

JMTM300N03D

Description

Dev	vice Marking	Device	Outline	Package	Reel Size	Reel(pcs)	Per Carton (pcs)
	300N03D	JMTM300N03D	TAPING	SOT-23-6L	7"	3000	120000

Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Symbol	Parameter		Value	Units
V _{DS}	Drain-to-Source Voltage		30	V
V _{GS}	Gate-to-Source Voltage		±12	V
	Continuous Drain Current	T _A = 25°C	4.8	٥
ID		T _A = 100°C	3	— A
I _{DM}	Pulsed Drain Current ⁽¹⁾		19	A
PD	Power Dissipation	T _A = 25°C	1.2	W
R _{θJA}	Thermal Resistance, Junction to Ambient ⁽²⁾		103	°C/W
T_{J}, T_{STG}	Junction & Storage Temperature Range		-55 to 150	°C

Electrical Characteristics (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 30V, V _{GS} = 0V	-	-	1.0	μΑ
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 12V$	-	-	±100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = 250 μ A	0.6	0.95	1.3	V
		V_{GS} = 10V, I_{D} = 4A	-	25	33	mΩ
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽³⁾	V _{GS} = 4.5V, I _D = 3A	-	27	35	mΩ
		V_{GS} = 2.5V, I_{D} = 3A	-	32	42	mΩ
Dynam	ic Characteristics					
C _{iss}	Input Capacitance		-	663	-	pF
C_{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1MHz	-	52	-	pF
C_{rss}	Reverse Transfer Capacitance		-	43	-	pF
Q_g	Total Gate Charge		-	7	-	nC
Q_gs	Gate Source Charge	$V_{GS} = 0 \text{ to } 4.5V$ $V_{DS} = 15V, I_D = 3A$	-	1.7	-	nC
Q_{gd}	Gate Drain("Miller") Charge		-	1.6	-	nC
Switchi	ing Characteristics					
t _{d(on)}	Turn-On DelayTime		-	4	-	ns
t _r	Turn-On Rise Time	V _{GS} = 4.5V, V _{DD} = 15V	-	17	-	ns
$t_{d(off)}$	Turn-Off DelayTime	I_D = 3A, R_{GEN} = 3 Ω	-	95	-	ns
t _f	Turn-Off Fall Time		-	37	-	ns
Drain-S	Source Diode Characteristics and M	/lax Ratings				
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	4.8	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Fo	orward Current	-	-	19	А
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 4.8A$	-	-	1.2	V
trr	Body Diode Reverse Recovery Time	1 - 30 di/dt - 1000/ma	-	6.7	-	ns
Qrr	Body Diode Reverse Recovery Charge	– I _F = 3A, di/dt = 100A/us	-	2.3	-	nC

Notes:

: 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

2. R_{BJA} is measured with the device mounted on a 1inch^2 pad of 2oz copper FR4 PCB

3. Pulse Test: Pulse Width ${\leqslant}300\mu s,$ Duty Cycle ${\leqslant}0.5\%.$

Typical Performance Characteristics

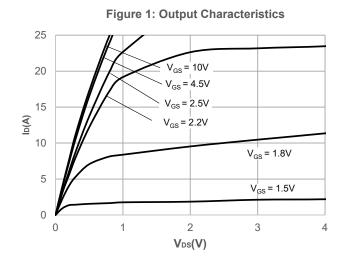
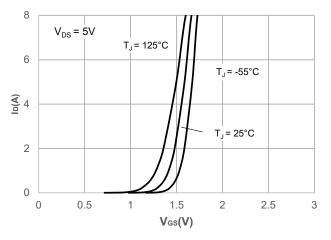



Figure 2: Typical Transfer Characteristics

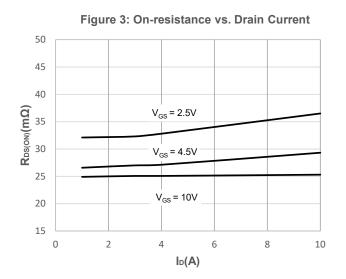


Figure 5: Gate Charge Characteristics

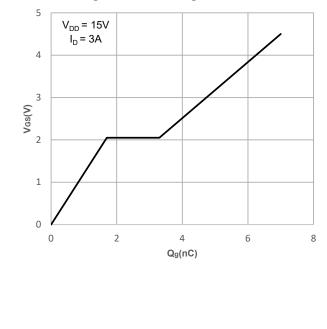
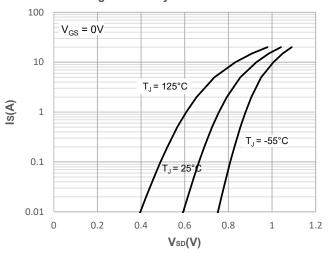
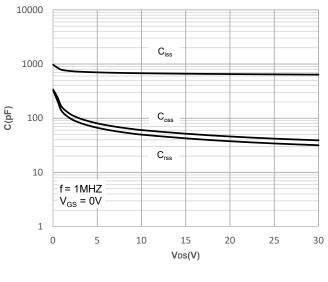




Figure 4: Body Diode Characteristics

Typical Performance Characteristics

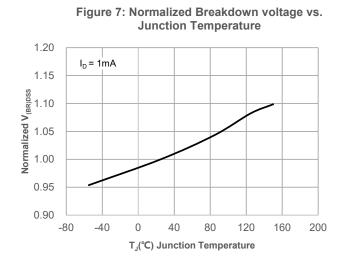
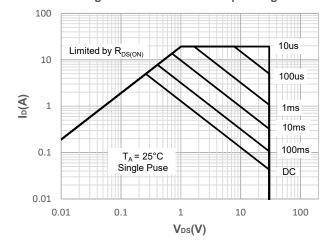
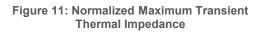
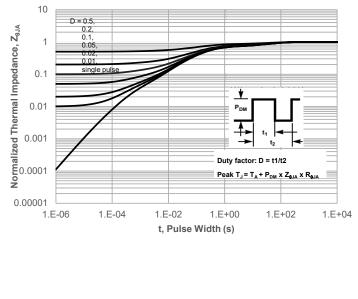





Figure 9: Maximum Safe Operating Area

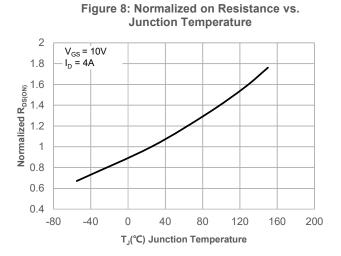
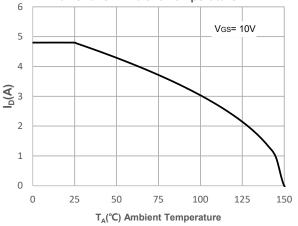
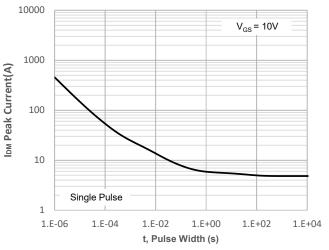
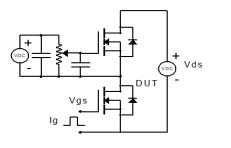




Figure 10: Maximum Continuous Drian Current vs. Ambient Temperature



JMTM300N03D

Test Circuit

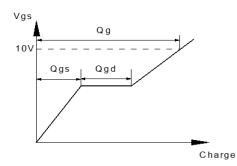


Figure 1: Gate Charge Test Circuit & Waveform

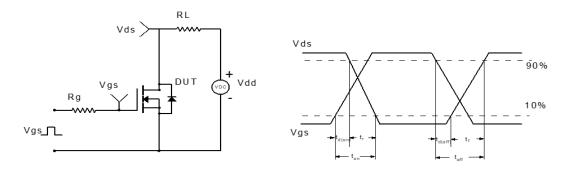
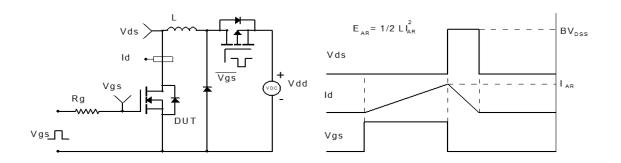
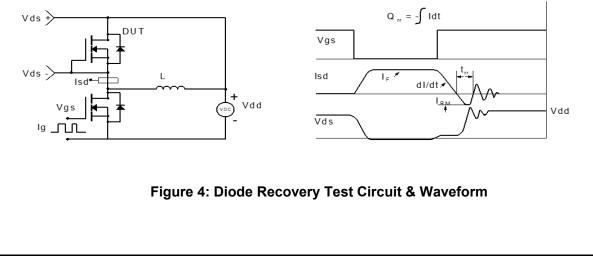
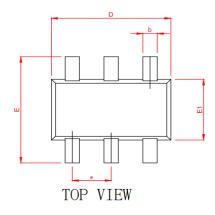
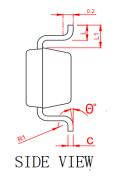
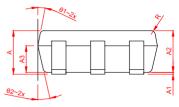




Figure 2: Resistive Switching Test Circuit & Waveform







Package Mechanical Data(SOT-23-6L)

	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	1.06	1.15	1.24	
* A1	0.01	0.05	0.09	
* A2	1.05	1.10	1.15	
A3	0.65	0.70	0.75	
* b	0.30	0.35	0.45	
* c	0.127REF			
* D	2.87	2.92	2.97	
* E	2.72	2.80	2.88	
* E1	1.55	1.60	1.65	
* e	0.95BSC			
* L	0.32	0.40	0.48	
* L1	0.55	0.60	0.65	
R	0.10 REF			
R1	0.12 REF			
* Θ	0		<mark>8</mark> °	
<u>Θ</u> 1	8°	10°	12°	
Θ2	10°	12°	14°	

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd. Copyright ©2023 Jiangsu JieJie Microelectronics Co.,Ltd. Printed All rights reserved.

单击下面可查看定价,库存,交付和生命周期等信息

>>JJW(捷捷微)