

40V 0.58mΩ N-Ch Power MOSFET

Features

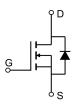
- Ultra-low R_{DS(ON)}
- · Low Gate Charge
- 100% UIS Tested, 100% R_a Tested
- · Pb-free Lead Plating
- Halogen-free and RoHS-compliant

Product Summary

Parameter	Value	Unit
V _{DS}	40	V
$V_{GS(th)_Typ}$	1.5	V
I _D (@ V _{GS} = 10V) ⁽¹⁾	349	Α
$R_{DS(ON)_Typ}$ (@ $V_{GS} = 10V$)	0.58	mΩ
$R_{DS(ON)_Typ}$ (@ $V_{GS} = 4.5V$)	0.80	mΩ

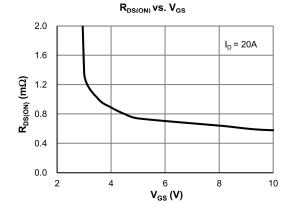
Applications

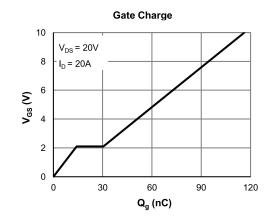
- Power Management in Computing, CE, IE 4.0, Communications
- Current Switching in DC/DC & AC/DC (SR) Sub-systems
- · Load Switching, Quick/Wireless Charging, Motor Driving


PDFN5x6-8L

Pin Configuration
Top View

S [1 • 8] D
S [2 7] D
S [3 6] D
G [4 5] D




Ordering Information

Device	Package	# of Pins	Marking	MSL	T _J (°C)	Media	Quantity (pcs)
JMSL040SAG-13	PDFN5x6-8L	8	SL040SA	1	-55 to 150	13-inch Reel	5000

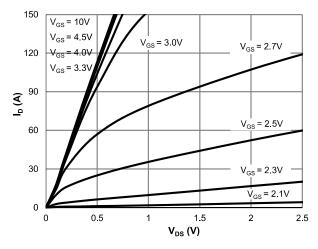
Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DS}	40	V
Gate-to-Source Voltage	V_{GS}	±20	V
Continuous Drain T _C = 25°C	1	349	Α
Current ⁽¹⁾ T _C = 100°C	I _D	221	A
Pulsed Drain Current (2)	I _{DM}	1395	Α
Avalanche Current (3)	I _{AS}	45	Α
Avalanche Energy (3)	E _{AS}	506	mJ
Power Dissipation (4) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	P _D	139	W
Fower dissipation $T_C = 100^{\circ}C$	LD	56	VV
Junction & Storage Temperature Range	T _J , T _{STG}	-55 to 150	°C

Electrical Characteristics (@ T_J = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
STATIC PARAMETERS						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	40			V
Zero Gate Voltage Drain Current	1	V _{DS} = 32V, V _{GS} = 0V			1.0	
Zero Gate Voltage Drain Current	I _{DSS}	T _J = 55°C			5.0	μА
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 20V$			±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	1.2	1.5	2.5	V
Static Drain-Source ON-Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 20A$		0.58	0.75	mΩ
Static Drain-Source Oiv-Itesistance	TOS(ON)	$V_{GS} = 4.5V, I_D = 15A$		0.80	0.99	mΩ
Forward Transconductance	g _{FS}	$V_{DS} = 5V, I_{D} = 20A$		130		S
Diode Forward Voltage	V _{SD}	I _S = 1A, V _{GS} = 0V		0.65	1.0	V
Diode Continuous Current	Is	T _C = 25°C			139	А
DYNAMIC PARAMETERS (5)						
Input Capacitance	C _{iss}			7622		pF
Output Capacitance	C _{oss}	V _{GS} = 0V, V _{DS} = 20V, f = 1MHz		4052		pF
Reverse Transfer Capacitance	C _{rss}			184		pF
Gate Resistance	R_g	$V_{GS} = 0V$, $V_{DS} = 0V$, $f = 1MHz$		2.5		Ω
SWITCHING PARAMETERS (5)						
Total Gate Charge (@ V _{GS} = 10V)	Q_g			116		nC
Total Gate Charge (@ V _{GS} = 4.5V)	Qg	V _{GS} = 0 to 10V		57		nC
Gate Source Charge	Q _{gs}	$V_{DS} = 20V, I_{D} = 20A$		14.2		nC
Gate Drain Charge	Q _{gd}			16.3		nC
Turn-On DelayTime	t _{D(on)}			4.7		ns
Turn-On Rise Time	t _r	V _{GS} = 10V, V _{DS} = 20V		16.8		ns
Turn-Off DelayTime	t _{D(off)}	$R_L = 1.0\Omega$, $R_{GEN} = 6\Omega$		145		ns
Turn-Off Fall Time	t _f]		83		ns
Body Diode Reverse Recovery Time	t _{rr}	I _F = 15A, dI _F /dt = 100A/μs		67		ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 15A$, $dI_F/dt = 100A/\mu s$		69		nC

Thermal Performance


Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	45	55	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.70	0.90	°C/W

Notes:

- Computed continuous current assumes the condition of T_{J_Max} while the actual continuous current depends on the thermal & electro-mechanical application board design.
- 2. This single-pulse measurement was taken under T_{J_Max} = 150°C.
- 3. This single-pulse measurement was taken under the following condition [L = 500μ H, V_{GS} = 10V, V_{DD} = 20V] while its value is limited by T_{J_Max} = 150° C.
- 4. The power dissipation P_{D} is based on T_{J_Max} = 150°C.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Electrical & Thermal Characteristics

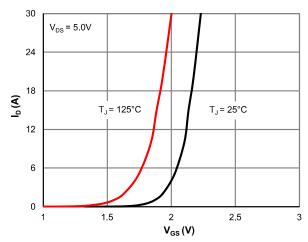


Figure 2: Transfer Characteristics

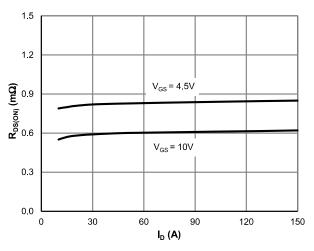


Figure 3: $R_{DS(ON)}$ vs. Drain Current

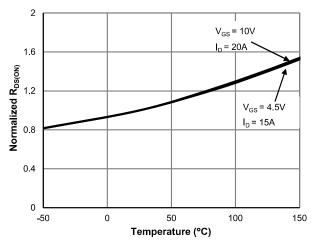


Figure 4: $R_{DS(ON)}$ vs. Junction Temperature

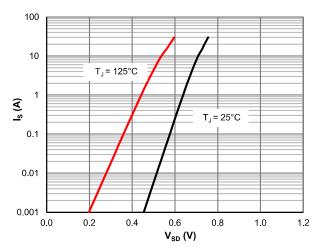


Figure 5: Body-Diode Characteristics

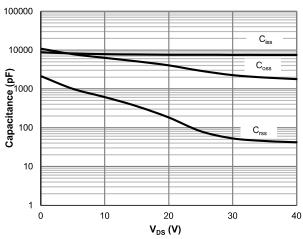
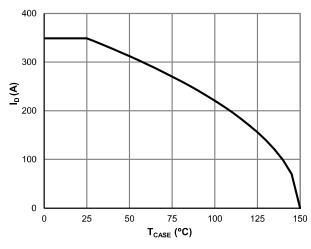



Figure 6: Capacitance Characteristics

Typical Electrical & Thermal Characteristics

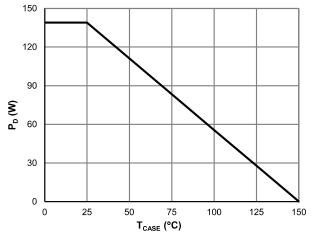
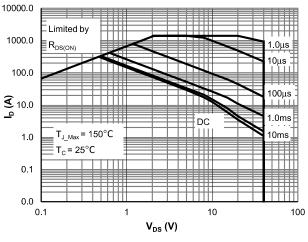



Figure 7: Current De-rating

Figure 8: Power De-rating

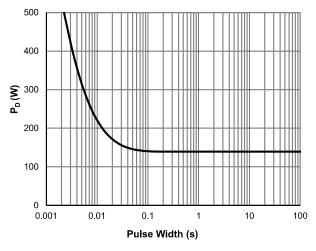


Figure 9: Maximum Safe Operating Area

Figure 10: Single Pulse Power Rating, Junction-to-Case

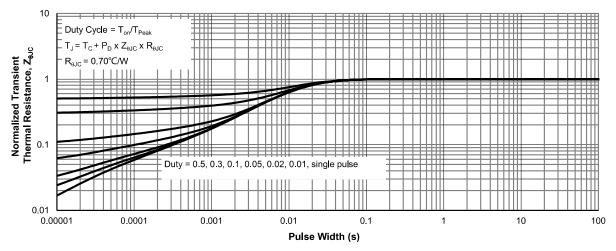
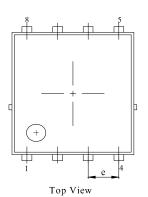
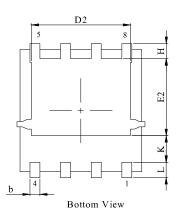
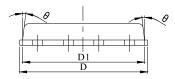



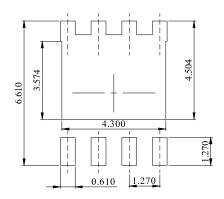
Figure 11: Normalized Maximum Transient Thermal Impedance




PDFN5x6-8L Package Information

Package Outline

 $\mathbf{E}_{\mathbf{I}}$ Side View


Front View

NOTES:

- Dimension and tolerance per ASME Y14.5M, 1994.
 All dimensions in millimeter (angle in degree).
 Dimensions D1 and E1 do not include mold flash protrusions or gate burrs.

DIM.	MILLIMETER				
DIM.	MIN.	NOM.	MAX.		
A	0.90	1.00	1.10		
Ь	0.31	0.41	0.51		
c	0.20	0.25	0.30		
D	5.00	5.20	5.40		
D1	4.95	5.05	5.15		
D2	4.00	4.10	4.20		
E	6.05	6.15	6.25		
E1	5.50	5.60	5.70		
E2	3.42	3.53	3.63		
e	1.27BSC				
Н	0.60	0.70	0.80		
L	0.50	0.70	0.80		
K	1.23 REF				
θ	-	-	10°		

Recommended Soldering Footprint

DIMENSIONS:MILLIMETERS

单击下面可查看定价,库存,交付和生命周期等信息

>>JJW(捷捷微)