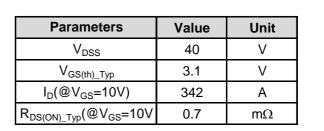
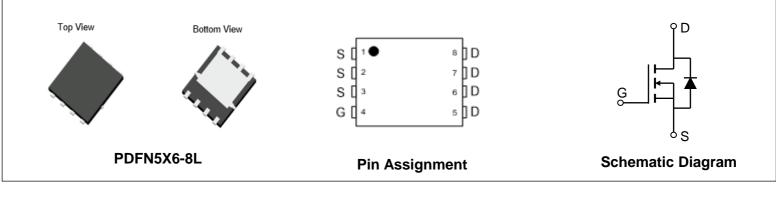
JJMICROELECTRONICS

40V, 342A, 0.7m Ω N-channel Power SGT MOSFET


JMSH040SPGQ

Features

- Ultra-low ON-resistance, $R_{DS(ON)}$
- Low Gate Charge
- 100% UIS Tested
- 100% ΔVds Tested
- Halogen-free; RoHS-compliant
- AEC-Q101 Qualified


Applications

- Load Switch
- PWM Application
- General Automtoive Application

Product Summary

Ordering Information

Device	Marking	MSL	Form	Package	Reel(pcs)	Per Carton (pcs)
JMSH040SPGQ-13	H040SPQ	1	Tape&Reel	PDFN5x6-8L	5000	50000

Absolute Maximum Ratings (@ T_c = 25°C unless otherwise specified)

Symbol	Parameter		Value	Unit
V _{DS}	Drain-to-Source Voltage		40	V
V_{GS}	Gate-to-Source Voltage		±20	V
Ι _D	Continuous Drain Current	$T_C = 25^{\circ}C$	342	Α
		$T_{\rm C} = 100^{\circ}{\rm C}$	242	A
I _{DM}	Pulsed Drain Current ⁽¹⁾		Refer to Fig.4	A
E _{AS}	Single Pulsed Avalanche Energy ⁽²⁾		880	mJ
P _D	Power Dissipation	$T_C = 25^{\circ}C$	183	W
		$T_{\rm C} = 100^{\circ}{\rm C}$	91	VV
T _J , T _{STG}	Junction & Storage Temperature Range		-55 to 175	°C

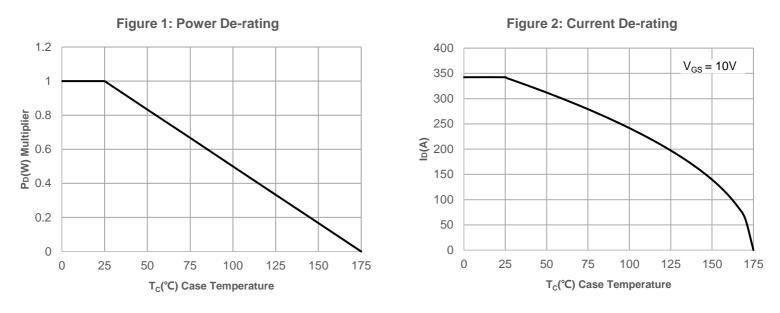
Thermal Characteristics

Symbol	Parameter	Мах	Unit	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient ⁽³⁾	43	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.8	C/ VV	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Cha	aracteristics					
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0V$	40	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32V, V_{GS} = 0V$	-	-	1.0	μA
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.1	3.1	4.0	V
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽⁴⁾	$V_{GS} = 10V, I_{D} = 20A$	-	0.7	0.9	mΩ
Dynami	ic Characteristics					
R_g	Gate Resistance	f = 1MHz	-	1.4	-	Ω
C _{iss}	Input Capacitance		4871	6820	9206	pF
C _{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 20V,$ f = 1MHz	2793	3910	5278	pF
C _{rss}	Reverse Transfer Capacitance		155	217	293	pF
Qg	Total Gate Charge		71	99	134	nC
Q _{gs}	Gate Source Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 20V, I_D = 20A$	21	30	41	nC
Q_{gd}	Gate Drain("Miller") Charge	VDS = 200, 10 = 200	17	24	33	nC
Switchi	ing Characteristics					
t _{d(on)}	Turn-On DelayTime		-	23	-	ns
t _r	Turn-On Rise Time	V _{GS} = 10V, V _{DD} = 20V	-	33	-	ns
t _{d(off)}	Turn-Off DelayTime	$I_D = 20A, R_{GEN} = 3\Omega$	-	54	-	ns
t _f	Turn-Off Fall Time		-	25	-	ns
Body D	iode Characteristics			•		•
I _S	Maximum Continuous Body Diode Forward Current		-	-	342	А
I_{SM}	Maximum Pulsed Body Diode Forward Current		-	-	1370	А
$V_{\rm SD}$	Body Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 20A$	-		1.2	V
trr	Body Diode Reverse Recovery Time	1 - 150 di/dt = 1000 / tra	54	76	103	ns
Qrr	Body Diode Reverse Recovery Charge	I _F = 15A, di/dt = 100A/us	-	144	-	nC

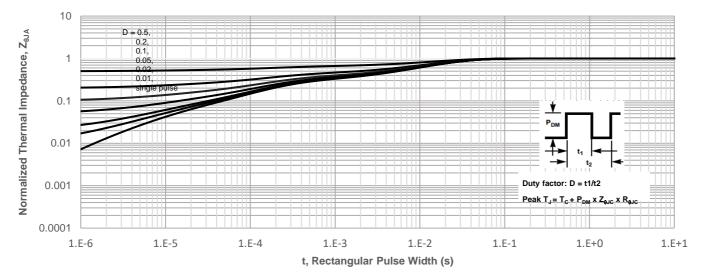
Electrical Characteristics ($T_J = 25^{\circ}C$ unless otherwise specified)

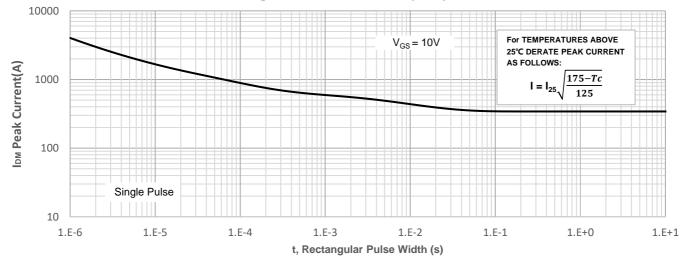
Notes: 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.


2. E_{AS} condition: Starting T_J =25C, V_{DD} =20V, V_G =10V, R_G =25ohm, L=3mH, I_{AS} =24.22A, V_{DD} =0V during time in avalanche.

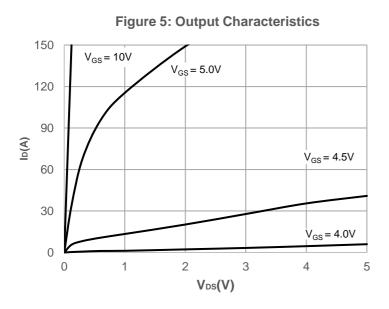
3. $R_{\theta JA}$ is measured with the device mounted on a 1inch² pad of 2oz copper FR4 PCB.

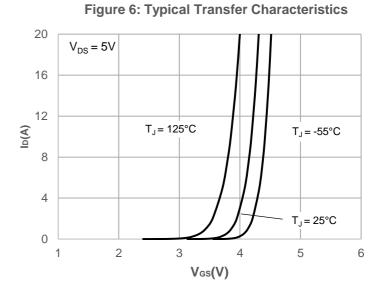
4. Pulse Test: Pulse Width ${\leqslant}300\mu\text{s},$ Duty Cycle ${\leqslant}0.5\%.$



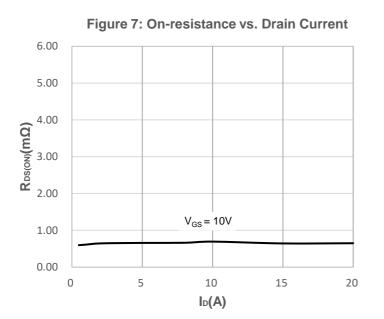


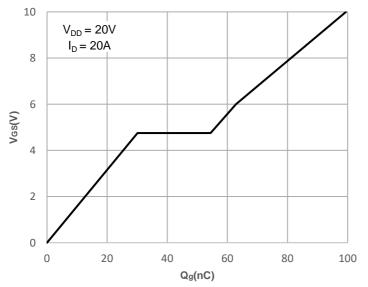
Typical Performance Characteristics




T_J = -55°C

1


1.2



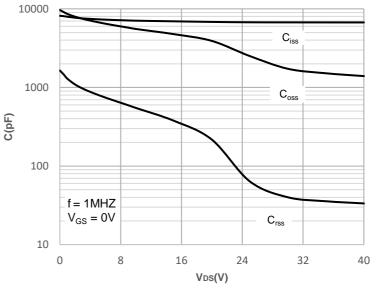

Figure 8: Body Diode Characteristics

Figure 9: Gate Charge Characteristics

Figure 10: Capacitance Characteristics

www.jjwdz.com All product information is copyrighted and subject to legal disclaimers.

REV 1.4 | 4/7

0.01 0 0.2 0.4 0.6 0.8 Vsd(V) 10000

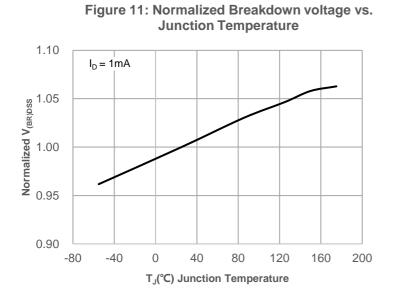
= 25

100

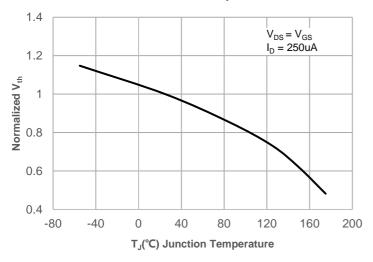
10

1

0.1


Is(A)

 $V_{GS} = 0V$


T_J = 125°C

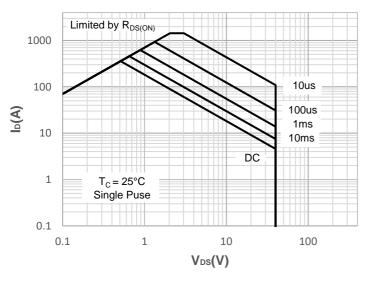

Typical Performance Characteristics

Figure 15: Maximum Safe Operating Area

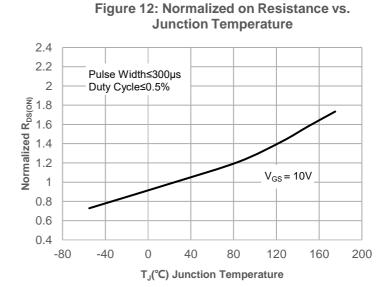
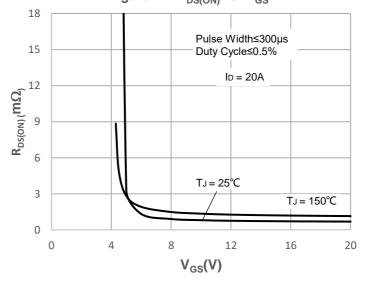



Figure 14: R_{DS(ON)} vs. V_{GS}

м

Test Circuit

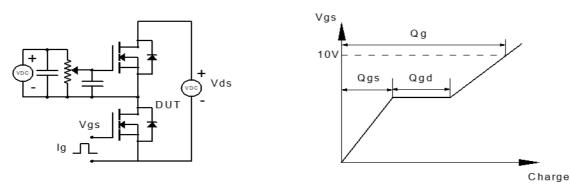


Figure 1: Gate Charge Test Circuit & Waveform

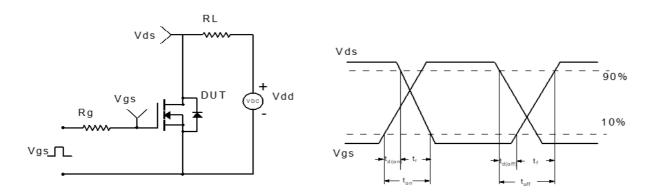


Figure 2: Resistive Switching Test Circuit & Waveform

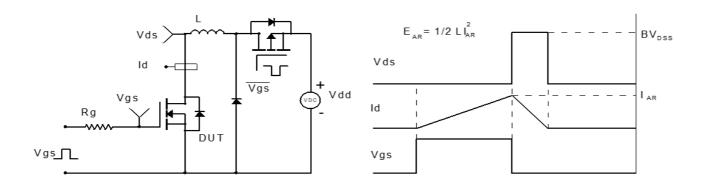
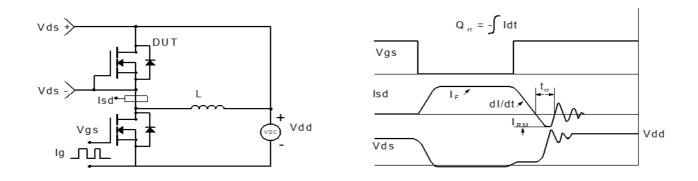
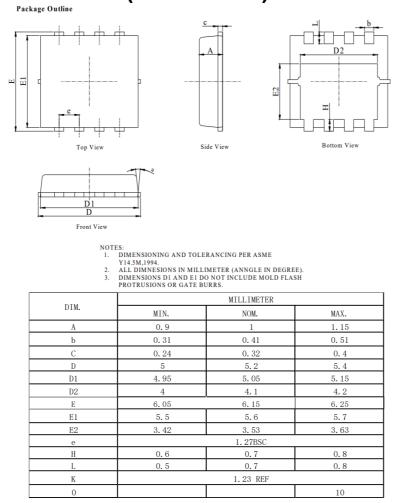
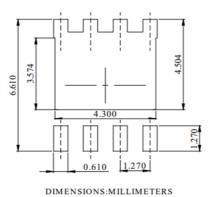


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform




Figure 4: Diode Recovery Test Circuit & Waveform

www.jjwdz.com All product information is copyrighted and subject to legal disclaimers.


REV 1.4 | 6/7

Package Mechanical Data(PDFN5X6-8L)

Recommended Soldering Footprint

Information furnished in this document is believed to be accurate and reliable. However, Jiangsu JieJie Microelectronics Co.,Ltd assumes no responsibility for the consequences of use without consideration for such information nor use beyond it. Information mentioned in this document is subject to change without notice, apart from that when an agreement is signed, Jiangsu JieJie complies with the agreement. Products and information provided in this document have no infringement of patents. Jiangsu JieJie assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

is a registered trademark of Jiangsu JieJie Microelectronics Co.,Ltd.

REV 1.4 | 7/7

单击下面可查看定价,库存,交付和生命周期等信息

>>JJW(捷捷微)