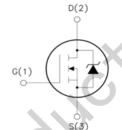


### **FEATURES**


- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

### **APPLICATIONS**

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Power Factor Correction (PFC)

| Device Marking and Package Information |         |         |  |  |  |  |
|----------------------------------------|---------|---------|--|--|--|--|
| Device                                 | Package | Marking |  |  |  |  |
| SW50N06                                | TO-220  | SW50N06 |  |  |  |  |





1.Gate (G) 2.Drain (D)

3.Source (S)

| Absolute Maximum Ratings T <sub>C</sub> = 25°C, unless otherwise noted |                                   |          |      |  |  |  |  |
|------------------------------------------------------------------------|-----------------------------------|----------|------|--|--|--|--|
| Parameter                                                              | Symbol                            | Value    | Unit |  |  |  |  |
| raianietei                                                             | Symbol                            | TO-220   | 01   |  |  |  |  |
| Drain-Source Voltage (V <sub>GS</sub> = 0V)                            | $V_{DSS}$                         | 60       | V    |  |  |  |  |
| Continuous Drain Current                                               | I <sub>D</sub>                    | 110      | Α    |  |  |  |  |
| Pulsed Drain Current (note1)                                           | I <sub>DM</sub>                   | 440      | Α    |  |  |  |  |
| Gate-Source Voltage                                                    | $V_{GSS}$                         | ±20      | V    |  |  |  |  |
| Single Pulse Avalanche Energy (note2)                                  | E <sub>AS</sub>                   | 653      | mJ   |  |  |  |  |
| Avalanche Current (note1)                                              | I <sub>AS</sub>                   | 40       | Α    |  |  |  |  |
| Repetitive Avalanche Energy (note1)                                    | E <sub>AR</sub>                   | 391.8    | mJ   |  |  |  |  |
| Power Dissipation (T <sub>C</sub> = 25°C)                              | P <sub>D</sub>                    | 358      | W    |  |  |  |  |
| Operating Junction and Storage Temperature Range                       | T <sub>J</sub> , T <sub>stg</sub> | -55~+150 | °C   |  |  |  |  |

| Thermal Resistance                      |                   |       |        |  |  |  |
|-----------------------------------------|-------------------|-------|--------|--|--|--|
| Parameter                               | Symbol            | Value | Unit   |  |  |  |
| Thermal Resistance, Junction-to-Case    | R <sub>thJC</sub> | 0.65  | 00.444 |  |  |  |
| Thermal Resistance, Junction-to-Ambient | R <sub>thJA</sub> | 62    | → °C/W |  |  |  |

第1页,共6页



| Specifications T <sub>J</sub> = 25°C, unl | ess other           | wise noted                                                                | 1     |       |       |      |
|-------------------------------------------|---------------------|---------------------------------------------------------------------------|-------|-------|-------|------|
| Parameter                                 | Symbol              | Test Conditions                                                           | Value |       |       | Unit |
| Turumotor                                 | Cymbol              | rest conditions                                                           | Min.  | Тур.  | Max.  |      |
| Static                                    |                     |                                                                           |       |       |       |      |
| Drain-Source Breakdown Voltage            | $V_{(BR)DSS}$       | $V_{GS} = 0V, I_{D} = 250\mu A$                                           | 60    |       | -     | V    |
| Zero Gate Voltage Drain Current           | I <sub>DSS</sub>    | $V_{DS} = 60V$ , $V_{GS} = 0V$ , $T_{J} = 25$ °C                          |       | -     | 1     | μA   |
| Gate-Source Leakage                       | I <sub>GSS</sub>    | $V_{GS} = \pm 20V, \ V_{DS} = 0V$                                         |       |       | ±100  | nA   |
| Gate-Source Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                      | 2.0   | (     | 4.0   | V    |
| Drain-Source On-Resistance (Note3)        | R <sub>DS(on)</sub> | V <sub>GS</sub> = 10V, I <sub>D</sub> =60A                                |       | 0.005 | 0.006 | Ω    |
| Forward Transconductance                  | gfs                 | V <sub>DS</sub> = 25V, I <sub>D</sub> = 60A                               | (     | 17    |       | S    |
|                                           |                     | Dynamic                                                                   |       |       |       |      |
| Input Capacitance                         | C <sub>iss</sub>    | V <sub>GS</sub> = 0V,                                                     |       | 2699  |       | pF   |
| Output Capacitance                        | C <sub>oss</sub>    | $V_{DS} = 25V$ ,                                                          |       | 1016  | 1     |      |
| Reverse Transfer Capacitance              | $C_{rss}$           | f = 1.0MHz                                                                | -     | 487   | 1     |      |
| Total Gate Charge                         | $Q_g$               | . ()                                                                      |       | 115   | 1     | nC   |
| Gate-Source Charge                        | $Q_{gs}$            | VDS=28V, V <sub>GS</sub> = 15V,<br>ID=42A                                 |       | 13    | 1     |      |
| Gate-Drain Charge                         | $Q_{gd}$            |                                                                           |       | 55    | -     |      |
| Turn-on Delay Time                        | t <sub>d(on)</sub>  | 0                                                                         |       | 52    |       | ns   |
| Turn-on Rise Time                         | t <sub>r</sub>      | $V_{DD} = 28V, I_D = 42A,$                                                |       | 142   |       |      |
| Turn-off Delay Time                       | t <sub>d(off)</sub> | VGS =15V.RG = 25Ω                                                         |       | 355   |       |      |
| Turn-off Fall Time                        | t <sub>f</sub>      |                                                                           |       | 230   |       |      |
|                                           | Drain-Sc            | ource Body Diode Characteristics                                          |       |       |       |      |
| Continuous Source Current                 | l <sub>SD</sub>     | T = 2590 L = 604 V = 0V                                                   |       |       | 110   | ۸    |
| Pulsed Source Current                     | I <sub>SM</sub>     | $T_J = 25^{\circ}\text{C}$ , $I_{SD} = 60\text{A}$ , $V_{GS} = 0\text{V}$ |       |       | 440   | А    |
| Body Forward Voltage                      | V <sub>SD</sub>     | I <sub>S</sub> = 40A, V <sub>GS</sub> = 0V                                |       |       | 1.2   | ٧    |
| Reverse Recovery Time                     | t <sub>rr</sub>     | V <sub>GS</sub> = 0V,I <sub>F</sub> = 180A,                               |       | 100   | -     | ns   |
| Reverse Recovery Charge                   | Q <sub>rr</sub>     | di <sub>F</sub> /dt =100A /μs                                             |       | 0.33  |       | μC   |

#### **Notes**

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L=1mH,  $V_{DD}$  = 50V,  $R_G$  = 25 $\Omega$ , Starting  $T_J$  = 25 $^\circ$  C
- 3. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 1%



## **Typical Characteristics** $T_J = 25$ °C, unless otherwise noted

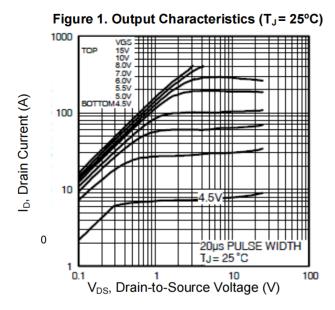
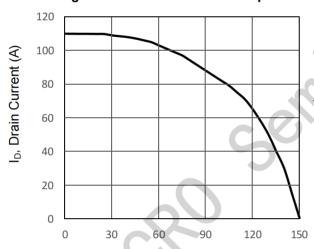




Figure 3. Drain Current vs. Temperature



T<sub>C</sub>, Case Temperature (A)

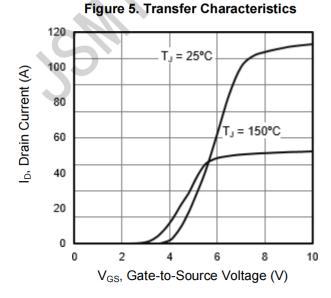



Figure 2. Body Diode Forward Voltage

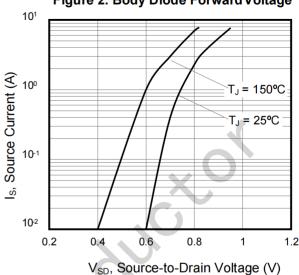
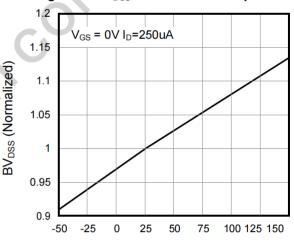
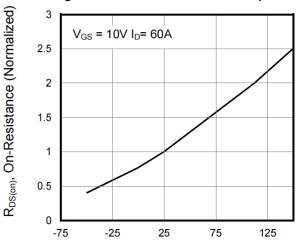





Figure 4. BV<sub>DSS</sub> Variation vs. Temperature



T<sub>C</sub>, Case Temperature (°C)

Figure 6. On-Resistance vs. Temperature



T<sub>J</sub>, Junction Temperature (°C)



## **Typical Characteristics** $T_J = 25$ °C, unless otherwise noted

Figure 7. Capacitance



Figure 8. Gate Charge

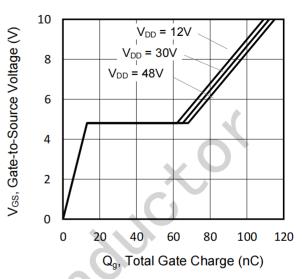



Figure 9. Transient Thermal Impedance TO-220

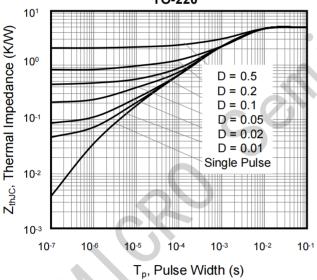



Figure A: Gate Charge Test Circuit and Waveform

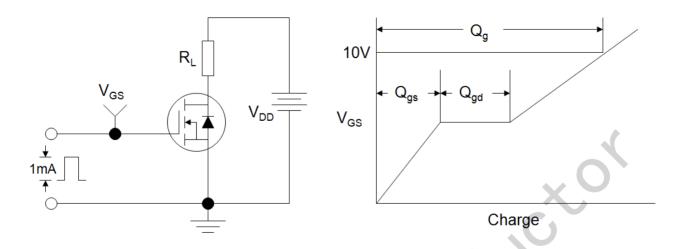
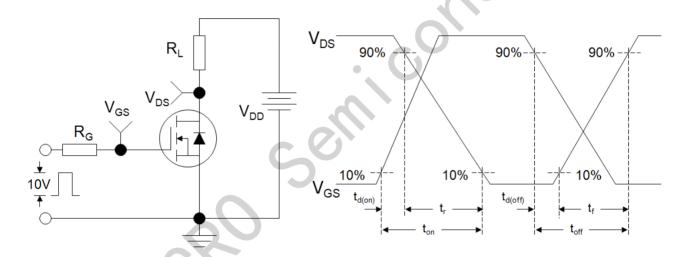
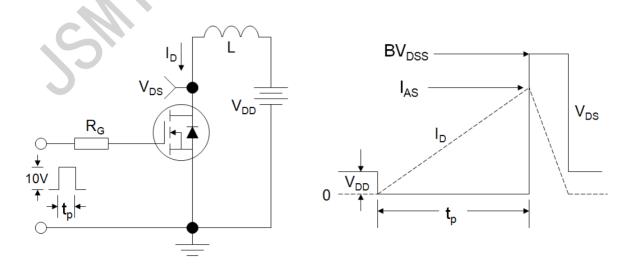
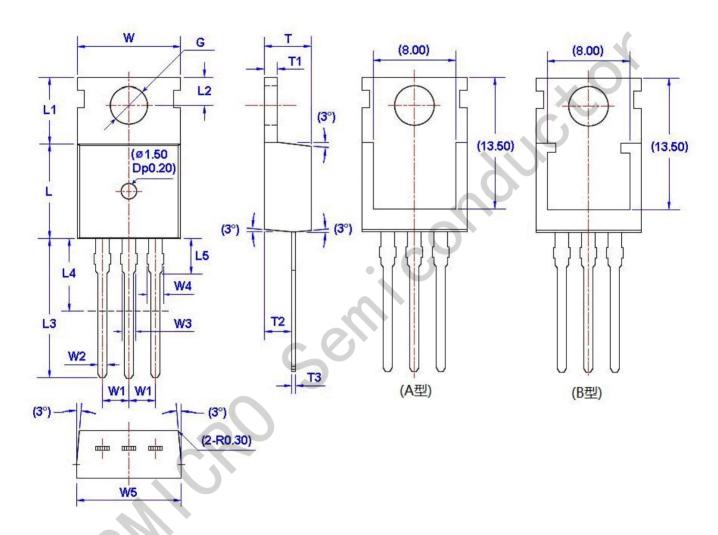



Figure B: Resistive Switching Test Circuit and Waveform



Figure C: Unclamped Inductive Switching Test Circuit and Waveform





# **Package Information**

TO-220



Unit: mm

| Symbol | Size  |       | C11    | Size  |       | C1 - 1  | Size |      | C1 1         | Size |      |
|--------|-------|-------|--------|-------|-------|---------|------|------|--------------|------|------|
|        | Min   | Max   | Symbol | Min   | Max   | Symbol: | Min  | Max  | Symbol       | Min  | Max  |
| W      | 9.66  | 10.28 | W5     | 9.80  | 10.20 | L4**    | 6.20 | 6.60 | T3           | 0.45 | 0.60 |
| W1     | 2.54( | TYP)  | L      | 9.00  | 9.40  | L5      | 2.79 | 3.30 | <b>G</b> (⊕) | 3.50 | 3.70 |
| W2     | 0.70  | 0.95  | L1     | 6.40  | 6.80  | Т       | 4.30 | 4.70 |              |      |      |
| W3     | 1.17  | 1.37  | L2     | 2.70  | 2.90  | T1      | 1.15 | 1.40 |              |      |      |
| W4*    | 1.32  | 1.72  | L3     | 12.70 | 14.27 | T2      | 2.20 | 2.60 |              |      |      |

# 单击下面可查看定价,库存,交付和生命周期等信息

>>JSMSEMI (杰盛微)