

Rev.1.0 Nov.5 2020

JSKT280/JSKH280

Description:

- 1) A package of series of two chips.
- 2) With high thermal conductivity DBC as the insulation.
- 3) Welding by vacuum welding technology, which provide high reliability.

Typical Application:

DC motor control, temperature control and light control system.

Absolute Maximum Ratings (Packaged into modules, unless otherwise specified, T_{CASE}=25°C)

Demonster	Test Conditions Symbol		Values			
Parameter		12	16	18	Unit	
Operating junction temperature range		Tj	-40~125		°C	
Storage temperature range		T _{stg}	-40~125		°C	
Repetitive peak off-state voltage	T j =25 ℃	V _{DRM}	1200	1600	1600	V
Repetitive peak reverse voltage	Tj =25 ℃	V _{RRM}	1200	1600	1600	V
Non-repetitive peak off-state voltage	T j =25 ℃	Vdsm	1400	1800	2000	V
Non-repetitive peak reverse voltage	T j =25 ℃	V _{RSM}	1400	1800	2000	V
Average on-state current	Tc =80 ℃	It(av)/If(av)	280		А	
Peak on-state surge current	tp=10ms Vr=0.6Vrrm	Itsm/Ifsm	5600		А	
l ² t value for fusing	t _P =10ms V _R =0.6V _{RRM}	l ² t	156800		A ² s	
Critical rate of rise of on-state current	Ig=2×IgT	dl/dt	150		A/µs	
Insulation voltage	A.C 50Hz(1s/1min)	Viso	3600/3000		V	

Electrical Characteristics (Packaged into modules, unless otherwise specified, T_{CASE} =25 °C)

Parameter	Test Conditions	Symbol	Values	Unit
Peak on-state voltage	I⊤=840A t⊵=380µs	V _{TM}	≤1.8	V
Threshold voltage	Tj =125 ℃	V _{TO}	≤0.77	V
Dynamic resistance	Tj =125 ℃	Rd	≤0.8	mΩ
	VD=VDRM			
Repetitive peak off-state current	Tc =25 ℃	IDRM1	≤100	μA
	Tc =125 ℃	Idrm2	≤100	mA

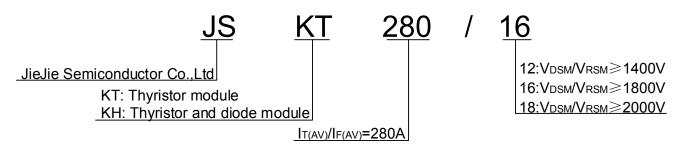
Repetitive peak reverse current	VR=VRRM Tc=25℃	RRM1	≤100	μA
	Tc=125℃	IRRM2	≤100	mA
Triggering gate current	V_D =12V R _L =30 Ω	lgт	20-150	mA
Holding current	I⊤=1A	Ін	≤300	mA
Latching current	Ig =1.2 Ідт	١L	≤400	mA
Triggering gate voltage	V _D =12V R _L =30Ω	V _{GT}	≤1.8	V
Non triggering gate voltage	V D=0.5V DRM Тј =125 ℃	Vgd	≤0.25	V
Critical rate of rise of voltage	V _D =2/3V _{DRM} Tj=125℃ Gate Open	dV/dt	≥1000	V/µs
Thermal resistance	Junction to case	Rth(j-c)	0.12	K/W
	Case to heatsink	Rth(c-s)	0.05	

Mechanical Characteristics

G1(4) JSKH symbol	Module size	115×50mm
Mounting torque(M5) 5±15%Nm Terminal torque(M8) 9±15%Nm Image: state	Module height	53mm
Terminal torque(M8) 9±15%Nm Image: Constraint of the symbol Image: Constraint of the symbol Image: Constraint of the symbol Image: Constraint of the symbol Image: Constraint of the symbol Image: Constraint of the symbol Image: Constraint of the symbol	Terminal distance of (1) /(2) /(3)	42.5mm/35mm/23.5mm
$(1) \bigcirc (2) \bigcirc (3) \\ (1) \bigcirc (2) \bigcirc (2) \bigcirc (3) \\ (1) \bigcirc (2) \bigcirc (2) \bigcirc (3) \\ (1) \bigcirc (2) \bigcirc (3) \\ (1) \bigcirc \bigcirc (3) \\ (3) $	Mounting torque(M5)	5±15%Nm
$(1) \bigcirc (2) \bigcirc (2) \bigcirc (3) \\ (1) \bigcirc (1) (1) $	Terminal torque(M8)	9±15%Nm
$(1) \circ (2) \circ (3) \circ (3) \circ (1) \circ (2) \circ (3) $	115±0.75 42.5±0.5 3-M8 3-M8 42.5±0.5 3-115±0.75 42.5±0.5 3-115±0.75 42.5±0.5 3-115±0.75 42.5±0.5 3-115±0.75 3-115±0.75	
JSKT symbol	(1) • • (2) • • G2(6) • (3) • (3) • (4)	○ K1(5) ○ G1(4)
	JSKT symbol	

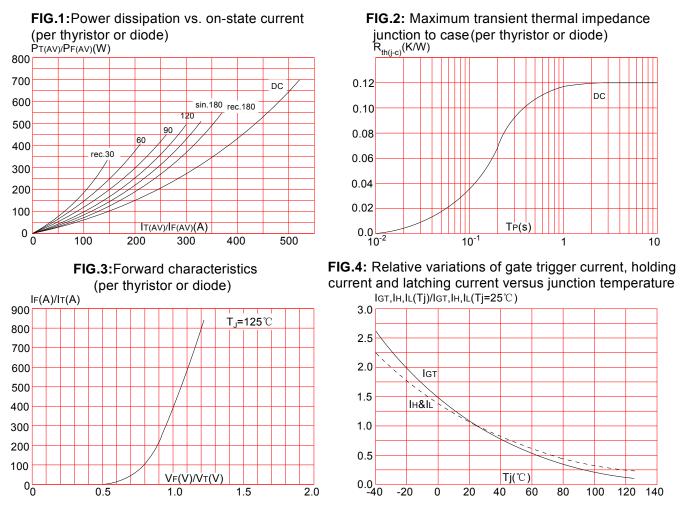
TEL: +86-513-83639777

Instructions and Precautions


1) There is no severe vibration and shock in operating environment, and there should be no impurity and atmosphere which may corrode metal and damage the insulation in the air-dielectric.

2) The operating condition of the product can't out of range of the above parameters.

3) When the product is installed on the radiator, the radiator's surface should be confirmed flat, smooth, wipe clean with alcohol, and coated evenly with a layer of thermal grease which thickness is moderate on the contact surface between product and radiator. When the module is fastened on the surface of the radiator, the M5 or M6 screws and spring washers are used and fastened with 5NM torque. After the module is operated 1 hour, all screws must be refastened.


4) The connection with the main electrode of module can use copper, welding, socket and so on. The contact surface should be smooth and flat, which make good contact. While the connection with the control electrode of module is installed, attention should be paid to the corresponding connection of each pin. After the completion of the connection, do not plug and pull out the lead of the control electrode freely.

Ordering Information

Performance Curves

Information furnished in this document is believed to be accurate and reliable. However, JieJie Semiconductor Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it.

Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, JieJie complies with the agreement.

Products and information provided in this document have no infringement of patents. JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

This document is the first version which is made in 5-Nov.-2020. This document supersedes and replaces all information previously supplied.

Semiconductor Co.,Ltd. Printed All rights reserved.

```
TEL: +86-513-83639777
```

单击下面可查看定价,库存,交付和生命周期等信息

>>JJW(捷捷微)