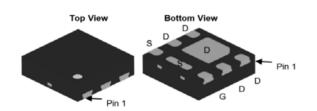
Description

JMT N-channel Enhancement Mode Power MOSFET

Features


- 30V, 12A
 - $$\begin{split} R_{DS(ON)} &< 12 m\Omega @ V_{GS} = 10 V \\ R_{DS(ON)} &< 19.5 m\Omega @ V_{GS} = 4.5 V \end{split}$$
- Advanced Trench Technology
- \bullet Excellent $R_{\text{DS}(\text{ON})}$ and Low Gate Charge
- Lead Free

Applications


- Load Switch
- PWM Application
- Power Management

100% UIS TESTED!

DFN2020-6L Top View

Marking and Pin Assignment

Schematic Diagram

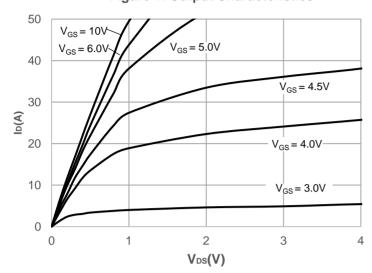
Package Marking and Ordering Information

Device Marking	Device	Outline	Package	Reel Size	Reel(pcs)	Per Carton (pcs)
120N03A	JMTV120N03A	TAPING	DFN2020-6L	7"	3000	120000

Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Symbol	Parameter		Value	Units	
V _{DS}	Drain-to-Source Voltage		30	V	
V_{GS}	Gate-to-Source Voltage		±20	V	
	Continuous Drain Current	T _A = 25°C	12	Α	
l _D	Continuous Drain Current	T _A = 100°C	10	A	
I _{DM}	Pulsed Drain Current (1)		48	А	
E _{AS}	Single Pulsed Avalanche Ene	rgy ⁽²⁾	20	mJ	
P _D	Power Dissipation	T _A = 25°C	2.6	W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽³⁾		48	°C/W	
T _J , T _{STG}	Junction & Storage Temperature Range		-55 to 150	°C	

Electrical Characteristics (T_J = 25°C unless otherwise specified)


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 30V, V_{GS} = 0V$	-	-	1.0	μА
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$		1.0	1.7	2.2	V
	Static Drain-Source ON-Resistance ⁽⁴⁾	$V_{GS} = 10V, I_D = 10A$	1	9.2	12.0	mΩ
$R_{DS(ON)}$		$V_{GS} = 4.5V, I_{D} = 5A$	-	15.0	19.5	mΩ
Dynam	ic Characteristics					
C _{iss}	Input Capacitance		-	853	-	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1MHz	-	106	-	pF
C_{rss}	Reverse Transfer Capacitance	1 = 1101112	-	82	-	pF
Q_g	Total Gate Charge)/ 0. /0)/	-	17	-	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 15V, I_{D} = 5A$	-	3.2	-	nC
Q_gd	Gate Drain("Miller") Charge	V _{DS} = 10 V, 1 _D = 0/V	-	3.4	-	nC
Switchi	ing Characteristics					
$t_{d(on)}$	Turn-On DelayTime		-	6	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 15V$	-	15	-	ns
$t_{d(off)}$	Turn-Off DelayTime	$I_D = 5A, R_{GEN} = 3\Omega$	-	20	-	ns
t _f	Turn-Off Fall Time		-	4	-	ns
Drain-S	Source Diode Characteristics and M	ax Ratings				
I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	12	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Fo	rward Current	-	-	48	А
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = 12A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time	I _F = 5A, di/dt = 100A/us	-	10	-	ns
Qrr	Body Diode Reverse Recovery Charge		-	4.5	-	nC

Notes:

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.
- 2. E_{AS} condition: Starting T_J =25C, V_{DD} =15V, V_G =10V, R_G =25ohm, L=0.5mH, I_{AS} =9A
- 3. $R_{\theta JA}$ is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB
- 4. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 0.5%.

Typical Performance Characteristics

Figure 1: Output Characteristics

Figure 2: Typical Transfer Characteristics

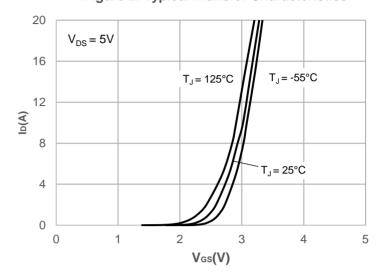
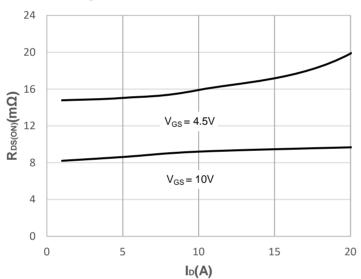



Figure 3: On-resistance vs. Drain Current

Figure 4: Body Diode Characteristics

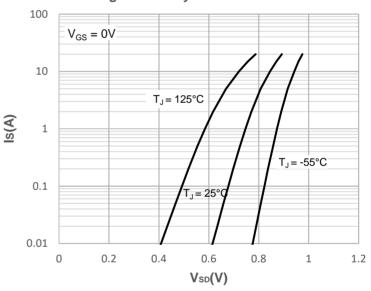
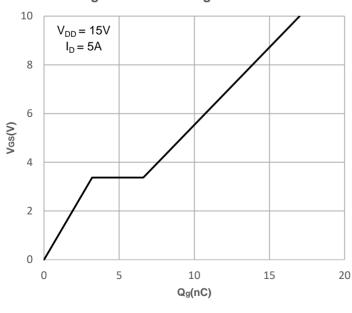
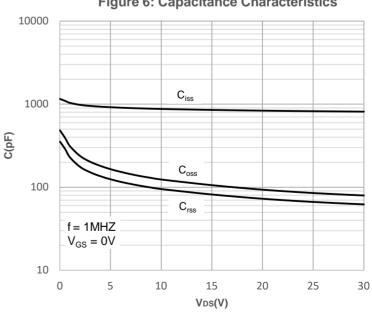




Figure 5: Gate Charge Characteristics

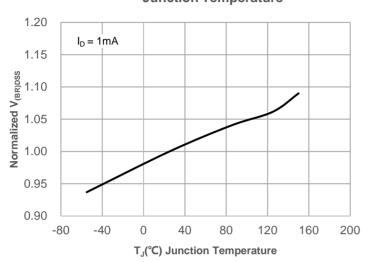


Figure 6: Capacitance Characteristics

Typical Performance Characteristics

Figure 7: Normalized Breakdown voltage vs. Junction Temperature

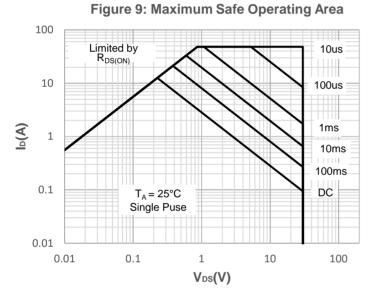


Figure 11: Normalized Maximum Transient Thermal Impedance

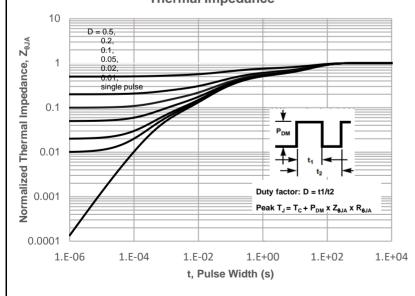


Figure 8: Normalized on Resistance vs. Junction Temperature

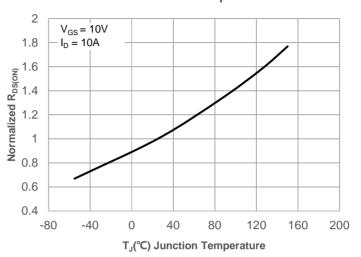


Figure 10: Maximum Continuous Drian

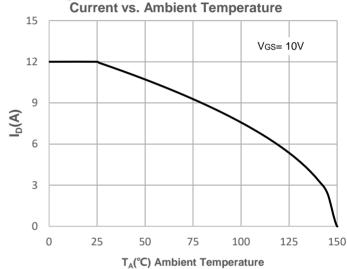
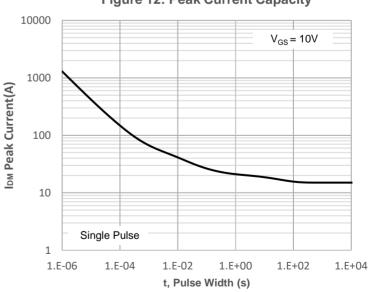



Figure 12: Peak Current Capacity

Test Circuit

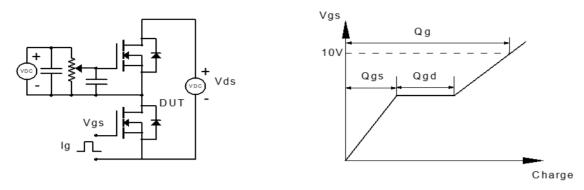


Figure 1: Gate Charge Test Circuit & Waveform

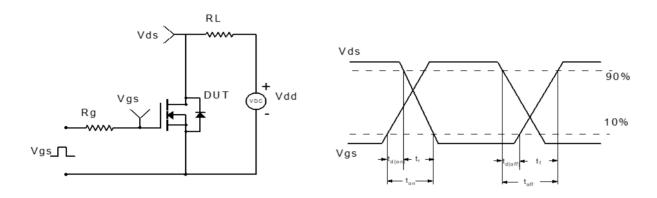


Figure 2: Resistive Switching Test Circuit & Waveform

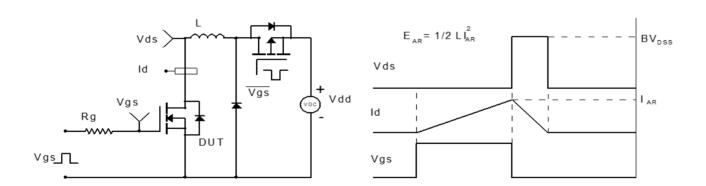
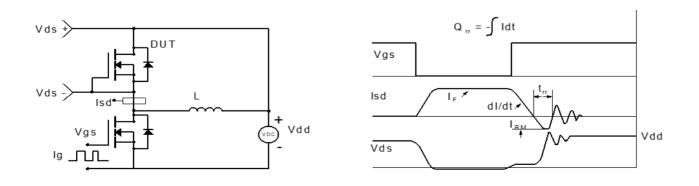
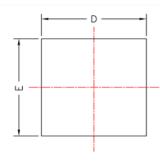
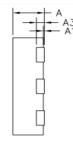
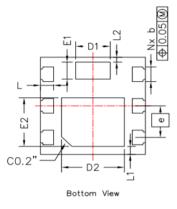


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform


Figure 4: Diode Recovery Test Circuit & Waveform

Package Mechanical Data(DFN2020-6L)

Top View

SYMBOLS	DIMENSION IN MM			DIMENSION IN INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.700	0.750	0.800	0.028	0.030	0.031
A1			0.050			0.002
A3	0.195	0.203	0.211	0.008	0.008	0.008
b	0.250	0.300	0.350	0.010	0.012	0.014
е	0.65BSC			0.026 BSC		
D	1.900	2.000	2.100	0.075	0.079	0.083
E	1.900	2.000	2.100	0.075	0.079	0.083
D1	0.560	0.660	0.760	0.022	0.026	0.030
E1	0.250	0.350	0.450	0.010	0.014	0.018
D2	1.100	1.200	1.300	0.043	0.047	0.051
E2	0.900	1.000	1.100	0.035	0.039	0.043
L	0.150	0.250	0.350	0.006	0.010	0.014
L1	0.065	0.165	0.265	0.003	0.006	0.010
L2	0.000	0.100	0.200	0.000	0.004	0.008

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd. Copyright ©2023 Jiangsu JieJie Microelectronics Co.,Ltd. Printed All rights reserved.

单击下面可查看定价,库存,交付和生命周期等信息

>>JJW(捷捷微)