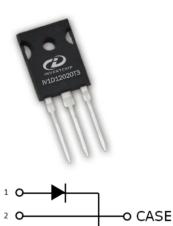


IV1D12020T3 - 1200V 20A 碳化硅肖特基二极管


特性

- 最大结温为 175°C
- 高浪涌电流容量
- 零反向恢复电流
- 零正向恢复电压
- 高频工作
- 开关特性不受温度影响
- 正向导通电压 V_F为正温度系数

应用

- 太阳能升压器
- 逆变器续流反并联二极管
- 维也纳三相 PFC 整流变换器
- AC/DC 变换器
- 开关电源

封装外形

器件编号	封装	
IV1D12020T3	TO247-3	

最大额定值 (Tc=25℃ 除非特别说明)

符号	参数	值	单位	
V_{RRM}	反向重复峰值电压	1200	V	
V _{DC}	直流反向峰值电压	1200	V	
	正向持续直流电流 @Tc=25°C	30*	Α	
I _F	正向持续直流电流 @Tc=135°C	15.2*	А	
	正向持续直流电流 @Tc=155°C	10*	Α	
1	正向不重复浪涌峰值电流	72*	А	
FSM	正弦半波@Tc=25°C tp=10ms	12*		
D	耗散功率@ Tc=25°C	176*	W	
P_{tot}	耗散功率@ Tc=150°C	29*	VV	
∫ i²dt	I ² t 值 @Tc=25°C tp=10ms	26*	A^2S	
Tstg	存储温度范围	-55 to 175	°C	
Tj	工作结温范围	-55 to 175	°C	

* 单管

超过表中的最大额定值应力可能损坏设备。如果超出表中的限制,则设备的功能特性无法确定,可能发生损坏,并且可能影响可靠性。

电气特性

符号	参数	典型值	最大值	单位	测试条件	备注
V _F	正向电压	1.56	1.8	V	I _F = 20 A T _J =25°C	图 1
	正问 电压	2.2	3	V	$I_F = 20 \text{ A T}_J = 175^{\circ}\text{C}$	図1
1	后台由法	5	100		$V_R = 1200 \text{ V T}_J = 25^{\circ}\text{C}$	图 2
┃ ┃ 反向电流		25	350	μΑ	$V_R = 1200 \text{ V T}_J = 175^{\circ}\text{C}$	图2
		1150			$V_R = 1 \text{ V}, T_J = 25^{\circ}\text{C}, f = 1 \text{ MHz}$	
С	总电容	118		рF	$V_R = 400 \text{ V}, T_J = 25^{\circ}\text{C}, f = 1 \text{ MHz}$	图 3
		85			$V_R = 800 \text{ V}, T_J = 25^{\circ}\text{C}, f = 1 \text{ MHz}$	
					$V_R = 800 \text{ V}, T_J = 25^{\circ}\text{C},$	
Qc	总存储电荷	124		nC	$Q_c = \int_0^{VR} C(V) dV$	图 4

热阻特性

符号	参数	典型值	单位	备注
R _{th(j-c)}	结壳热阻	0.85*	°C/W	图 7

^{*} 单管

典型特征

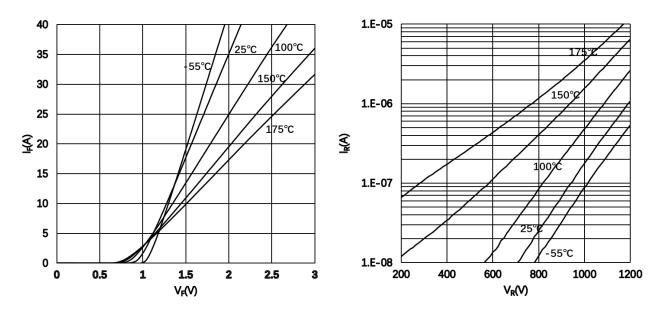


图 1 典型正向特性曲线

图 2 典型反向特性曲线

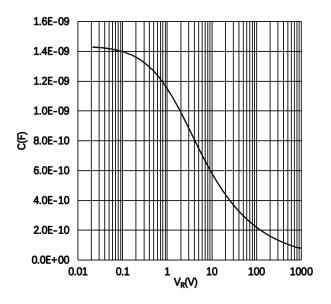


图 3 典型电容与反向电压曲线

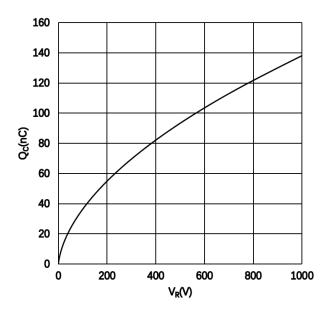


图 4 典型存储电荷与反向电压曲线

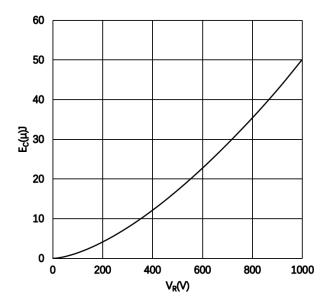


图 5 典型电容能量与反向电压曲线

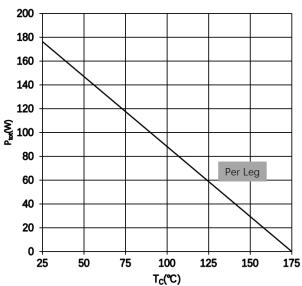


图 6 典型功率降额曲线

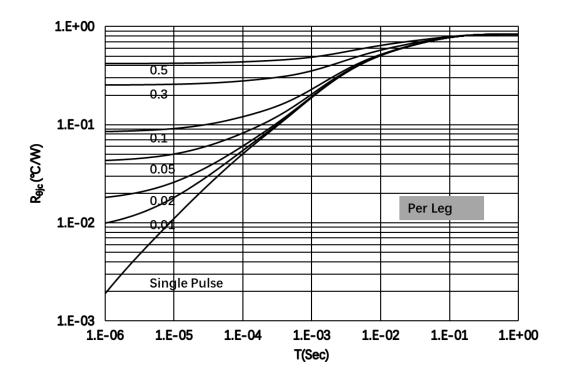
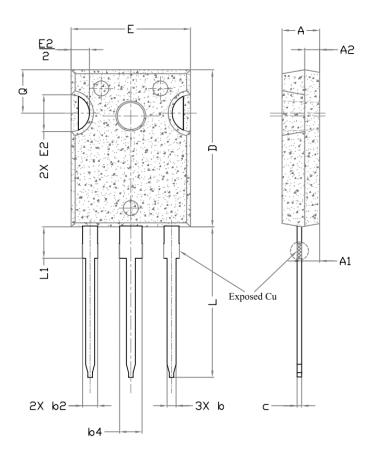
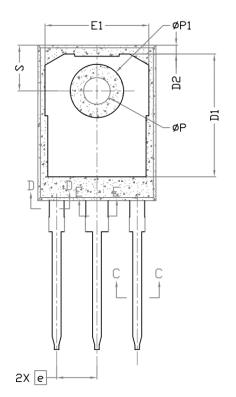
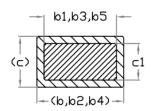




图 7 瞬态热阻抗



封装尺寸

SYMBOL		NOTES		
O T MID O L	MIN.	NOM.	MAX.	NOTES
Α	4.83	5.02	5.21	
A1	2.29	2.41	2.55	
A2	1.50	2.00	2.49	
b	1.12	1.20	1.33	
b1	1.12	1.20	1.28	
b2	1.91	2.00	2.39	6
b3	1.91	2.00	2.34	
b4	2.87	3.00	3.22	6, 8
b5	2.87	3.00	3.18	
С	0.55	0.60	0.69	6
c1	0.55	0.60	0.65	
D	20.80	20.95	21.10	4
D1	16.25	16.55	17.65	5
D2	0.51	1.19	1.35	
E	15.75	15.94	16.13	4
E1	13.46	14.02	14.16	5
E2	4.32	4.91	5.49	3
е	5.44BSC			
L	19.81	20.07	20.32	
L1	4.10	4.19	4.40	6
ØP	3.56	3.61	3.65	7
ØP1	7.19REF.			
Q	5.39	5.79	6.20	
S	6.04	6.17	6.30	

Section C--C,D--D,E-E

注意:

- 1. 封装参考: JEDEC TO247, Variation AD
- 2. 所有的尺寸大小为 mm
- 3. 需要开槽,槽口可以是圆形
- 4. 尺寸 D&E 不包括模具溢料

注意

欲了解更多的产品及公司信息,敬请联系 IVCT 公司办公人员或登录公司网站。 Copyright©2020 InventChip Technology Co., Ltd. All rights reserved.

相关连接

http://www.inventchip.com.cn

单击下面可查看定价,库存,交付和生命周期等信息

>>Inventchip