

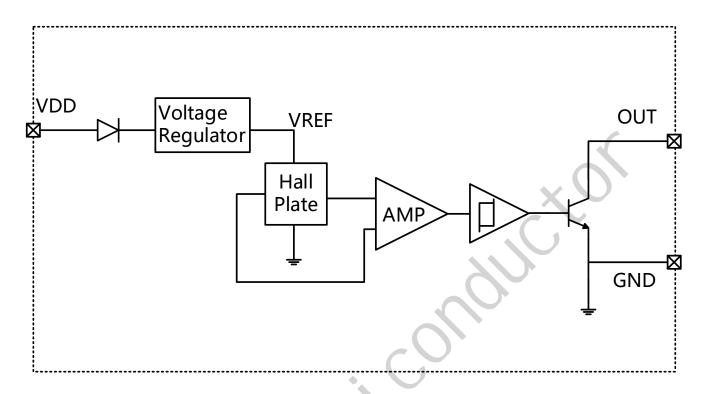
1.产品介绍

SS41F是一款耐高压双极霍尔开关芯片, 采用高压bipolar工艺制程。该芯片内部由电压 稳压单元、霍尔电压发生器、差分放大电路、 温度补偿电路、集电极开路输出电路组成。工 作形式:输入磁感应强度,输出为数字电压信 号。该芯片具有可耐高电压冲击,具有极强的 抗噪能力;适用于各种电子消费类、汽车和工 业控制等领域。提供T092S直插封装,贴片 S0T23-3L封装,且封装都符合RoHS标准。

2.产品功能

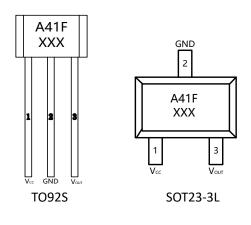
- ▶ 集电极开路输出
- ➤ ESD 性能可达: ±4kV
- ▶ 工作电压: 3.0V~60V
- ▶ 过压保护能力:80V
- ▶ 可驱动电流最大 30mA
- ▶ 工作温度范围: -40°C~150°C
- ▶ 电源引脚反向电压保护

3.应用领域

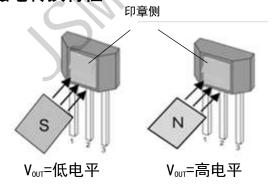

- 无刷直流电机换向
- > 速度测量
- ▶ 计数
- 角位置检测
- ▶ 接近检测
- ▶ 适用于汽车和极端工业环境

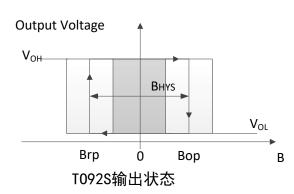
4.产品包装

	产品型号	产品型号封装形式SS41FUAT092S		成品包装	
	SS41FUA			1000/袋	
Ī	SS41F SU	S0T23-3L	−40°C~150°C	3000/卷	

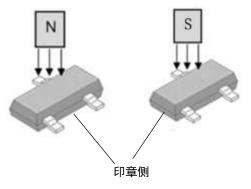


5.功能框图

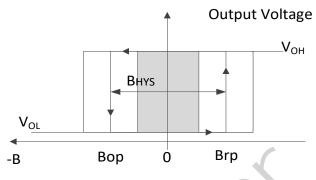



6.引脚信息

编号	名称	描述
1	V_{cc}	电源
2	GND	地
3	V_{out}	输出



7.磁电转换特性



Vout=高电平

S0T23-3L输出状态

8.极限参数

参数	符号	最小值	最大值	单位
电源电压	V _{cc}	-60	80	V
输出电压	$V_{ ext{out}}$	-0. 5	80	V
输出电流	I _{OUT}	0	40	mA
工作温度	T _J	-40	150	°C
存储温度	T_{stg}	- 50	165	°C

绝对最大额定值是芯片所能承受的极限值,超过该值芯片可能会永久损坏。

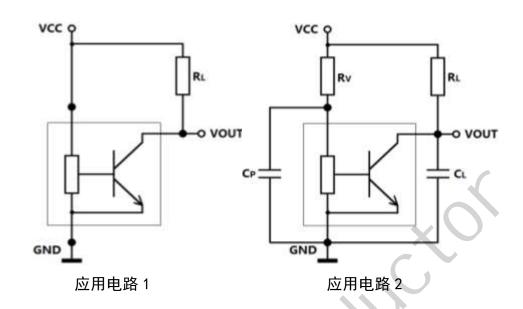
9.电磁特性

测试条件: T」=-40°C~150°C, V。=3.0V~60V; 典型值测试条件: T」=25°C, V。=5V。

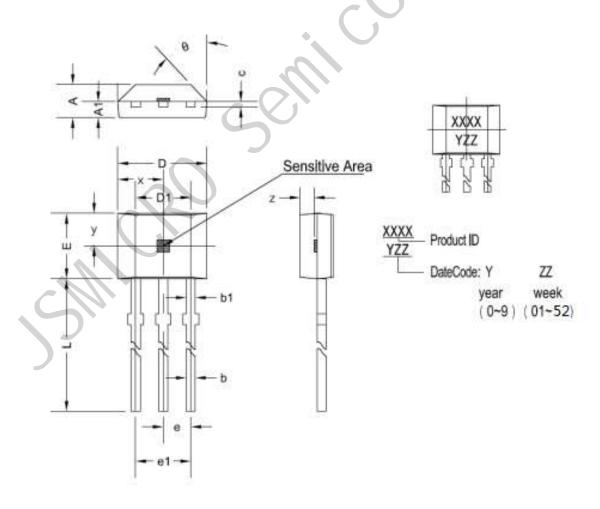
参数 符号		测试条件	最小值	典型值	最大值	单位			
电特性	电特性								
电源电压	V _{cc}		3. 0		60	V			
电源电流	I _{cc}			4. 8	8	mA			
输出漏电流	OLEAK				10	uA			
输出电压	V_{SAT}	I out=20mA			0. 4	V			
输出电流	I _{OUT}				30	mA			
输出上升时间	T_{R}	$R_L=10k\Omega$, $C_L=20pF$			1. 0	us			
输出下降时间	T _F	$R_L=10k \Omega$, $C_L=20pF$			1. 5	us			
磁特性									
工作点	Вор	$R_L=10k \Omega$, $C_L=20pF$	10	45	80	Gs			

释放点	Brp	$R_L=10k\Omega$, $C_L=20pF$	-80	-45	-10	Gs
回差	B _{HYS}	Bop-Brp		90		Gs

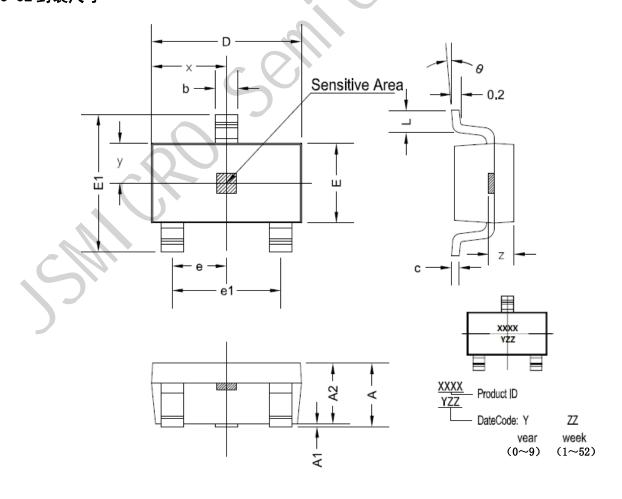
10.温度特性


 V_{ω} =5V 时,芯片工作点和释放点随温度变化曲线。 V_{ω} =5V 时,芯片工作电流随温度变化曲线。

11.应用电路


典型应用电路见下图中: 应用电路 1,其中 R_{L} =4. $7k\Omega$,可应用与大多数电路。应用电路 2,其中 R_{V} =100 Ω , C_{P} =4. 7nF, R_{L} =4. $7k\Omega$, C_{L} =1nF, 应用于供电线上具有干扰或辐射干扰的电路,建议在电路 中串联电阻 R_{V} 和两个电容 C_{PV} C_{L} ,且将电阻和电容这些元器件尽量放置在接近芯片处。

12.封装信息


T092S 封装尺寸

符号	尺寸(毫米)		尺寸(英寸)		
	最小值	最大值	最小值	最大值	
Α	1. 420	1. 670	0. 056	0.066	
A1	0. 660	0. 860	0. 026	0. 034	
b	0. 350	0. 560	0. 014	0. 022	
b1	0. 400	0. 550	0. 016	0. 022	
С	0. 360	0. 510	0. 014	0. 020	
D	3. 900	4. 200	0. 154	0. 165	
D1	2. 970	3. 270	0. 117	0. 129	
E	2. 900	3. 280	0. 114	0. 129	
е	1. 27	70TYP	0. 050TYP		
e1	2. 440	2. 640	0. 096	0. 104	
L	13. 500	15. 500	0. 531	0. 610	
Х	2. 025TYP		0. 080TYP		
У	1. 545TYP		0. 061TYP		
Z	0. 500TYP		0. 020TYP		
θ	45°TYP		45°TYP		

S0T23-3L 封装尺寸

符号	尺寸(毫米)		尺寸(英寸)		
	最小值	最大值	最小值	最大值	
Α	1. 050	1. 250	0. 041	0. 049	
A1	0. 000	0. 100	0. 000	0. 004	
A2	1. 050	1. 150	0. 041	0. 045	
b	0. 300	0. 500	0. 012	0. 020	
С	0. 100	0. 200	0. 004	0. 008	
D	2. 820	3. 020	0. 111	0. 119	
E	1. 500	1. 700	0. 059	0. 067	
E1	2. 650	2. 950	0. 104	0. 116	
е	0. 95	0TYP	0. 037TYP		
e1	1. 800	2. 000	0. 071	0. 079	
L	0. 300	0. 600	0. 012	0. 024	
х	1. 46	0TYP	0. 057TYP		
У	0.80	0TYP	0. 032TYP		
Z	0. 60	0TYP	0. 024TYP		
θ	0°	8°	0°	8°	

13.注意事项

- 霍尔是敏感器件,在使用及存储过程中应注意采取静电防护措施。
- ▶ 在安装使用中应尽量减少施加到器件外壳和引线上的机械应力。
- ▶ 建议焊接温度不超过 350°C, 持续时间不超过 5 秒。
- 为保证霍尔芯片的安全性和稳定性,不建议长期超出参数范围使用。

单击下面可查看定价,库存,交付和生命周期等信息

>>JSMSEMI (杰盛微)