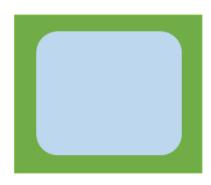


IV1D12015BD - 1200V 15A 碳化硅肖特基二极管芯片


特性

- 最大结温为 175°C
- 高浪涌电流容量
- 零反向恢复电流
- 零正向恢复电压
- 高频工作
- 开关特性不受温度影响
- 正向导通电压 V_F正温度系数

应用

- 太阳能升压器
- 逆变器续流反并联二极管
- 维也纳三相 PFC 整流变换器
- EV 充电桩
- 开关电源

器件编号	芯片尺寸	阳极	阴极
IV1D12015BD	2.87×2.78mm ²	Al	Ti/Ni/Ag

最大额定值

符号	参数	值	单位
V _{RRM}	反向重复峰值电压	1200	V
V _{DC}	直流反向峰值电压	1200	V
	正向持续直流电流 @Tc=25°C	44*	Α
l _F	正向持续直流电流 @Tc=135°C	22*	Α
	正向持续直流电流 @Tc=153°C	15*	Α
	正向不重复浪涌峰值电流	120	А
FSM	正弦半波 @Tc=25°C tp=10ms	120	A
1	正向重复浪涌峰值电流(Freq=0.1Hz, 100cycles)	100	А
IFRM	正弦半波@Tamb=25°C tp=10ms	100	A
Tstg	存储温度范围	-55 to 175	°C
Tj	工作结温范围	-55 to 175	°C

^{*} 假设热阻 R_{θic} 为 0.68℃/W 或者更低。

超过表中的最大额定值应力可能损坏设备。如果超出表中的限制,则设备的功能特性无法确定,可能发生损坏,并且可能影响可靠性。

电气特性

符号	参数	典型值	最大值	单位	测试条件	备注
VF	正向电压	1.48	1.8	V	I _F = 15 A T _J =25°C	图 1
VF	近内电压 	2.1	3	V	I _F = 15 A T _J =175°C	図 1
l _R	反向电流	2	100		$V_R = 1200 \text{ V T}_J = 25^{\circ}\text{C}$	图 2
IR IR		10	250	μΑ	V _R = 1200 V T _J =175°C	图 2
		888			$V_R = 1 \text{ V}, T_J = 25^{\circ}\text{C}, f = 1 \text{ MHz}$	
С	总电容	83		рF	$V_R = 400 \text{ V}, T_J = 25^{\circ}\text{C}, f = 1 \text{ MHz}$	图 3
		58.5			$V_R = 800 \text{ V}, T_J = 25^{\circ}\text{C}, f = 1 \text{ MHz}$	
					$V_R = 800 \text{ V}, T_J = 25^{\circ}\text{C},$	
Qc	总存储电荷	88		nC	$Q_c = \int_0^{VR} C(V) dV$	图 4
					$V_R = 800 \text{ V}, T_J = 25^{\circ}\text{C},$	
Ec	电容存储能量	25		μЈ	$E_{\mathrm{c}} = \int_{0}^{VR} C(V) \cdot V dV$	

机械参数

参数	典型值	单位
芯片尺寸	2.87*2.78	mm²
阳极焊盘尺寸	2.27*2.18	mm ²
厚度	180	μm
晶圆尺寸	150	mm
阳极金属层 (AI)	4	μm
阴极金属层 (Ti/Ni/Ag)	0.2/0.2/1	μm
正面保护层 (聚酰亚胺)	5	μm

典型特性

图 1 典型正向特性曲线

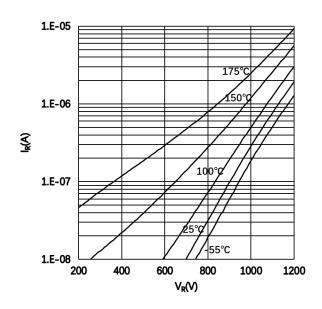


图 2 典型反向特性曲线



图 3 典型电容与反向电压曲线

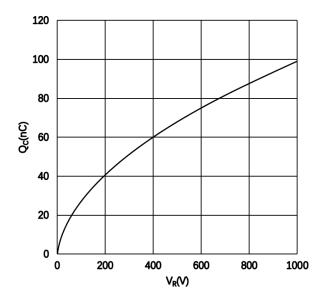
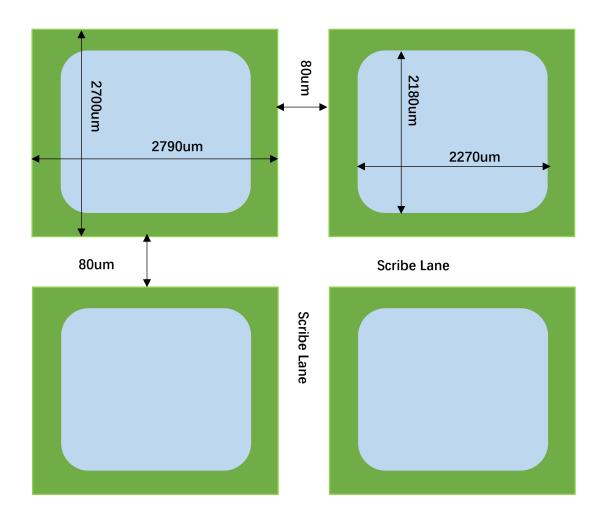



图 4 典型存储电荷与反向电压曲线

芯片尺寸

注意

欲了解更多的产品及公司信息,敬请联系 IVCT 公司办公人员或登录公司网站。 Copyright©2022 InventChip Technology Co., Ltd. All rights reserved. 本文档中的信息如有更改,恕不另行通知。

相关连接

http://www.inventchip.com.cn

单击下面可查看定价,库存,交付和生命周期等信息

>>Inventchip(膽芯电子)