

IVCR1407 24V 4A 拉、灌电流 单通道驱动器

1. 特性

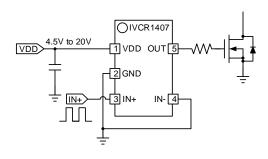
- 5 引脚 SOT-23 封装
- 4A 峰值拉、灌电流
- 高达 24V 宽范围 VDD 供电
- VDD 欠压保护, 4.5V 至 20V 推荐工作电压
- 双输入设计,既能配置成正向输入,也能配置 成反向输入。未使用的输入引脚可用于作为使 能或失能控制
- 低至-5V的负压输入
- 兼容 TTL 和 CMOS 输入电平
- 低传播延迟(典型值低于 20ns)
- 输入浮空时输出为低电平
- -40°C 到 125°C 的工作温度范围

2. 应用

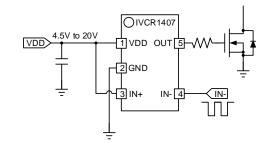
- 开关电源
- 电机控制
- AC/DC 及 DC/DC 转换器
- 服务器和通讯设备的整流器
- EV/HEV 逆变器及 DC/DC 转换器
- PV 升压以及逆变器
- UPS
- 用于新兴的宽带隙功率器件驱动

3. 描述

IVCR1407 是单通道 4A 的高速低侧栅极驱动器,可以高效安全地驱动 MOSFET、IGBT 以及新兴的宽带隙功率器件。低传播延迟以及紧凑的 SOT-23 封装等特点,使得 MOSFET 的开关频率可以达到数百 kHz。这款芯片非常适合用于服务器和通讯电源的同步整流驱动,在这种场合中同步管 MOSFET 的死区时间直接影响变换器的效率。


4.5V 至 20V 的宽范围 VDD 供电电压能够有效地驱动 MOSFET 或 GaN 功率器件。集成的 UVLO 保护功能 可以确保在异常情况下使输出保持为低电平。

-5V 至 24V 的独立输入引脚电压范围能够有效地确保在由于寄生电感引起过冲的情况下稳定工作。输入引脚的电压阈值也兼容 TTL 电平输入。

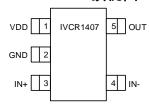

器件信息

器件型号	封装	包装
IVCR1407SR	SOT-23-5	Tape and Reel

典型应用图

正向输入

反向输入



目录

1	特性	1
2	应用	1
3	描述	1
4	引脚配置及功能	2
5	技术指标	3
6	典型特性	5
7	详细说明	6
8	应用和实现	7
9	PCB 布局	8
10	封装信息	Ć

4. 引脚配置及功能

SOT-23-5 顶视图

引脚功能

引脚	名称	I/O	描述
1	VDD	Р	供电电压
2	GND	G	地
3	IN+	I	正向输入
4	IN-	ı	反向输入
5	OUT	0	输出

真值表

VDD 电压高于 UVLO 阈值电压。

IN+	IN-	OUT
低或悬空	任意电平	低
任意电平	高或悬空	低
高	低	追

5. 技术指标

5.1 绝对最大额定值

在室温范围内 (除非另有说明) (1)

		最小	最大	单位
V_{DD}	供电电压(相对于地)	-0.3	24	V
OUT	栅极驱动输出电压	-0.3	V _{DD} +0.3	V
IN+, IN-	信号输入电压	-5.0	24	V
TJ	结温	-40	150	°C
T _{STG}		-65	150	°C

⁽¹⁾ 如果运行超出"绝对最大额定值"中列出的范围,可能会对设备造成永久性损坏。 长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

5.2 防静电等级

		值	单位
V _(ESD)	人体模型 (HBM), ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	+/-2000	W
	带电器件模型 (CDM), JEDEC 规格 JESD22-C101 ⁽²⁾	+/-500	V

⁽¹⁾ JEDEC 文件 JEP155 规定,500V HBM 允许使用标准的 ESD 控制过程进行安全制造。

5.3 推荐工作条件

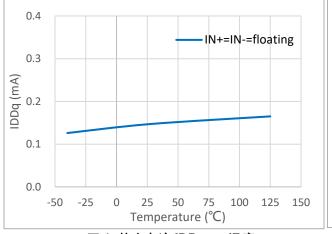
		最小	最大	单位
V_{DD}	供电电压	4.5	20	V
V _{IN+} , IN-	信号输入电压	0	20	V
T _A	环境温度	-40	125	°C

5.4 热阻信息

		值	单位
Reja	结-环境热阻	165	°C/W
R _{0JB}	结-PCB 热阻	55	°C/W

⁽²⁾ JEDEC 文件 JEP155 规定,250V CDM 允许使用标准的 ESD 控制过程进行安全制造。

5.5 电气特性


除非另有说明, V_{DD} = 12 V, T_A = -40°C to 125°C

在25°C 环境下,在指定的管脚上,电流正向为输入,负向为输出。

参	参数	测试条件	最小	典型	最大	单位
偏置电流						
I_{DDoff}	启动电流	V _{DD} =3V, IN=0V		67		μΑ
I_{DDq}	静态电流	IN=0V		150		μΑ
欠压保护	沪					
V_{ON}	欠压阈值	上升阈值		3.8	4.2	V
Voff		下降阈值	3.2	3.5		V
输入 (IN	N+, IN-)					
V_{INH}	输入上升阈值			2.0	2.4	V
V_{INL}	输入下降阈值		0.8	1.2		V
VINHYS	输入滞回			0.8		V
VINNS	负压输入		-5			V
输出						
lo	拉、灌电流峰值	C _{LOAD} =0.22uF, 有外部限流电阻, 1kHz 开关频率		4.0		Α
Voн	输出高电平	I _{OUTH} = -10mA	,	V _{DD} -0.056 V	_{DD} -0.12	V
Vol	输出低电压	I _{OUTL} = 10mA		0.006	0.012	V
Rон	输出静态上拉电阻			5.6	12	Ω
Rol	输出下拉电阻			0.54	1.2	Ω
时序						
TD _{ff}	上升延迟	Cload = 1.8nF		16	30	20
TD_rr	下降延迟			16	30	ns
Tf	上升时间	Cload = 1.8nF		6		ns
T_r	下降时间			6		113

6. 典型特性

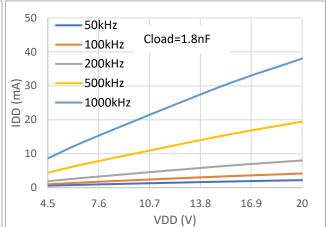
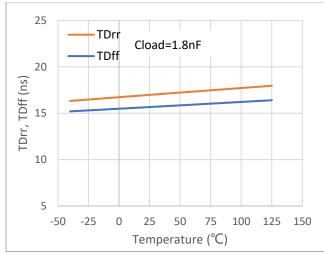



图 1. 静态电流 IDDq vs 温度

图 2. 工作电流 IDD vs VDD

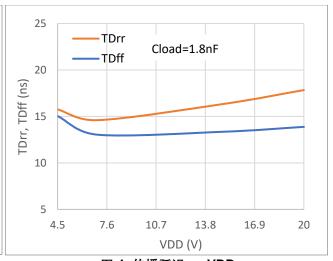
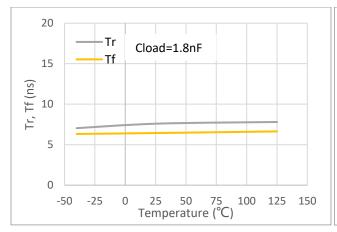



图 3. 传播延迟 vs 温度

图 4. 传播延迟 vs VDD

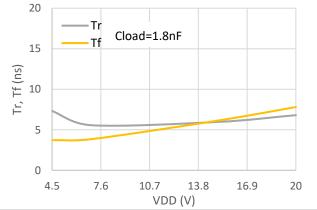
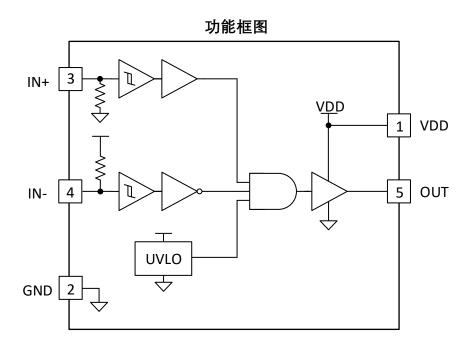


图 5. 上升时间和下降时间 vs 温度

图 6. 上升时间和下降时间 vs VDD



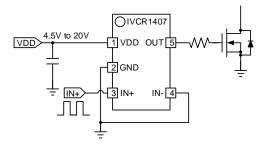
7. 详细说明

IVCR1407 驱动器提供单通道高速低侧栅极驱动。

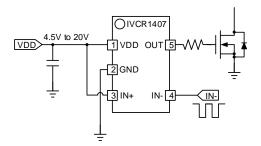
7.1 输入信号

IN+是正向逻辑栅极驱动输入,IN-是反向逻辑栅极驱动输入。这两个引脚分别是弱下拉输入和弱上拉输入,如果输入保持浮空,输出将会被拉至地。输入为 TTL 和 CMOS 兼容逻辑电平,最大输入容差为 20V。

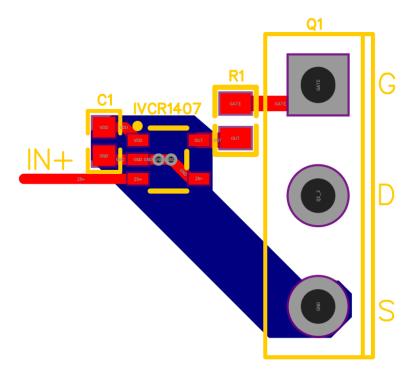
7.2 OUT


OUT是由一对复合上拉的P型加N型MOSFET和一个下拉的N型MOSFET组成。IVCR1407 的输出可以提供4A峰值的拉、灌电流脉冲。输出电压在VDD与GND之间轨到轨摆动。MOSFET的体二极管也会提供电压钳位通路来限制输出电压超过或者低于这个范围。在许多情况下,外部的肖特基二极管钳位并非必要。

7.3 VDD 以及欠压保护


IVCR1407 最大的额定输入电压是 24V。IVCR1407 可以满足 Si MOSFET、IGBT、以及 SiC MOSFET的栅级驱动要求。驱动器内部具有欠压保护功能。当 VDD 低于欠压保护阈值时,驱动器将会忽视输入信号,将输出置低。

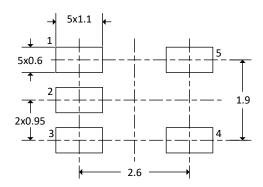
8. 应用和实现


正向输入

反向输入

9. PCB 布局

IVCR1407 布局实例


10. 封装信息

SOT-23-5 封装尺寸

符号	尺寸 (mm)		尺寸((inch)
19 5	最小值	最大值	最小值	最大值
А	0.900	1.450	0.035	0.057
A1	0.000	0.150	0.000	0.006
A2	1.1	.00	0.0)43
b	0.300	0.500	0.012	0.020
С	0.080	0.220	0.003	0.009
D	2.750	3.050	0.108	0.120
E1	1.450	1.750	0.057	0.069
Е	2.600	3.000	0.102	0.118
е	0.950		0.0)37
e1	1.9	000	0.075	
L	0.300	0.600	0.012	0.024
L1	0.6	600	0.024	
θ	0°	8°	0°	8°

SOT-23-5 推荐焊盘尺寸

单击下面可查看定价,库存,交付和生命周期等信息

>>Inventchip(膽芯电子)