

4~10 Series Cell Battery Monitor and Protection IC

DESCRIPTION

JW3371 is a multi-cell battery stack monitoring and protection IC that includes a 14-bit ADC for battery voltage and temperature sense, a 16-bit ADC for charge/discharge current sense.

JW3371 provides passive balance function for each cell and allows at most 3 consecutive cells being discharged simultaneously.

JW3371 communicates with external control unit via SPI interface. More JW3371 can operate in series to monitor long string battery.

JW3371 integrates complete protection function including over/under voltage, over/under temperature, over charge/discharge current, short-circuit and open wire detection. When fault(s) happen, JW3371 will send alarm signal to inform host and shutdown CHG or DSG.

JW3371 integrated pre-charge and pre-discharge drivers for the deep discharge battery or some big capacitor load startup.

JW3371 supports both Sleep mode and Ship mode to achieve high efficiency with low power when charge/discharge current is minor.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of Joulwatt Technology Co., Ltd.

FEATURES

- Monitor 10 Series Cell Battery and Support Series Operation
- 14-bit ΔΣ ADC Samples Battery Voltage and Accuracy is ±3mV typ.@ (2.3~4.3V, T_A=25°C)
- Provide Filtering 3 Channels Thermal Sense and Accuracy is ±1 ℃ (No Considering NTC Resistor Offset)
- Battery Over/Under Voltage Protection
- Battery Over/Under Temperature Protection
- Open Wire Connection Detection
- 10 Cells Passive Balance
 On-Chip Passive Cell Balancing Switches
 Provide Off-Chip Passive Balancing
- 16-bit ΔΣ ADC Senses Charge/Discharge Current and Accuracy is ±75µV typ.@ (-100 mV ~100mV, T_A=25°C) ±100µV typ.@ (-190 mV ~190mV, T_A=25°C)
- Over Charge/Discharge Current Protection
- Discharge Short Protection
- Reliable SPI Communication (Mode3)
- 3.3V LDO Output for External Application
- External Protection N-MOSFETs
- Integrated Pre-charge/discharge Function
- Low Power Consumption
 During Operation
 1.5mA typ. 1.8mA Max
 During Sleep
 18µA typ. 20µA Max
 During Ship
 3.2µA typ. 5µA Max
- Package: TSSOP38

APPLICATIONS

- Electric Bicycles, Motorcycles.
- Backup Battery Systems
- Hybrid Electric Vehicle

TYPICAL APPLICATION

10 Cells Low Side Driver

20 Cells Low Side Driver

Note: When the charger voltage is 30V higher than the battery voltage, there will be leakage current during charging.

 $I_{Leakage}(A) = \frac{V_{charger}(V) - V_{BAT}(V) - V_{TVS}(V)}{51k\Omega}$

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾
		JW3371	Groop
JW3371TSSOPF#TR	1550P38	YWDDDD	Green

Notes:

3) All JoulWatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

PIN CONFIGURATION

TSSOP38

ABSOLUTE MAXIMUM RATING¹⁾

VIN-GND, VCC-GND	-0.3V to 60V
B(N)-GND N=04	-0.3V to 40V
B(N)-GND N=510	0.3V to 60V
B(N)-B(N-1) N=110	0.3V to 20V
B10-VIN	20V to 0.6V
SRP	5V to 40V
CHSE	GND-40V to 60V
VM, CHG	0.3V to 60V
DSG	-0.3V to 20V
/CSB, CLKB, MOSIB	5V to 6.5V
MOSIA, /CSA, CLKA, MISOA, ALARMA	0.3V to 60V
All Other Pins	0.3V to 6.5V
Junction Temperature ²⁾	150ºC
Lead Temperature	
Storage Temperature	40°C to +125°C

RECOMMENDED OPERATING CONDITIONS³⁾

B(N)-B(N-1) N=110		.0V to 5V
VIN-GND		8V to 50V
Operating Junction Temperature	40ºC	to +85⁰C
THERMAL PERFORMANCE ⁴⁾	$ heta_{J\!A}$	$ heta_{JC}$
TSSOP38		19°C/W

Note:

1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMEND OPERATION CONDITIONS.

2) The JW3371includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.

- **3)** The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARATERISTICS

VIN=VCC=36V, T_A = 25°C, unless otherwise stated.						
ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNITS
Power Supply						
Operation voltage on VIN	Vin		8		50	V
Startup voltage of VIN and VCC	VIN_START			5.5	6	V
		T _A =-40℃ ⁵⁾	1.2	1.45	1.8	mA
Operation current of VIN and	lin_o	T _A =25℃	1.3	1.5	1.8	mA
		T _A =85℃ ⁵⁾	1.4	1.64	1.9	mA
		T _A =-40 ℃ ⁵⁾	17	18	20	μA
Sleep current of VIN and VCC	lin_l	T _A =25℃, VDO no load, CHG & DCHG off	17	18	20	μA
		T _A =85 °C ⁵⁾	19	20	24	μΑ
	lın_s	T _A =-40℃ ⁵⁾	2.3	2.6	4	μΑ
Ship current of VIN		T _A =25℃	2.4	3.2	5	μA
		T _A =85℃ ⁵⁾	3.4	3.8	6	μA
	Vdo	No Load	3.2	3.3	3.4	V
LDO output voltage		ILOAD=50mA	3.2	3.3	3.4	V
Thermal bies valters (2.2)()	V _{TB}	No Load	3.26	3.3	3.31	V
Thermal bias voltage (3.3V)		I _{LOAD} =2mA	3.26	3.3	3.31	V
LDO output current limit	Ilmt_ldo		70	100		mA
LDO turn off delay time	$t_{LDO_OFF}^{5)}$			1		S
TB output current limit	Ilmt_tb			12		mA
LDO/TB over thermal warning threshold	Tldo_war ⁵⁾			125		°C
LDO/TB over thermal protection threshold	Tldo_pro ⁵⁾			150		°C
Thermal shutdown threshold	TSHUTD ⁵⁾			150		°C
Thermal hysteresis	T _{HYS} ⁵⁾			25		°C
14-BIT ADC (for cell voltage an	d temperature	monitor)				
Resolution of ADC	Vvrev ⁵⁾			0.305		mV
Measurement range of ADC	V _{RANGEV} ⁵⁾		0		5.0	V
Offset voltage of measurement	Voffsetv ⁵⁾		-0.5	0	0.5	mV

		V _{CELL} =2.3V~4.3V T _A =25°C		±3	±6	mV
Error voltage of measurement	Verr	V _{CELL} =2.3V~4.3V T _A = - 20°C ~65°C ⁵⁾		±4	±10	mV
		V _{CELL} =2.3V~4.3V T _A = - 40°C ~85°C ⁵⁾		±5	±15	mV
	f	Normal mode T _A =25°C	0.9	1	1.1	MHz
Frequency of ADC clock	ICLK	Normal mode $T_A = -40^{\circ}C^{-85^{\circ}C^{5^{\circ}}}$	0.85	1	1.15	MHz
		Fast mode,				
	-	Setting: Control				
Measure time of single cell	tunitv ⁵⁾	Parameter Set: bit		0.64		ms
		[49:48]=0x0				
		Fast mode,				
	5)	Setting: Control				
Measure time of 10 cells	tcycle ⁵⁾	Parameter Set: bit		6.4		ms
		[49:48]=0x0				
		Fast mode,				
Cell balancing relaxation time	1 5)	Setting: Control		0.64		
before cell voltage measured	CB_RELAX ³⁷	Parameter Set: bit				ms
		[49:48]=0x0				
		Fast mode,				
Temperature measurement	1 5)	Setting: Control				
interval	(TEMP ⁹⁾	Parameter Set: bit		64		ms
		[49:48]=0x0				
16-BIT ADC (for current monito	r)					
Resolution of ADC	$V_{VREC}^{5)}$			6		μV
Measurement range of ADC	Vrangec ⁵⁾		-190		190	mV
		V _{SRP-SRN} = - 100mV~100mV T _A =25°C	-150	±75	150	μV
Error voltage of measurement	Vraac	$V_{SRP-SRN} =$ - 190mV~190mV T _A =25°C	-300	±100	300	μV
Error voltage of measurement	VERRC	$V_{SRP-SRN} =$ - 100mV~100mV T _A =-20~65°C ⁵⁾	-180	±80	180	μV
		V _{SRP-SRN} = - 190mV~190mV T _A =-20~65°C ⁵⁾	-360	±110	360	μV

				V _{SRP-SRN} = - 100mV~100mV T _A =-40~85°C ⁵)	-300	±100	300	μV
				V _{SRP-SRN} = - 190mV~190mV T _A =-40~85°C ⁵⁾	-600	±200	600	μV
Current measure	time cycle		t _{UNITC} 5)			132		ms
Protection								
Over charge/	Threshold Ran	ige	Voc/Vod		0		5	V
Over discharge	Step					19.53		mV
	Threshold Rar	ige	toc ⁵⁾		0.128		1.92	S
	Step					128		ms
Over charge	Threshold Ran	ige	toc ⁵⁾		0.512		7.68	S
delay time	Step					512		ms
	Accuracy				75%*toc- Step	toc	125%*t	
	Threshold Rar	ige	t _{OD} ⁵⁾		0.512		7.68	s
Over discharge	Step					512		ms
delay time	Threshold Rar	ige	t _{OD} ⁵⁾		1		15.36	S
,	Step					1024		ms
	Accuracy				75%*t _{OD} - Step	top	125%*t ^{OD}	
Temperature	Threshold Rar	ige	Vот		0		3.3	V
protection	Step					19.53		mV
	Threshold Rar	ige	t _{OT} ⁵⁾		0.512		7.68	S
Temperature	Step					512		ms
protection delay					75%*to⊤- Step	tот	125%*t от	
Discharge over	Threshold Rar	ige	V _{DOI1}		0		190	mV
current 1 st	Step					0.781		mV
Grade	Accuracy				-2		2	mV
Discharge over	Threshold Rar	ige	t _{DOI1} 5)		0.128		8.064	S
current 1 st	Step					256		ms
Grade protection delay time	Accuracy				75%*t _{oDO} _{I1} -Step	t _{DOI1}	125%*t _{DOI1}	
	Threshold Rar	ige	V _{DOI2}		0		190	mV
	Step					0.781		mV

Discharge over current 2 nd Grade	Accuracy		-2		2	mV
Discharge over	Threshold Rang	e (5)	32		992	ms
current 2 nd	Step	t _{DOI2} 3)		32		ms
Grade protection	Threshold Rang	e 5)	4		124	ms
delay time	Step	(DOI2		4		ms
	Threshold Rang	e 5)	32		992	ms
Discharge over	Step	(DOI2		32		ms
current 2 nd	Threshold Rang	e 5)	4		124	ms
Grade protection	Step	(DOI2		4		ms
delay time	Accuracy		75%*topo I2-Step	t _{DOI2}	125%*t _{DOI2}	
Short circuit	Threshold Rang	e V _{SHT}	42.5		500	mV
protection	Step			7.5		mV
protection	Accuracy		-10		10	%
	Threshold Rang	e t _{SHT} 5)	64		2048	μs
Short circuit	Step			64		μs
protection delay	Accuracy		75%*t _{SHT} -Step	t _{SHT}	125%*t _{SHT}	
	Threshold Rang	e Vcoi	0		200	mV
	Step			0.781		mV
current	Accuracy		-2		2	mV
Charge over	Threshold Rang	e t _{COI} 5)	0.64		960	ms
current	Step			64		ms
protection delay	Accuracy		75%*t _{COI} - Step	tcoi	125%*t coi	
Open wire detect	ion current ⁵⁾		40	85	130	μA
Open wire detect	ion threshold ⁵⁾			200		mV
Balance						
RDSON of balance	switch	Rdson_bsw		50		Ω
Watchdog	Programmable	twp ⁵⁾	0.512		120	s
timer range for	Step			512		ms
balance	Accuracy		75%*t _{wD} - Step	two	125%*t _{WD}	
Balance over the threshold	rmal protection	Tbalan ⁵⁾		150		٥C

Balance over the	ermal protection	TBALAN_HYST			25		°C	
hysteresis		5)			23		C	
Charge and Dis	scharge Drivers							
The high voltage	e of external	VDRIV	CHG DSG	10	12	14	V	
MOSFET driver		V DRIV	0110, 200,	10	12	17	·	
The high voltage	e of external	VDDBW	PCHG PDSG	45	6	65	V	
MOSFET driver		VPDRIV		4.0	Ŭ	0.0	·	
The sink current	of external	lonur	CHG	9	10		mA	
MOSFET driver		ISINK	DSG	76	95		mA	
The source curre	ent of external	1		F	10		~ ^	
MOSFET driver		ISOURCE	CHG, DSG	5	10		ma	
The sink current	of Pre-charge	1		4	F		~ ^	
and Pre-dischar	ge	IPD	PCHG, PDSG	4	5		MA	
The source curre	ent of Pre-charge	I _{PUCHG}	PCHG	2.8	4		mA	
The source curre	ent of Pre-		PDSC	2.0	5		m 4	
discharge		IFUDGG	FD3G	2.0	U		IIIA	
Load State Det	ection and Charge	r Detection ar	nd Wakeup					
Load detection v	oltage threshold	V _{VM}		0.7	1	1.6	V	
Load detection pull down resistor		Rvмs			40		kΩ	
Charger detection voltage		VCHSE		0.15	0.3	0.45	V	
threshold								
Charger detection	on pull up current	ICHSE		0.5	1	1.7	μA	
Charger detection deglitch time	on falling edge	t _{CHSE} ⁵⁾				30	ms	
	lising Thus should	N	Drawnakia	0.05	0.35	0.65		
Low Current wa	ikeup Inresnoid	VLC	Programmable	0.1	0.4	0.7	mv	
Low current wak	eup time	t∟c ⁵⁾				30	ms	
/CSB falling edg	e wake up							
deglitch time		t/CSB ³⁾				30	ms	
Input Current	Input Current							
B10~B0 pin leak	age current	ILK		-1.0	0	1.0	μA	
ALARMB (exce	pt device address	=1) Open Wire	and Interrupt Detect	ion		•	•	
ALARMB open	Cycle ⁵⁾				8		S	
wire detection	High level time ⁵⁾				4		ms	
ALARMB	Cycle ⁵⁾				100		ms	
interrupt	High level time ⁵⁾		Interrupt off CHG	5		14	ms	
detection	High level time ⁵⁾		Interrupt off DSG	15		25	ms	

JoulWatt® Proprietary Information. Patent Protected.

Unauthorized Photocopy and Duplication Prohibited.

	High level time ⁵⁾		Interrupt off CHG	30		50	ms
SPI Voltage Sp	ecifications						
Internal clock fre	quency at normal						
mode		fsclu		0.9	1	1.1	MHz
Internal clock fre	quency at Sleep	feet p		20	40	60	kH7
mode or idle mo	de	ISCLD		20	40	00	KI IZ
Threshold of log	ic "L" of MOSIB,	Vue				0.8	V
/CSB, CLKB		VILB				0.0	v
Threshold of log	ic "H" of MOSIB,	Vilip		2			V
/CSB, CLKB		VIND		2			v
Output voltage o	f logic "L" of	Voir			0		V
MISOB, ALARM	В	VOLB			Ŭ		v
Output voltage o	f logic "H" of	Vour			33		V
MISOB, ALARM	В	VOID			0.0		v
Threshold of log	ic "L" of ALARMA,	Vii a				VIN+0.	V
MISOA		VILA				5	v
Threshold of log	ic "H" of ALARMA,	Villa		VIN+2.2			V
MISOA		V INA					
Output voltage o	f logic "L" of	Vонл			VIN		V
MOSIA, /CSA, C	LKA	VORA			VIIV		v
SPI Current Sp	ecifications						
The sink current	of MISOB,			18	30	52	mA
ALARMB when o	output "L"	ISING		10	00	52	
The source curre	ent of MISOB,	ISOURCER		8	13	21	mΑ
ALARMB when o	output "H"	ISOURCEB		0	10	21	
The pull up resis	tor of MOSIB,	Routur		0.9	1 75	2.6	kO
/CSB, CLKB		TYPOLLOP		0.3	1.75	2.0	1/22
The sink current	of MOSIA, /CSA,			з	Л	6	m۵
CLKA when outp	out "L"	ISINKA		5	-	0	ША
SPI Timing Spe	SPI Timing Specifications						
Clock operating	frequency	fscL ⁵⁾				1	MHz
MOSIB, MISOB	valid to CLKB	+1 5)		10			ns
rising setup							115
MOSIB, MISOB	valid to CLKB	t2 ⁵⁾		250			ne
rising hold		ι <i>Σ</i> ′		200			115

CLKB low	t3 ⁵⁾		400			ns	
CLKB high	t4 ⁵⁾		400			ns	
/CSB rising edge to /CSB falling	+F 5)	Normal mode	5				
edge	15%	Low power mode	125				
CLKB rising edge to /CSB rising	+65)	Normal mode	3				
edge	10-7	Low power mode	75				
/CSB falling edge to CLKB rising	+75)	Normal mode	3			μs	
edge	(7-)	Low power mode	75				
Stack Device Address Configuration							
Threshold of logic "L" of SRN,							
SRP, ISP, ISN for device address					1.4	V	
configuration							
Threshold of logic "H" of SRN,							
SRP, ISP, ISN for device address			3.2			V	
configuration							
The pull up current of SRP to				44			
internal 5V	ISRP			11		μΑ	
The pull down resistor of ISP,	D			200		kO	
ISN, SRN	RADDRESS			200		K12	

Note:

5) Guaranteed by design.

TIMMING DIAGRAM

SPI Communication Timing Waveforms

PIN DESCRIPTION

PIN No.	NAME	DESCRIPTION
1	VIN	Maximum Voltage Input. The typical VIN is the same potential as B10.
2	B10	Cell 10 +. Sense voltage for 10th cell positive terminal.
3	B9	Cell 9 +. Sense voltage for 9th cell positive terminal.
4	B8	Cell 8 +. Sense voltage for 8th cell positive terminal.
5	B7	Cell 7 +. Sense voltage for 7th cell positive terminal.
6	B6	Cell 6 +. Sense voltage for 6th cell positive terminal.
7	B5	Cell 5 +. Sense voltage for 5th cell positive terminal.
8	B4	Cell 4 +. Sense voltage for 4th cell positive terminal.
9	B3	Cell 3 +. Sense voltage for 3rd cell positive terminal.
10	B2	Cell 2 +. Sense voltage for 2nd cell positive terminal.
11	B1	Cell 1 +. Sense voltage for 1st cell positive terminal.
12	B0	Cell 1 Sense voltage for 1st cell negative terminal.
13	GND	Ground
		This is a dual-purpose pin.
14	SRN/[A3]	1) Short detect Negative Input.
		2) Device address configuration input for cascade application
		This is a dual-purpose pin.
15	ISN/[A2]	1) Negative Current Sense Input.
		2) Device address configuration input for cascade application
		This is a dual-purpose pin.
16	ISP/[A1]	1) Positive Current Sense Input.
		2) Device address configuration input for cascade application
	Y	This is a dual-purpose pin.
17	SRP/[A0]	1) Short Detect Positive Input.
		2) Device address configuration input for cascade application
18	DSG	Discharge Switch Gate Driver.
19	CHG	Charge Switch Gate Driver.
20	VM	Pin for detecting load connection.
21	CHSE	Pin for charger detection.
22	PCHG	Pre-charge MOSFET Driver.
22		Alarm Output. ALARMB send data to below unit or host processor in the
23	ALARIVID	daisy chain.
24	CLKB	Serial Clock Input. CLKB receive data from below unit or host processor
24	CERB	in the daisy chain. See serial port in the typical application section.
		Chip Select Input (Active Low). /CSB receives data from below unit or
25	/CSB	host processor in the daisy chain. See serial port in the typical
		application section.
26	MISOR	Serial Data Output. MISOB sends data to below unit or host processor in
20	IVIIGOD	the daisy chain. See serial port in the typical application section.

Unauthorized Photocopy and Duplication Prohibited.

		Serial Data Input. MOSIB receives data from below unit or host
27	MOSIB	processor in the daisy chain. See serial port in the typical application
		section.
		This is a dual-purpose pin.
		(1) Thermal Sensor Input 3. The details refer to the TS1 pin.
28	153/PD5G	(2) Pre-discharge MOSFET Driver
		Configuration by MCU
29	TS2	Thermal Sensor Input 2. The details refer to the TS1 pin.
		Thermal Sensor Input 1. A simple thermal resistance and resistor
		combination connected to the TB pin can be used to monitor
30	TS1	temperature. The ADC measures the voltage on TS1 pin and stores the
		result in the registers. Any voltage from 0V to 3.3V referenced to GND
		can be measured.
31	ТВ	Thermal bias 3.3V output.
22		3.3V LDO Output. This pin should be by passed with a 1μ F capacitor.
32	VDO	The VDO pin is capable of supplying up to 50mA to an external load.
33	VCC	Input source for VDO, MOSFET driver and CHSE.
		Serial Data Output. The MOSIA pin is an NMOS open drain output, and
34	MOSIA	send data to the above unit in the daisy chain. See serial port in the
		typical application section.
25	MISOA	Serial Data Input. MISOA receives data from above unit in the daisy
	MISOA	chain. See serial port in the typical application section.
		Chip Select Output (Active Low). The /CSA pin is an NMOS open drain
36	/CSA	output, and send data to the above unit in the daisy chain. See serial
		port in the typical application section.
		Serial Clock Output. The CLKA pin is an NMOS open drain output, and
37	CLKA	send data to the above unit in the daisy chain. See serial port in the
		typical application section.
20		Alarm Input. ALARMA receives data from above unit in the daisy chain.
38	ALARMA	See serial port in the typical application section.

BLOCK DIAGRAM

Downloaded From Oneyac.com

FUNCTIONAL DESCRIPTION

JW3371 is a monitor and protection IC capable of measuring the voltage, the temperature and current by an internal 14-bit $\Delta\Sigma$ ADC and 16bit $\Delta\Sigma$ ADC, and integrates complete protection functions including over/under voltage, over/under temperature, over charge / discharge current, short and open wire. Two voltage ADC operation modes are provided to well satisfy multiple different application fields.

JW3371 has two built-in FET drivers, CHG and DSG, which controls NMOS FETs in the charge/discharge loop. Under alarm condition, the FETs could be set to response the alarm condition. Additionally, JW3371 provides passive balance for each battery cell. It is controlled by the host processor. The host processor writes values to configuration register inside the JW3371 to control the switches. And the balance could be disabled by the host processor.

JW3371 communicates with external control unit by a SPI serial interface. Two or more JW3371 can operate in series when the total voltage of battery stack is higher than 50V, or the total quantity of battery cells exceeds 10. JW3371 can pass the data up and down a stack of devices by the external resistor.

Over View of Operation Mode

JW3371 supports three modes of operation: Sleep, Ship, and Normal. Sleep mode is a power saving state where all circuits except the serial interface, LDO and driver are turned off. Ship mode is lowest possible power state, which only charger wakeup and /CSB wakeup circuit is enabled. Normal mode is the full operation state. The three modes key distinctions are shown in the below table.

Figure 1 shows three modes entry and exit conditions.

Normal	Sleep	Ship
Fully operation state. Voltage ADC is on. Over or under voltage protection, over temperature or under temperature is enabled. Current ADC is on and the over current protection and short protection is enabled. All the registers could be configured by host processor	Lower power state. Voltage ADC, current ADC and TB are all off. Mainly Serial Interface, LDO, Driver are on. And low current wakeup and charger wakeup function is active. Short circuit is on. In this state CHG and DSG enable registers can't be set on.	Lowest power state. All circuits are shutdown except charger wakeup and /CSB wakeup function is enabled.

Figure 1. Operation Mode State Diagram

Ship Mode

When 0000 address unit enter ship mode, LDO off, CHSE on. Non 0000 address unit enter ship mode, LDO on, which is used for /CSB wake up.

Ship mode is the lowest power state, which can be used for shipping or long-term storage. For the lower power saving, it may be entry ship mode by the host command. When the device exits ship mode, it will boot and read parameters stored in register (if that has been written). If the register has not been written, the device will power up with default settings, and then settings can be changed by the host writing device registers.

It takes 1s delay to enter ship mode from sleep mode.

• Charger Detection and Wakeup

Charger detection circuit is always on. When a falling edge is detected in CHSE pin, the IC enters to normal mode from ship mode. And the ALARMB pin sends high signal to MCU. It's only applicable to address unit 0000.

• /CSB Wakeup

/CSB wakeup function is always on. When a falling edge is detected in /CSB pin, the IC enters to sleep mode from ship mode. It's only applicable to non 0000 address unit.

Sleep Mode

JW3371 enters or exits Sleep Mode by MCU. In this mode, the CHG and DSG MOSFET status is keep as the previous states and the Low Current Wakeup function could be selected on. Once the charge / discharge current is over the Low Current Wakeup Threshold (V_{LC}) setup by host processor and this status remains for 30ms, JW3371 informs host processor and wakes up itself.

And the Low Current Wakeup operation can be disabled by host processor configuration registers.

Charger Detection and Wakeup

Charger detection circuit is always on. When a falling edge is detected in CHSE pin, the IC enters to normal mode from ship mode. And the ALARMB pin sends high signal to MCU and wakeup MCU.

SPI Wakeup

In the sleep mode, SPI circuit is on. MCU could send wakeup command to entry normal mode.

 Low Current Wakeup and Short Circuit Wakeup

In the sleep mode, when the low current or short current is detected, the IC enters to normal mode from sleep mode, and the ALARMB pin sends high signal to MCU.

Normal Mode

Normal mode represents the fully operation mode where all blocks are enabled and the device sees its highest current consumption.

JW3371 can monitor each cell voltages for over voltage and under voltage conditions. Internal 14-bit $\Delta\Sigma$ ADC enables high-accuracy measuring for battery voltage and temperature. Two 1k resistors and a 22nF capacitor are recommended to make up the front differential filtering network, which are enough for filtering transient voltage spikes. When the IC starts up, it's in sleep mode. And then enters normal mode through the MCU configuration. Figure 2 simply shows the MCU task.

It should be noted before "system control set", "voltage set", "current set", MCU should send "clear interrupt" command to clear bit [23-20] in "current ADC read". After sending "system control set", "voltage set", "current set" command, if the command pass CRC verification i.e. command successfully send from MCU to AFE, the [23-20] bit will all set. Any bit of 0 indicates this command is not sent successfully. So, the command should sent again.

Besides, after AFE wakeup successfully, the bit [4] of "Detail Alarm Info. Get" should clear. If this bit is still 1, it indicates AFE is still in sleep mode. Then wakeup command should send again.

Figure2. Task Handling Flow Chat

JW3371 can typically be used with as few as four cells, which is guaranteed by the low enough VIN start-up voltage. When JW3371 is used to

Downloaded From Oneyac.com

monitor less than 10 cells, 8 cells for example, B0~B2 pins are all shorted and the above B2~B10 pins are connected to the monitored cells. The unused inputs could result in a 0V reading for those channels. Figure 3 shows the example of JW3371 when used to monitor 8 cells.

Figure 3. Monitoring 8 Cells with JW3371

In the normal case, the ADC senses the 10 voltage channels circularly, the 3 thermal channels are sensed after 10 times voltage sensing. The ADC can be commanded to measure any individual channel by host processor.

Considering the accuracy of ADC measurement, it is recommended to wait for 100ms delay before measures cell voltages and temperatures when waking from sleep mode to normal mode.

Monitor

The monitoring subsystem ensures that all cell voltages, temperatures, and pack current easily measured by the host. All ADCs are trimmed by Joulwatt.

JW3371 has a fully digital interface: All information is transferred through SPI, simply by reading or writing to the appropriate register(s) storing the relevant data. Block reads and writes, buffered by an 8-bit CRC code per byte, ensure a fast and robust transmission of data.

Cell Voltage Measurement

Each JW3371 measures cell voltages and temperatures using a 14-bit ADC. This ADC measures all differential cell voltages, thermistors with a nominal full-scale unsigned range of 0–5.0 V and LSB of 0.305mV. It should be noted *control parameter set [41] bit* should set 0 and *voltage parameter set [58] bit* should set 1 to ensure voltage sampling accuracy.

The ADC is on automatically whenever the device enters normal mode. Once ADC is on and the protection thresholds are set, the integrated OV, UV, battery temperature and over current protections are functional.

Each cell measured time is about 0.64ms and a complete update is available every 6.4ms.

Each differential cell input is factory-trimmed for gain and offset, except that the first cell requires the host processor to add 2.5mV offset in case of any cell number configuration. The cell voltage measurement accuracy is $\pm 3mV$ typ.@2.3V~4.3V, T_A=25°C.

The ADC transfer function is a linear equation defined as follows:

$$V_{CELL}(\mathbf{V}) = ADC_{CELL} * GAIN$$

ADC_{CELL} is the measurement results of each cell.

GAIN is fixed 0.305mV/LSB.

An example cell voltage calculation is provided in the table below.

14bit	ADC Result	GAIN	Cell
ADC Result	in Decimal	(mV/LSB).	Voltage(mV)

0x92e	2350	0.305	717
-------	------	-------	-----

Cell Temperature Measurement

Cell temperature and voltage monitor use same ADC. To convert the thermistor resistance into temperature, please refer to the thermistor component manufacturer's datasheet.

Note: In JW3370 cascaded application, for Ts1~3 sampling, the /CSB should drive low for 103 VADC sampling cycles firstly, then send *"Voltage ADC Read" command* by MOSIB & CLKB and receive data and MISOB pin. And Ts value should add 18mV for offset compensation.

Pack Current Measurement

A 16bit integrating ADC, commonly referred to as the coulomb counter provides measurements of accumulated charge across the current sense resistor.

The current ADC is always on and the integration period for this reading is 132ms.

The full scale range of the CC is ± 190 mV, with a max recommended input range of ± 190 mV, thus yielding an LSB of approximately 6 μ V.

The following equation shows how to convert the 16-bit current ADC reading into an analog voltage:

 $V_{ISP-ISN}(mv) = ADC_{CURR} * GAIN - 200$

ADC_{CURR} is the measurement results of current sense. GAIN is fixed 0.0061mV/LSB.

An example cell voltage calculation is provided in the table below.

16bit ADC	ADC Result	GAIN	VISP-ISN
Result	in Decimal	(mV/LSB).	(mV)
0x1e82	7810	0.0061	-152.33

Protection

Over/Under Voltage Protection

The JW3371 monitor each cell voltage. If one cell voltage is over the Over Voltage Threshold (V_{OVP}) or under the Under Voltage Threshold (V_{UVP}) and this status lasts for an adjustable delay time, JW3371 turns off charge MOSFET or discharge MOSFET and sends alarm signal to inform host processor.

If fewer than 10 cells are connected to the JW3371 then it is necessary to set the useful series battery numbers by configuration registers. If the number is set to 8, then the input for cells 1 and 2 are automatically masked.

Over/Under Temperature Protection

JW3371 provides 3 temperature sensing PINs for detecting the temperature of battery cells. A NTC resistor is placed nearby battery cells. When the temperature of battery cells increases, the divided voltage input to TS pin is increases. Once the battery temperature is over the Over Temperature Threshold (T_{OTP}) or under the Under Temperature Threshold (T_{UTP}) and this status lasts for an adjustable delay time, JW3371 turns off charge MOSFET or discharge MOSFET and sends alarm signal to inform host processor. Sensors can be powered directly from TB as shown in Figure 4.

Figure 4. Driving Thermistors Directly from TB

If only one temperature sensing channel is used, it is strongly recommended to use the connection method shown in Figure 5.

Figure 5. Single channel temperature sensing

The T_{OTP} / T_{UTP} and delay time can be setup by configuration registers. For charging process, the T_{OTP} / T_{UTP} is recommended to be set as 45°C / 0°C. For discharging process, the T_{OTP} is recommended to be set as 65°C or 75°C and the T_{UTP} -10°C or -20°C. The OTP / UTP delay time can be chosen from 0~7.68s (512ms step).

TS3/PDSG can be selected through register configuration. In Voltage parameter set, set bit [59] to 1 to enable TS3 temperature sensing. The default power up of the IC is PDSG.

Charge Over Current Protection

If the battery current is over Charge Current Threshold (V_{COI}) and remains for a delay time, JW3371 shuts down the CHG and DSG.

Discharge Over Current Protection

If the battery current is over Discharge Current Threshold (V_{DOI}) and remains for a delay time, JW3371 shuts down the DSG.

Load Short Protection

If the voltage of external sense resistor (R_{sense}) is over Short Threshold (V_{OS}) and remains for a delay time, JW3371 shuts down the DSG.

The V_{OS} and the delay time can be setup by host processor. The delay time can be chosen from 0~2.048ms (64µs step).

Cell Open Wire Detection

When a cell voltage sensing wire is open, the measurement results of the two cells close to the open cell are affected.

JW3371 provides two pull-down current sources for the open wire detection of B2 to B10 and two pull-up current sources for the open wire detection of B0 and B1. If a cell input pin is floating due to an open wire condition, this current discharges the capacitance, causing the voltage at the pin to slowly drop. This drop in voltage eventually triggers a protection fault on that particular cell and the cell above it.

Take B9 open connection for example, after several cycles of measuring battery cell9 and cell10, the current source is engaged, the potential at B9 is pulled down. The ADC reading for cell9 could approach zero and reading cell10 approach full scale. The measurement result of cell9 and cell10 different from the previous cycle measurement result over 200mV, the JW3371 will send open wire signal to host processor. MCU is needed in the open wire detection of B0 and B10 by monitoring the voltage of cell 1 and cell 10. The under voltage protection of cell 1 or cell 10 triggered after open wire detection equals to the open wire of B0 or B10.

Figure 6. Open Connection

The Cell Open Wire Detection is executed when the MCU command is enable. Periodic open wire detection is recommended.

Notice:

1. When the single cell voltage lower than 1.5V, the open-wire fault statue maybe submitted.

2. The B0 and B10 open-wire detection should be handled by MCU.

3. When open-wire fault happened will trigger over-voltage or under-voltage protection and turn off CHG or DSG MOSFET.

Control Subsystem

Charge/Discharge Switch MOSFET

JW3371 can drive two external N-MOSFETs to control the charge / discharge loop. When Charge Switch MOSFET (CHG) is shut down, the charge current of battery stack is cut off; and when Discharge Switch MOSFET (DSG) is shut down, the discharge current is cut off.

Figure 7 shows the CHG and DSG FET circuit. The highest driving voltage of CHG and DSG is 12V and the falling time of DSG is about 100ns with 95mA sinking current and 1nF load capacitor.

Figure 7. CHG and DSG FET Circuit

ALARM

The ALARMB pin serves as an active high digital interrupt signal that can be connected to a GPIO port of the host microcontroller. This signal is an OR of all bits in the system state register. Most of the states are fault events. The faults and the FET state is shown in the table below.

System States	Interru pt	ALARM	Control CHG or DSG			
	Inform		CHG	DSG		
Charge mode: over						
voltage, over/under	Yes	Yes	OFF	ON		
Temp						
Discharge mode:						
under voltage,		Yes	ON	OFF		
over/under Temp,	Yes					
over current, short						
current						
Charge over						
current, ALARM pin	Yes	Yes	OFF	OFF		
open wire						
Cell Open Wire	No	No	Ν	0		
Balance ON/OFF	Yes	No	Ν	0		
Load Present	Yes	No	N	0		
TB OTP	P Yes Yes No			0		
LDO OTP	Yes	Yes	No			
Low current wakeup	Yes	Yes	N	0		
charger wakeup	Yes	Yes	N	0		

In order to clear the ALARMB signal, the source bit in the system state register must first be cleared by "clear interrupt flag" instruction.

Some fault event triggers automatic disabling of both CHG and DSG FET drivers. And recovery from a fault event must be handled by the host microcontroller.

In cascaded mode application, when there is no fault, the ALARB of non 0000 address chip sends out pulse signal with high level time of 4ms and cycle of 8s as the detection and judgment of alarm open wire enable. When a non 0000 address enter failure mode, its ALARMB sends out a pulse signal. There are three types of pulse signals correspond to three types of faults.

1. Pulse signal with high level time of 5-14ms and cycle of 100ms, turn off CHG FET.

2. Pulse signal with high level time of 15-25ms and cycle of 100ms, turn off DSG FET.

3. Pulse signal with high level time of 30-50ms and cycle of 100ms, turn off CHG FET and DSG FET.

The ALARMB State is shown in the Figure 8.

Figure 8. ALARMB State

Pre-Charge and Pre-Discharge Function

JW3371 integrated pre-charge and predischarge drivers for the deep discharge battery or some big capacitor load startup.

The pre-discharge function needs configuration by CPU which is not compatible with thermal sense function.

Passive Balance

JW3371 allows host processor choosing the battery cells to be discharged. When a cell is selected, an internal discharging MOSFET is turned on, which also turns on an external balancing Bipolar to largely increase the discharging current. An external resistor of 47Ω recommended to limit the power dissipated by the external Bipolar.

The balancing operation is turned off when any condition below is happening:

1.Communication with the host processor is interrupt for watchdog timer (t_{WD}) ;

2.Battery under voltage protection;

3. The temperature of JW3371 is beyond T_{BALAN} .

The balancing circuitry will not release after under voltage protection clear away. However,

it's released if both of the following conditions are satisfied:

1.Resume communication with the host processor;

2. The temperature of JW3371 returns to T_{BALAN_HYST} or even lower.

The detailed circuit is shown in the Figure 9.

Figure 9. External Discharge Circuit Connection

(One cell)

The following equation shows how to calculate the balance current.

$$I_{BAL}(A) = MIN(\frac{V_{CELL}(V)}{R_{BAL}(\Omega)}, \beta I_b) + \frac{V_{CELL}(V)}{R_{DSON}(\Omega) + 1k\Omega + 1k\Omega}$$

JW3371 allows at most 3 consecutive cells being discharged simultaneously. If host processor chooses 4 or more consecutive cells, the discharging switches of the lowest cell of each 4 cells will be prohibited turning on.

Considering the accuracy of ADC measurement, while a cell is being measured, the discharge switches for this cell and the cell above and below are all disabled. The harshest conditions are listed below when all cells discharge simultaneously.

Mode	1	2	3	4	5	6	7	8	9	10
1	S	F	F	F	F	F	D	D	D	F
2	F	S	F	D	D	D	F	D	D	D

3	D	F	S	F	D	D	D
4	D	D	F	S	F	D	D
5	D	D	D	F	S	F	D
0	F	р	D	D	F	v	F

5	D	D	D	F	S	F	D	D	D	F
6	F	D	D	D	F	S	F	D	D	D
7	D	F	F	F	F	F	S	F	D	D
8	D	D	D	D	D	D	F	S	F	D
9	D	D	D	D	D	D	D	F	S	F
10	F	D	D	D	D	D	D	D	F	S

F

D

D

F

D

D

S-Sample: the cell is being measured

D-Discharge: internal discharging MOSFET is turned on

F-OFF: internal discharging MOSFET is turned off

Load State Detection

The VM pin is for load state detection. The comparison result of VM voltage and V_{VM} is used as a condition of interrupt releasing. In the normal status, the internal resistance (R_{VMS}) between the VM pin and GND pin are not connected. When the over-discharge or discharge over current status occurs, CPU sends commend to enable load detection circuit. R_{VMS} are connected until the status is released.

LDO

JW3371 provides 3.3V LDO for external application. The current limitation of LDO output is 100mA.

JW3371 provides two-step over-temperature protection for LDO. When the temperature detected reaches 125°C, JW3371 could warn host processor. If the temperature exceeds 150°C, LDO could be shut down.

Power

LDO/driver module power supply is VCC. PCHG/PDCHG/CHSE pull-up, power supply is VCC, others power supply is VIN.

SPI Communication

JW3371 provides two groups of SPI data interface. MISOB is used for sending data to lower unit or host processor; MOSIB, /CSB and CLKB are used for receiving data from lower unit or host processor; MISOA is used for receiving data from upper unit; MOSIA, /CSA and CLKA are used for sending data to upper unit. A 1k resistor must be connected in series between communication pins of the cascade units. Also, external pull-up for MOSIB, /CSB, CLKB through a 10k resistor and a 5V zener is connected in parallel. It is used for updating address while the cascade unit communication loss occurred. When this happens, the baud rate needs to be reduced to 1 / 10 of the original.

Figure 10. SPI Communication in Cascade Application

Host processor writes values to configuration registers inside JW3371 to setup the protection thresholds, delay time and control switches, which facilitates users to make settings and choose operating mode freely. The watchdog timer on the JW3371 will turn off the balancing circuitry if communication with the host processor is interrupt for watchdog timer (t_{WD} , 0~2min, 512ms step). The balancing circuitry will release when any command setup is successful.

JW3371

Clock Phase and Polarity: JW3371 SPI compatible interface is configured to operate in a system using CPHA=1 and CPOL=1. Consequently, data on MOSIB must be stable during the rising edge of CLKB and while stop communication, MCU needs to pull high the input pins MOSIB, CLKB and /CSB.

Data Transfers: Every byte consists of 8 bits. On a write, the data value on MOSIB is latched into the device on the rising edge of CLKB (Figure11). Similarly, on a read, the data value output on MISOB is valid during the rising edge of CLKB. /CSB must remain low for the entire duration of a command sequence, including between a command byte and subsequent data.

Figure11. Transmission Format

Random Cell Connection Support

The JW3371 device supports a random connection sequence of cells to the device during pack manufacturing unless the battery negative terminal connected to Power GND of the JW3371 device first.

For example, cell-8 in a 10-cell stack might be first connected at the input terminals leading to pins B8 and B7, then cell-4 may next be connected at the input terminals leading to pins B4 and B3, and so on. It is not necessary to connect the negative terminal of cell-1 first at B0. As another example, consider a battery stack that is already assembled and cells already interconnected to each other, then the stack is connected to the PCB through a connector, which is plugged or soldered to the PCB. In this case, the sequence order in which the connections are made to the PCB can be random in time, they do not need to be controlled in a certain sequence.

Cascade Configuration

JW3371 supports cascade application. Several devices can be daisy chained in series.

Configure device address by the logic levels on the SRN/[A3], ISN/[A2], ISP/[A1], SRP/[A0] pins, as shown in below table.

SRN /[A3]	ISN /[A2]	ISP /[A1]	SRP /[A0]	Device Address
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8

1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	Broadcast

Note:

6) SRP/[A0] is pull up to the 5V by default. The updating address instruction must be written while SRP/[A0] is pull up to the 5V. So update the address first after power on, voltage measured of all cascade units is greater than 0 indicates the address is correct, then remove the internal pull up by set control parameter register bit [55] to 1. This bit set to 1 will remove the function of updating address, and enable ADC, small current wake up and ship mode entry.

SPI Power Consumption in Cascade Application

The power consumption of SPI communication occurs when /CSB, MOSIB and CLKB pins are pulled down and MISOB pin is pulled up. The maximum power consumption can be estimated as the sum of sampling power consumption of voltage and current.

$$\begin{split} I_{u} &= I_{SINKA} * 28 * 8 * \frac{\left(1 + 0.5 + \frac{I_{SOURCEB}}{I_{SINKA}} * 0.5\right)}{f_{clku} * T_{sample-v}} \\ I_{i} &= I_{SINKA} * 5 * 8 * \frac{\left(1 + 0.5 + \frac{I_{SOURCEB}}{I_{SINKA}} * 0.5\right)}{f_{clku} * T_{sample-i}} \\ \text{The recommended sampling period:} \\ T_{sample-v} = 500 \text{ms.} \end{split}$$

The recommended sampling period:

 $T_{sample-i}$ =200ms.

PCB Layout Precaution

The PCB layout of JW3371 must be carefully designed.

- 1. The TB and VDO pins should be bypassed with a 0.1μ F and 1μ F capacitor respectively.
- Care should be taken when placing the ADC input filter capacitors to minimize PCB trace impedances.
- 3. The quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short circuit ranges of the JW3371 device. Parallel resistors can be used as long as good Kelvin sensing is ensured.
- 4. The JW3371 device uses an integrating delta-sigma ADC for current measurements. For best performance, 100Ω resistors should be included from the sense resistor terminals to the SRP and SRN inputs of the device, with a 10nF filter capacitor placed across the SRP and SRN pins. All filter components should be placed as close as possible to the device, rather than close to the sense resistor, and the traces from the sense resistor routed in parallel to the filter circuit. A ground plane can also be included around the filter network to add additional noise immunity.

THE DETAILS FOR HOST PROCESSOR COMMAND REGISTERS

Instruction Structure

Write:

Note:

1. The command is effective, when "DATA0+DATA1+...+DATAn+CRC=0xff" is setup.

CMD Structure

A3	A2	A1	A0	C2	C1	C0	ODD
----	----	----	----	----	----	----	-----

Note:

- 1. A[3:0]: Configure the address to determine the useful IC except "A[3:0]≠1111". If "A[3:0]=1111" is set, the command is effective to all the stacked devices (Broadcast State).
- 2. C[2:0]: Commands set. Reference table 1 for the detail.
- 3. ODD: Odd check bit, ^{A[3:0], C[2:0], ODD}=1.

Table 1. CMD Instructions

C[2:0]	B/S	Function	R/W	Data description
000	В	Power down	W	All chips into sleep mode
000	S	Clear interrupt flag	W	Clear the interrupt fault flag bit set to 1 due to various faults
	В	Power wake up	W	All chips into normal mode
001	6	Balance set	W	Set battery balancing related registers
	3	Alarm set	W	Set alarm related registers
	В	Set state to charge	W	Effective to all stacked units except the bottom one
010	S	Valtage ADC read	D	Read 14 bit data of 10 battery voltages and 3 battery
	3	Vollage ADC Teau		temperatures
011	В	Set state to discharge	W	Effective to all stacked units except the bottom one
011	S	Current ADC read	R	Read 16bit data of current
				Through {SRN,SRP,ISN,ISP} configure device address
100	В	Update device address	W	*The device address updates when the IC is power-on or the
				command is active

		Current parameter set		Set charge discharge over-current threshold ,short-circuit	
	S		R	protection threshold, delay time and small current detection	
				threshold	
	D	Alarm & Cell open-wire	D	Dood the alarm and bettery status of all appended ships	
101		info get	n		
	S	Detail alarm info get	R	Read the detailed fault interrupt flag bit of a chip	
110	B/S	Control parameter set	W	Set control related registers	
111	D/S	Voltage parameter set		Set the over / under voltage (temperature) threshold and delay	
	D/3		ĸ	time	

Note:

B: Broadcast command: A broadcast command is one to which all devices on the bus will respond, regardless of device address.

S: Sing command: effective to specified device.

R: read.

W: write.

Table 2. Single Byte Instructions

Item	Content	Description
Power Down	0xf1	
Power Wakeup	0xf2	
Set state to charge	0xf4	
Set state to discharge	0xf7	
Update device address	0xf8	the command is effective when bit [55] of "System control
		parameter set" is set to "0"
Clear interrupt flag	xxxx_000x	0x01, 10, 20, 31, 40, 50, 51,
		0x01: unit1;
		0x20: unit2 of the cascade;
		0x31: unit3 of the cascade;

Table 3. Alarm & Open-wire Info Get

Item	Content	Description	
CMD(1B)		Oxfb	
	[31:16]	Read ALARM interrupt flag of 16 stacked devices	
	[15:0]	Read cell open wire flag of 16 stacked devices	

Table 4. Detail Alarm Info. Get

Item	Content	Description
		0x0b, 0x1a, 0x2a, 0x3b
		0x0b: unit1;
		0x1a: unit2 of the cascade;
		0x3b: unit3 of the cascade;

	[74.00]	Read over voltage interrupt flag of 10 cells, bit [71]				
	[71:62]	corresponds to the 10th battery				
	[61:58]	Reserved				
	157 401	Read under voltage interrupt flag of 10 cells, bit [57]				
	[57:48]	corresponds to the 10th battery				
	[47:44]	Reserved				
		Read over temperature interrupt flag of 3 channels				
		bit [41]: TS1 over temperature				
	[43:41]	bit [42]: TS2 over temperature				
		bit [43]: TS3 over temperature				
	[40]	Reserved				
		Read under temperature interrupt flag of 3 channels				
	[00.07]	bit [37]: TS1 over temperature				
	[39:37]	bit [38]: TS2 over temperature				
		bit [39]: TS3 over temperature				
	[36]	Reserved				
	[35]	Read over current interrupt flag in charge state				
	[34]	Turn off DCHG FET for upper chip instruction				
	[33]	Turn off CHG FET for upper chip instruction				
	[32:31]	Read over current interrupt flag in discharge state, bit [32]				
DATA(9B)		correspond to two grades protection				
	[30]	Reserved				
	[29]	Reserved				
	[28]	Read short circuit interrupt flag in discharge state				
	[07:40]	Read open wire interrupt flag, which corresponds to 10 cells,				
	[27:18]	bit[27] corresponds to the 10th battery.				
	[17]	Open wire detection completion flag indicates the bit, which				
		can be cleared only when the open wire detection enable is				
		turned off				
	[16]	Wake up event flag bit except wake up sleep state with				
	[10]	command				
	[15]	DCHG FET mode				
	[14]	CHG FET mode				
	[13]	Read over temperature interrupt flag of 3.3V TB subsystem				
	[12]	Read over temperature interrupt flag of 3.3V LDO subsystem				
	[11]	Read over temperature interrupt flag of balance subsystem				
	[10]	Read the status of VM pin.				
		0: Load connected 1: Load removed				
	[9]	Read stacked devices open wire interrupt				
	[8]	Reserved				
	[7]	Reserved				

	[6]	Read the status of balance on-off. If the balance is disabled,
		the bit [6] is "1", else, the bit [6] is "0".
	[5]	Battery charge and discharge state, if bit [5] is 1, it is charged
	[4]	When the chip sleep status indicator bit [4] is 1, the chip is in
	[4]	sleep state
	[3]	Reserved
	[2]	The chip detects the result indicator bit of charger comparator
		If the charger is removed, bit [2] is 1
	[1:0]	Reserved
CRC(1B)		Σ (DATA,CRC) = 0xff

Table 5. Voltage ADC Read

Item	Content	Description
CMD(1B)		0x04, 0x15, 0x25, 0x34
	D 25 D 24	The ADC measurement results of cells 1
	D23D24	{B25[5:0],B24[7:0]}→cell1
		The ADC measurement results of cells 2 and 3
	B23B22B21B20	{B23[5:0],B22[7:0]}→cell2
		{B21[5:0],B20[7:0]}→cell3
	B19B18B17B16	The ADC measurement results of cells 4 and 5
DATA(26B)	B15	The ADC measurement results of cells 6 and 7
	B14B13B12	
	B11B10B9B8	The ADC measurement results of cells 8 and 9
		The ADC measurement results of cells 10 and battery
	67606364	temperature channel 1
		The ADC measurement results of battery temperature channel
	DODZDIDU	2 and 3
CRC(1B)		\sum (DATA,CRC) = 0xff

Table 6. Current ADC Read

Item	Content	Description	
CMD(1B)		0x07, 0x16, 0x26, 0x37	
	[23]	Current parameter set OK flag	
	[22]	Voltage parameter set OK flag	
	[21]	Control parameter set OK flag	
DATA(3D)	[20]	Balance/Test/Alarm/Trim set OK flag	
	[19:16]	Reserved	
	[15:0]	The ADC measurement result of charge/discharge current	
CRC(1B)		Σ (DATA,CRC) = 0xff	

Table 7. Balance/ Alarm/ System Control Set

Item Content	Default	Recommended	Description
--------------	---------	-------------	-------------

CMD(1B)	xxxx_001x					0x02, 0x13, 0x23, 0x32
			[20:10]	0x0	0x0	Reserved
						Selection of cell for balancing
						bit[0]→cell 1,bit[9]→cell 10
						1: cell balance selected
						0: cell balance not selected
		000				At most three consecutive batteries
		Balance set	[9:0]	0x0	0x0	are allowed to discharge
						simultaneously. When ADC
						samples a certain battery voltage,
						the battery voltage and its upper
						and lower batteries do not
						discharge
			[20:13]	0x0	0x0	Reserved
			[12]	0x0	0x0	Force to 0
						Alarm open wire detection:
						1: alarm open wire detection is
					0x1	invalid
	[23:21]	010	14.43	0x1		0: under normal state, the cycle of
		Alarm set				Alarmb is 8s, and the pulse width of
DATA(3B)						high level is 4ms. If the low level of
						Alarma lasting more than 16s(MAX)
						is detected, the line is open
			[10:0]	0x0	0x0	Reserved
		[[20:16]	0x0	0x0	Reserved
			[15]	0x0	0x0	Analog module charger detection
			[15]			0: enable 1: disable
						Analog module short circuit
			[14]	0x0	0x0	comparator
						0: enable 1: disable
			[4:0]	0.40	020	Small current detection
			[13]	0x0	UXU	0: enable 1: disable
		100	[40]	0.40	0.40	Analog module chip address control
		System control	[12]	0x0	UXU	0: enable 1: disable
			[11:10]	0x0	0x0	Reserved
						PDSG output control (works when
						Ts3 temperature protection is
			[9]	0x0	0x0	disabled)
						0: output 0V
						1: output 5V
			[0]			PCHG output control
		[8	۲۵J	UXU	UXU	0: output 0V 1: output 5V

			[7]	0x0	0x0	Reserved
						Setting of pull-up current during
			[6]	0x0	0x0	charger detection
						0: 1µA 1: 0.5µA
						VM load detection module enable
			[6]	0.40	0.0	control
			[ວ]	0x0	UXU	0: disable
						1: enable
			[4]	0x0	0x0	Reserved
			[2]	0.00	0x0	Enable CHG
			ျချ	[3] UXU		0:disable 1:enable
			[2]	0.40	0.0	CHG status
						0:low,0V 1:high,12V
		[2]	UXU	0x0	* the command is effective when bit	
					[3] is set to "1"	
		[4]	0.20	0.0	Enable DISCHG	
			[']	UXU	UXU	0:disable 1:enable
						DISCHG status
		[0]	0x0	0x0	0:low,0V 1:high,12V	
					* the command is effective when bit	
						[1] is set to "1"
CRC(1B)						Σ (DATA,CRC) = 0xff

Table 8. Control Parameter Set

Item	Content	Default	Recommended	Description			
CMD(1B)				Broadcast: 0xfd; Single: 0x0d, 0x1c, 0x2c, 0x3d			
	[63]	0x0	0x0	Forced to 0			
	[62:58]	0x0	0x0	Reserved			
				Send control bit of alarm pin to close the CO / DO tube function			
	[57]	0x0	0x0	0: allow alarm pin to turn off the sending of CO / DO.			
				1: Disable alarm pin from sending CO / DO.			
		0x0	0x0	Detect the control bit of alarm pin closing CO / DO tube function			
	[56]			0: allow alarm pin to turn off CO / DO detection.			
				1: Disable alarm pin to turn off CO / DO detection, and clear the			
DATA(8B)				corresponding status detection bit.			
	[55]	0x0	0x1	0: Update address, update the address first after power on,			
				voltage measured of all cascade units is greater than 0 indicates			
				the address is correct.			
				1: Forced to 1 after updating address successful, because only			
				when this bit is 1, the voltage ADC measurement can work			
				normally			
	[54:52]	0x2	0x2	Forced to 2			
	[51:49]	0x2	0x2	Forced to 2			

JoulWatt® Proprietary Information. Patent Protected.

Downloaded From Oneyac.com

	[48:46]	0x0	0x0	Forced to 0
	[45:44]	0x2	0x2	Forced to 2
	[43]			SPI /CSB wake up ship state
		0x0	0x0	0: /CSB is low and cannot wake up;
				1: /CSB is low and can wake up, enter sleep state;
	[42:40]	0x0	0x0	Forced to 0
	[39:36]	0x0	User-defined	Chip cascade number: [39:36]+1
				The default value is 0, single chip works
	[35]	0x0	0x0	Enable 3.3V TB operation
				0: enable(Recommended)
				1: disable
			0x0	Enable 3.3V LDO operation
	[34]	0x0		0: enable (Recommended)
				1: disable
	[33]	0.40	0x0	0: It is forbidden to enter ship mode in sleep mode
	[55]	0.00		1: ship mode is allowed in sleep mode
	[32]	0x0	0x0	Forced to 0
				Set the watchdog time(twp) of SPI communication; when no SPI
	[31:24]	0x78	0x78	communication state lasts for [31:24] * 512ms, if the balancing is
				on, the balancing will be turned off; if any SPI instruction is sent, it
				will recover
	[23:22]	0x0	0x0	Forced to 0
		0x0	0x0	Poll Voltage ADC converter control
	[21]			0: poll status
				1: appointed ADC only
	[20:16]	0x0	0x0	Select respective cell measurement (from cell1 to cell10, TP1 to
				TP3)
				$0x00 \rightarrow cell1, 0x01 \rightarrow cell2,, 0x09 \rightarrow cell10$
				$0x0E \rightarrow TP1$, $0x0F \rightarrow TP2$, $0x11 \rightarrow TP3$
				* respective cell voltage ADC measured data with bit [21] set to 1
	[15:12]	0x1	0x1	Forced to 1
	[11]	0x0	0x0	In sleep mode and the digital system clock is turn off, whether to
				turn on SPI communication timeout detection
				0: disable SPI communication timeout detection, but the
				communication flag will not be cleared
				1: Allow SPI communication timeout detection
	[10:7]	0x0	0x3	Forced to 3
	[6:4]	0x7	0x7	Forced to 7
	[3:0]	0x9	User-defined	Set the number of batteries =[3:0]+1
CRC(1B)				Σ (DATA,CRC) = 0xff

Table 9. Voltage Parameter Set

J<u>W3371</u>

Item	Content	Default	Recommended	Description		
CMD(1B)			Broadcast: 0xfe; Single: 0x0e, 0x1f, 0x2f, 0x3e		0x3e	
	[79:72]	Oxff	Lloor dofined	Setting discharge under temperature protection threshold:		
			Oser-defined	([79:72]+1)*64*5/16384		
	[71:64]	0x0		Setting discharge ov	er temperature prote	ction threshold:
			User-defined	([79:72]+1)*64*5/163	384	
	[63]	0x0	0x0	Reserved		
	[62]	0x0	0x0	Time step of overvoltage protection:		
				0 : 128ms 1 : 512ms		
	[61]	0x0	0x0	Reserved		
	[60]	0x0	0.40	Time step of under voltage protection:		
			UXU	0 : 512ms	1 : 1024ms	
	[50]	0x0	0x0	0: TS3 is forbidden t	o detect over and un	der temperature.
	[59]			1: TS3 is allowed to detect over and under temperature.		
	[58]	0x0	0x1	Forced to 1		
	[57]	0x0	0x0	Forced to 0		
				Open wire detection enable of voltage ADC sampling line		
	[50]	00	00	0: the open wire detection function is disabled;		
	[56]	0x0	0x0	1: the open wire detection function is enabled		
				The next open wire detection must disable before enable.		
	[55:54]	0x0	0x0	Forced to 0		
	[53:52]	0x1	0x1	Forced to 1		
DATA(10B)				Voltage ADC measu	rement mode	
				0: fast mode (Recommended)		
	1541		0x0	1: filtering mode		
	[51]	0x0		* The processing time of fast mode is determined by bit[50:48]		
				setting		
				The processing tim	e of filtering mode is	65ms
	[50]	0x1	0x1	Voltage ADC measu	rement handing	
				1: The processing time is determined by bit[49:48] setting		
				0: The processing tir	me of "simple count" i	is 16.8ms
	[49:48]	0×0	User-defined	Setting waiting and s	sampling time	
				[49:48]	waiting time	sampling time
				00	128µS	512µS
				01	256µS	512µS
				10	256µS	1024µS
				11	1024µS	1024µS
	[47:44]	Oxf	User-defined	Over voltage protect	ion delay time:	
				Bit[62] =0,[47:44]*1	128ms;	
				Bit[62] =1, [47:44]*5	12ms	
	[43:40]	Oxf	User-defined	Under voltage protection delay time:		
				Bit[60] =0, [43:40]*5	512ms;	

				Bit[60] =1, [43:40]*1024ms
	[39:36]	0xf	User-defined	Under temperature protection delay time: [39:36]*512ms
	[35:32]	0xf	User-defined	Over temperature protection delay time: [35:32]*512ms
	[31:24]	0xff	User-defined	Over voltage threshold: ([31:24]+1)*64*5/16384V
	[23:16]	0x0	User-defined	Under voltage threshold: ([23:16]+1)*64*5/16384V
	[15:8]	Oxff	User-defined	Setting charge under temperature protection threshold:
				([15:8]+1)*64*5/16384V
	[7:0]	0x0	User-defined	Setting charge over temperature protection threshold:
				([7:0]+1)*64*5/16384V
CRC(1B)				\sum (DATA,CRC) = 0xff

Table 10. Current Parameter Set

Item	Content	Default	Recommend	Description	
CMD(1B)				0x08	
		0x7	0x7	Charge/Discharge status detection threshold:	
	[79:76]			±[79:76]*32*0.2/65536	
				Default: 0.6836mV	
				Charge status:	
				V _{ISP-ISN} < - [79:76]*32*0.2/65536	
				Discharge status:	
				V ISP-ISN>[79:76]*32*0.2/65536	
			User-defined	Short circuit threshold in discharge:	
				{[75] *240mV+(~[74]) *120mV+(~[73]) *60mV+	
				(~[72]) *30mV+(~[71]) *15mV+(~[70])	
		0x5		*7.5mV+42.5mV}	
	[75:70]			Default: 237.5mV	
				Hysteresis: 5mV	
				Notice: "~" is negation symbol, bit [74:70] need	
DATA(10B)				negation operation, for example, bit [75:70] set as	
				000101, the short circuit threshold is:	
				0*240mV+1*120mV+1*60mV+0*30mV+1*15mV+	
				0*7.5mV+42.5mV=237.5mVI	
	[69]	0x0	0x1	Forced to 1	
	[68:64]	0x1f	0x1f	Short circuit delay time in discharge: ([68:64]+1)*64µs	
	[63:62]	0x2	0x2	Low current wakeup threshold (V _{LC}):	
				0x2:350uV 0x3:400uV	
				$V_{\mbox{\scriptsize SRP-SRN}}$ within that range: the Sleep entry is permitted.	
				$V_{\mbox{\scriptsize SRP-SRN}}$ beyond that range: the Sleep entry is	
				prohibited.	
				Note: Only low current wakeup function is enabled	
	[61:60]	0x0	0x0	Forced to 0	
	[59:56]	Oxf	User-defined	charge over current protection delay time:	
				[59:56]*64ms	

 $\label{eq:source} JoulWatt^{\texttt{®}} \ \mbox{Proprietary Information. Patent Protected.}$

	[55:51]	0x1f	User-defined	The second grade over current protection delay time:	
				[55:51]*step, Step is controlled by [45].	
	[50:46]	0x1f	User-defined	The first grade over current protection delay time:	
				[50:46]*256ms+128ms	
	[45]	0x0	0x1	time step for secondary discharge over current	
				protection	
				0 : 4ms 1 : 32ms	
	[44:40]	0x0	Oxff	Reserved	
	[00.00]	0xff U	User-defined	The second grade over current protection threshold	
	[39.32]			voltage in discharge:[39:32]*0.4/512	
	[24,24]	0xff User-def	Lloor defined	The first grade over current protection threshold	
	[31.24]		User-defined	voltage in discharge:[31:24]*0.4/512	
	[23:16]	0x0	Oxff	Reserved	
		Oxff	User-defined	The over current protection threshold voltage in	
	[15:8]			charge:	
				-[15:8]*0.4/512	
	[8:0]	0x0	Oxff	Reserved	
CRC(1B)				Σ (DATA,CRC) = 0xff	

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Co.,Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Co.,Ltd does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- JOULWATT TECHNOLOGY CO.,LTD PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, SAFETY INFORMATION AND OTHER RESOURCES, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

Copyright © 2022 JoulWatt

All rights are reserved by Joulwatt Technology Co., Ltd.

Downloaded From Oneyac.com

单击下面可查看定价,库存,交付和生命周期等信息

>>JOULWATT(杰华特)