

PRODUCT SPECIFICATIONNo. T-1-2187
(R-1-2187)Date Issued:
February 7, 2005Customer:GENERALRevised: EDate Revised:
December 4, 2014Title Subject:XH Connector (Lead-free product)Issued by:
Osaka Engineering Center

This product specification contains the results of performance tests for the XH Connector (Lead-free product).

-Index-

- 1. PART NAME, PART NUMBER & DRAWING NUMBER
- 2. CONSTRUCTION, DIMENSIONS, MATERIAL & SURFACE FINISH
- 3. CHARACTERISTICS
- 4. ABOUT WHISKER
- 5. SPECIMEN
- 6. TEST CONDITIONS
- 7. REQUIREMENTS, TEST METHODS & TEST RESULTS
 - 7.1 Appearance
 - 7.2 Mechanical Performance Test
 - 7.2.1 Insertion Force (I.F.) & Withdrawal Force (W.F.)
 - 7.2.2 Crimp Tensile Strength
 - 7.2.3 Contact Retention Force
 - 7.2.4 Post Retention Force
 - 7.3 Electrical Performance Test
 - 7.3.1 Contact Resistance
 - 7.3.2 Current Continuity
 - 7.3.3 Insulation Resistance
 - 7.3.4 Dielectric Withstanding Voltage
 - 7.4 Environmental Test
 - 7.4.1 Durability
 - 7.4.2 Humidity
 - 7.4.3 Heat Aging
 - 7.4.4 Thermal Shock
 - 7.4.5 Hydrogen Sulfide Gas
 - 7.4.6 Salt Spray
 - 7.4.7 Vibration
 - 7.4.8 Ammonia Gas
 - 7.5 Solder Test (Header)
 - 7.5.1 Solderability
 - 7.5.2 Resistance to Soldering Heat

1/13

Page

Prepared by:	Checked by:	Reviewed by:	Approved by:
M.Ueda	S.Matsumoto	T.Kusuda	H.Tomimoto

Title Subject: XH Connector (Lead-free product)

No. T-1-2187
(R-1-2187)

Revised: E

1. PART NAME, PART NUMBER & DRAWING NUMBER

Part Name Part Number		Drawing Number	
Contact		SXH-001T-P0.6	KRD-5607-1
Contact		SXH-002T-P0.6	KRD-4311-1
	Hausing	XHP-*	KRD-4195-2
	Housing	XHP-20	KRD-5387-3
		B2B-XH-A (LF)(SN)	KRD-33576
Header	Top entry type	B*B-XH-A (LF)(SN)	KRD-38224-1
		B20B-XH-A (LF)(SN)	KRD-38225
		S2B-XH-A (LF)(SN)	KRD-34612-2
	Side entry type	S*B-XH-A (LF)(SN)	KRD-34613-1
	Side entry type	S2B-XH-A-1 (LF)(SN)	KRD-34614
		S*B-XH-A-1 (LF)(SN)	KRD-34615-1

Note₁: Number of circuits in one or two-digit figure is indicated in *.

Note₂: (LF)(SN) as identification part number indicating lead-free product shall be displayed on a label until all products are shifted to the lead-free.

2. CONSTRUCTION, DIMENSIONS, MATERIAL & SURFACE FINISH

Construction and dimensions shall be in accordance with the referenced drawings. Material and surface finish shall be as specified below.

Part Name		Material	Surface Finish, etc.	
Со	ntact	Phosphor bronze	Tin-plated	
Housing		PA 6	Flammability: UL94V-0	
Lloodor	Post	Brass	Copper-underplated Tin-plated	
Header	Wafer	PA 66	Flammability: UL94V-0	

3. CHARACTERISTICS

Voltage rating 250 V (AC, DC) Temperature range -25 to +85 °C (Note₄) Conductor size 001 type: AWG #28 to #22 002 type: AWG #30 to #26 Insulation O.D. 001 type: φ0.9 to φ1.9 mm 002 type: φ0.9 to φ1.3 mm Conductor spec. Tin-plated annealed copper wire (stranded wire) Recommended printed circuit Thickness 1.6 mm 2-circuit top entry type: 1.0 ± 0.05 mm					
Voltage rating 250 V (AC, DC) Temperature range -25 to +85 °C (Note₄) Applicable wire Conductor size 001 type: AWG #28 to #22 002 type: AWG #30 to #26 Applicable wire 001 type: φ0.9 to φ1.9 mm 002 type: φ0.9 to φ1.3 mm Conductor spec. Tin-plated annealed copper wire (stranded wire) Recommended printed circuit Thickness 1.6 mm 2-circuit top entry type: 1.0 ± 0.05 mm	Item		Rated Value		
Temperature range -25 to +85 °C (Note ₄) Conductor size Applicable wire Applicable wire Applicable wire Insulation O.D. Conductor spec. Recommended Printed circuit Tin-plated annealed copper wire (stranded wire) 2-circuit top entry type: 1.0 + 0.05 mm	Current rating		3 A (AC, DC) (Note ₃)		
Applicable wire Conductor size O01 type: AWG #28 to #22 O02 type: AWG #30 to #26 Insulation O.D. O01 type: \$\phi 0.9 \to \phi 1.9 \text{ mm}\$ O02 type: \$\phi 0.9 \to \phi 1.3 \text{ mm}\$ Conductor spec. Tin-plated annealed copper wire (stranded wire) Recommended Printed circuit Conductor spec. Tin-plated annealed copper wire (stranded wire) 2-circuit top entry type: 1.0 + 0.05 \text{ mm}	Voltage rating		250 V (AC, DC)		
Applicable wire Applicable wire Insulation O.D. Out type: AWG #30 to #26 Out type: \$\phi 0.9\$ to \$\phi 1.9\$ mm Out type: \$\phi 0.9\$ to \$\phi 1.3\$ mm Conductor spec. Tin-plated annealed copper wire (stranded wire) Recommended Thickness 1.6 mm 2-circuit top entry type: 1.0 + 0.05 mm	Temperature range		-25 to +85 °C (Note ₄)		
Applicable wire Insulation O.D. Out type: AVVG #30 to #26 001 type: \$\phi 0.9 \to \phi 1.9 \text{ mm}\$ 002 type: \$\phi 0.9 \to \phi 1.3 \text{ mm}\$ Conductor spec. Tin-plated annealed copper wire (stranded wire) Recommended Printed circuit Thickness 1.6 mm 2-circuit top entry type: 1.0 + 0.05 mm		Conductor size	001 type: AWG #28 to #22		
1002 type: φ0.9 to φ1.3 mm Conductor spec. Tin-plated annealed copper wire (stranded wire)			002 type: AWG #30 to #26		
002 type: φ0.9 to φ1.3 mm Conductor spec. Tin-plated annealed copper wire (stranded wire) Recommended printed circuit 2-circuit top entry type: 1.0 ± 0.05 mm	Applicable wire	Insulation O.D.	001 type: ϕ 0.9 to ϕ 1.9 mm		
Recommended Thickness 1.6 mm			002 type: ϕ 0.9 to ϕ 1.3 mm		
printed circuit 2-circuit top entry type: 1.0 ± 0.05 mm		Conductor spec.	Tin-plated annealed copper wire (stranded wire)		
printed circuit 2-circuit, top entry type: 1.0 ± 0.05 mm	Recommended	Thickness	1.6 mm		
	•	Hole size	2-circuit, top entry type: 1.0 ± 0.05 mm (Note ₅)		
board (PCB) Other than above: 0.9 +0.1/-0 mm	board (PCB)	I IOIE SIZE	Other than above: 0.9 +0.1/-0 mm (Notes)		

Note₃: When AWG #22 applied.

Note₄: Including temperature rise in applying an electrical current.

Note₅: Recommended values when paper based epoxy resin PCB with drilled hole is used. Tolerance changes depending on PCB material and piercing method.

<u>JST</u>			Page	3/13
T:41 - O. dai:4.	YH Connector (Load free product)	No T-1-218	7 Revised F	

Title Subject: XH Connector (Lead-free product)

No. T-1-2187
(R-1-2187)

Revised: E

4. ABOUT WHISKER

Although the lead-free plating of this product has performed re-flow tin plating which ensures maximum effectiveness for retarding whisker growth, it is not possible to completely eliminate the whisker problem.

5. SPECIMEN

Part Name		Part Number	
Contact		SXH-001T-P0.6 SXH-002T-P0.6	
Housing		XHP-*	
	Top entry type	B*B-XH-A (LF)(SN)	
Header	Side entry type	S*B-XH-A (LF)(SN)	
	Side entry type	S*B-XH-A-1 (LF)(SN)	

Note₆: Number of circuits in one or two-digit figure is indicated in *.

6. TEST CONDITIONS

1) When tested in accordance with the test conditions and methods specified in each item, each requirement shall be met. Unless otherwise specified, tests shall be conducted under the following ambient conditions specified in JIS C 60068-1 (IEC 60068-1) [Basic Environmental Testing Procedures General and Guidance].

Temperature: 15 to 35 °C Relative humidity: 25 to 75 %

2) For environmental tests, as a rule, the specimen assembled for actual use and the wire of UL1007 style AWG #22 shall be used.

7. REQUIREMENTS, TEST METHODS & TEST RESULTS

7.1 Appearance

Requirement: There shall be no crack, deformation or discoloration which may affect the performance specified in this specification.

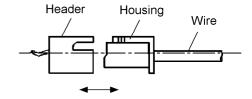
Test method: Visual inspection.

Test result: Good.

Page 4/13

Title Subject: XH Connector (Lead-free product)

No. T-1-2187
(R-1-2187)


Revised: E

7.2 Mechanical Performance Test

7.2.1 Insertion Force (I.F.) & Withdrawal Force (W.F.)

Requirement:

			UNIT: N
No. of	At Ir	nitial	At 50th
circuits	I.F.	W.F	W.F.
Circuita	(N max.)	(N min.)	(N min.)
2	29.4	7.8	5.9
3	34.3	9.8	7.8
4	39.2	11.8	8.8
5	44.1	11.8	8.8
6	49.0	13.7	9.8
7	53.9	13.7	9.8
8	58.8	15.7	11.8
9	63.7	15.7	11.8
10	68.6	17.6	13.7
11	73.5	17.6	13.7
12	78.4	19.6	15.7
13	83.3	19.6	15.7
14	88.2	21.6	17.6
15	93.1	23.5	19.6
16	98.0	23.5	19.6
20	108	29.4	25.5

Test method: A housing with crimped contacts and a header shall be mated and unmated on the mating axis. Initial insertion and withdrawal forces and also withdrawal force at 50th shall be measured. (Testing speed: 1 to 5 mm/sec.)

Test result:

				UNIT: N
No. of circuits	Items	Ave.	Max.	Min.
	Initial I.F.	17.5	18.2	17.0
2	Initial W.F.	19.9	21.5	18.9
	W.F. at 50th	14.4	16.7	12.8
	Initial I.F.	20.0	22.0	18.3
3	Initial W.F.	22.6	25.1	20.9
	W.F. at 50th	16.0	17.1	15.4
	Initial I.F.	22.0	24.0	19.7
4	Initial W.F.	24.6	27.0	22.8
	W.F. at 50th	17.2	18.1	15.7
	Initial I.F.	25.6	28.7	23.7
5	Initial W.F.	28.6	31.3	26.1
	W.F. at 50th	22.3	24.8	18.3

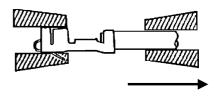
IST Page 5/13

Title Subject: XH Connector (Lead-free product)

No. T-1-2187
(R-1-2187)

Revised: E

Test result:


rest result.				UNIT: N
No. of circuits	Items	Ave.	Max.	Min.
6	Initial I.F.	26.5	28.9	24.1
	Initial W.F.	29.9	34.5	25.0
	W.F. at 50th	23.8	30.2	19.9
7	Initial I.F.	28.8	30.5	27.7
	Initial W.F.	30.4	33.7	26.2
	W.F. at 50th	26.0	30.9	22.2
8	Initial I.F.	31.9	36.4	30.4
	Initial W.F.	34.5	37.5	31.5
	W.F. at 50th	30.9	36.3	27.7
9	Initial I.F.	33.3	36.0	31.4
	Initial W.F.	37.0	41.8	34.6
	W.F. at 50th	33.1	38.3	28.8
10	Initial I.F.	40.7	42.1	38.2
	Initial W.F.	43.5	48.7	41.8
	W.F. at 50th	35.8	40.0	28.4
11	Initial I.F.	41.3	44.8	38.9
	Initial W.F.	44.9	49.0	41.5
	W.F. at 50th	38.7	44.8	34.1
12	Initial I.F.	50.5	54.8	48.4
	Initial W.F.	54.0	56.3	49.3
	W.F. at 50th	41.1	45.2	34.5
13	Initial I.F.	51.8	54.5	47.5
	Initial W.F.	56.2	60.7	52.2
	W.F. at 50th	42.2	46.7	38.8
14	Initial I.F.	53.6	59.4	49.8
	Initial W.F.	56.2	61.1	51.9
	W.F. at 50th	46.9	51.5	43.5
15	Initial I.F.	62.7	65.5	57.5
	Initial W.F.	61.6	66.1	56.0
	W.F. at 50th	51.0	60.7	45.5
16	Initial I.F.	69.5	72.5	66.9
	Initial W.F.	65.5	71.4	58.9
	W.F. at 50th	55.2	60.1	48.4
20	Initial I.F.	78.9	83.3	73.0
	Initial W.F.	71.7	75.1	66.9
	W.F. at 50th	59.3	64.4	52.8

<u>JST</u>			Page	6/13
Title Subject:	XH Connector (Lead-free product)	No. T-1-2187	Revised: E	

7.2.2 Crimp Tensile Strength

Requirement:

Wire to be used	Requirements N min.
AWG #30	7.8
AWG #28	9.8
AWG #26	19.6
AWG #24	29.4
AWG #22	39.2

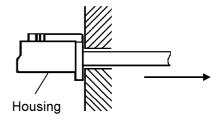
(R-1-2187)

Test method: Pulling load shall be applied to a correctly crimped contact and a wire. The load required to pull the wire out of the contact or break the wire shall be measured. (Testing speed: 25 mm/min.)

Test result:

SXH-001T-P0.6			UNIT: N
Wire size	Ave.	Max.	Min.
AWG #28	28.0	32.3	25.5
AWG #26	42.9	45.1	37.2
AWG #24	62.3	65.7	59.8
AWG #22	89.6	96.0	87.2

n=10


SXH-002T-P0.6			<u>UNIT: N</u>
Wire size	Ave.	Max.	Min.
AWG #30	16.7	19.6	14.7
AWG #28	26.1	30.4	21.6
AWG #26	42.2	44.1	40.2

n=10

7.2.3 Contact Retention Force

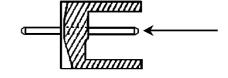
Requirement: 19.6 N min.

Test method: A crimped contact shall be inserted into a housing and pulled in the axial direction. The load required to pull the contact out of the housing shall be measured. (Testing speed: 1 to 5 mm/sec.)

Test result:

		UNIT: N
Ave.	Max.	Min.
45.7	53.9	41.2
		n=20

Title Subject: XH Connector (Lead-free product)


Page 7/13

Revised: E

7.2.4 Post Retention Force

Requirement: 19.6 N min.

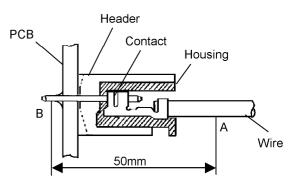
Test method: The end of a post shall be pushed perpendicularly. The load required to make the post start moving from a wafer shall be measured. (Testing speed: 25 mm/min.)

(R-1-2187)

Test result:

		UNII: N
Ave.	Max.	Min.
49.1	52.5	43.7
		n=20

7.3 Electrical Performance Test


7.3.1 Contact Resistance

Requirement: Initial: $10 \text{ m}\Omega$ max.

After tests: $20 \text{ m}\Omega$ max.

Test method: Contact resistance between points A and B of a specimen assembled for actual use as shown in the figure on the right side shall be measured under the following conditions.

Test current: 10 mA (DC) Open voltage: 20 mV max. Wire to be used: AWG #22

Test result: See each environmental test item.

7.3.2 Current Continuity

Requirement: There shall be no current discontinuity longer than 1 microsecond during a vibration test.

Test method: Each circuit of a specimen assembled for actual use shall be connected in series and test current of 10 mA(DC) shall be applied. Current discontinuity longer than 1 microsecond during the test shall be detected by continuity meter.

Test result: See vibration test item.

JST Page 8/13

Title Subject: XH Connector (Lead-free product)

No. T-1-2187
(R-1-2187)

7.3.3 Insulation Resistance

Requirement: Initial: $1,000 \text{ M}\Omega \text{ min.}$

After tests: 500 M Ω min. (Humidity & Thermal shock tests)

Test method: 500 VDC shall be applied between adjacent contacts of a mated specimen to measure insulation resistance. (The header shall not be soldered.)

Test result:

UNIT: $M\Omega$

Item	Measured value
Initial	1,000 min.
After humidity test	500 min.
After thermal shock test	500 min.

n=20

7.3.4 Dielectric Withstanding Voltage

Requirement: There shall be no breakdown or flashover.

Test method: Testing voltage specified below shall be applied between adjacent contacts of a mated specimen for one minute. (The header shall not be soldered.)

Initial: 1,000 VAC

After tests: 1,000 VAC (Humidity & Thermal shock tests)

Test result:

Initial	Good.
After humidity test	Good.
After thermal shock test	Good.

n=20

7.4 Environmental Test

7.4.1 Durability

Requirement: Contact resistance shall be 20 m Ω max. after the test.

Test method: A housing with crimped contacts and a header shall be mated and unmated. After repeated 50 cycles, contact resistance shall be measured.

Test result:

UNIT: $m\Omega$

Test item	Initial		Test item Initial After the test			st
Contact	Ave.	Max.	Min.	Ave.	Max.	Min.
Resistance	4.59	5.4	4.2	4.88	5.1	4.7

IST Page 9/13

Title Subject: XH Connector (Lead-free product) No. T-1-2187 Revised: E (R-1-2187)

7.4.2 Humidity

Requirement: Contact resistance shall be 20 m Ω max. after the test.

Insulation resistance shall be 500 M Ω min. after the test.

There shall be no breakdown or flashover on the dielectric withstanding voltage test.

Test method: A specimen shall be placed in a humidity chamber of the following conditions. After the test, contact resistance, insulation resistance and dielectric withstanding voltage shall be measured.

Temperature: 40 ± 2 °C Relative humidity: 90 to 95 % Period: 240 hours

Test result:

UNIT: $m\Omega$

Test item	Initial			Initial After the test		
Contact	Ave.	Max.	Min.	Ave.	Max.	Min.
Resistance	4.18	4.4	4.0	4.49	5.2	4.1

n=16

7.4.3 Heat Aging

Requirement: Contact resistance shall be 20 m Ω max. after the test.

Test method: A specimen shall be placed in a heat oven of the following conditions. After the test, contact resistance shall be measured.

Temperature: 85 ± 2 °C Period: 250 hours

Test result:

UNIT: $m\Omega$

Test item	Initial		After the test			
Contact	Ave.	Max.	Min.	Ave.	Max.	Min.
Resistance	4.09	4.2	4.0	4.38	4.8	4.2

Title Subject: XH Connector (Lead-free product)

Page 10/13

Revised: E

7.4.4 Thermal Shock

Requirement: Contact resistance shall be 20 m Ω max. after the test. Insulation resistance shall be 500 M Ω min. after the test.

There shall be no breakdown or flashover on the dielectric withstanding voltage test.

(R-1-2187)

Test method: A specimen shall be subjected to a thermal shock test of the following conditions. After the test, contact resistance, insulation resistance and dielectric withstanding voltage shall be measured.

1 cycle consists of:
- 55 ± 3 °C for 30 minutes
+85 ± 2 °C for 30 minutes

Total cycles: 25 cycles

Test result:

UNIT: $m\Omega$ Test item Initial After the test Contact Max. Min. Max. Min. Ave. Ave. Resistance 4.52 4.06 4.3 3.9 5.0 4.1

n=16

7.4.5 Hydrogen Sulfide Gas

Requirement: Contact resistance shall be 20 m Ω max. after the test.

Test method: A specimen shall be subjected to hydrogen sulfide gas of the following conditions. After the test, contact resistance shall be measured.

Concentration: 3 ± 1 ppm Temperature: 40 ± 2 °C Relative humidity: 80 ± 5 % Period: 96 hours

Test result:

UNIT: $m\Omega$

Test item	Initial			ļ ,	After the tes	st
Contact	Ave.	Max.	Min.	Ave.	Max.	Min.
Resistance	4.62	5.0	4.3	4.87	5.7	4.4
	•	•	•	•	•	

Page 11/13

Title Subject: XH Connector (Lead-free product)

No. T-1-2187 Revised: E

Title Subject: XH Connector (Lead-free product) No. T-1-2187 Revised: E

7.4.6 Salt Spray

Requirement: Contact resistance shall be 20 m Ω max. after the test.

Test method: A specimen shall be subjected to a salt spray test of the following conditions. After the test, it shall be washed with running water and dried naturally before the measurement of contact resistance.

Temperature: 35 ± 2 °C Concentration: 5% in weight Period: 48 hours

Test result:

UNIT: $m\Omega$

Test item	Initial			Initial After the test		
Contact	Ave.	Max.	Min.	Ave.	Max.	Min.
Resistance	4.57	5.1	4.4	5.13	5.8	4.5

n=20

7.4.7 Vibration

Requirement: Contact resistance shall be 20 m Ω max. after the test. There shall be no current discontinuity longer than 1 microsecond during the test.

Test method: A specimen shall be mounted on a PCB and subjected to a vibration test of the following conditions. During the test, current continuity shall be checked. After the test, contact resistance shall be measured.

Frequency: 10-55-10Hz/min

Amplitude: 1.52mm

Direction: Each of X, Y and Z-axis directions

* Each axis shall be at right angles to others.

Period: 2 hours for each direction

Test result:

UNIT: $m\Omega$

Test item	Initial		After the test			
Contact	Ave.	Max.	Min.	Ave.	Max.	Min.
Resistance	4.36	4.6	4.2	4.88	6.1	4.4

Current continuity	There was no current discontinuity longer than 1 microsecond.
--------------------	---

Title Subject: XH Connector (Lead-free product)

No. T-1-2187
(R-1-2187)

Revised: E

7.4.8 Ammonia Gas

Requirement: There shall be no stress corrosion cracking.

Test method: A mated specimen shall be subjected to ammonia gas of the following conditions. (The connector shall not be soldered.)

After the test, stress corrosion cracking shall be checked.

Ammonia solution: 3 % in weight

Solution volume: 25ml per liter of volume

Period: 7 hours

Test result:

There was no stress corrosion cracking.

n=20

7.5 Solder Test (Header)

7.5.1 Solderability

Requirement: Plating surface of solder-dipping section of a specimen shall be covered with smooth solder.

Test method: Fluxed soldering section of a specimen shall be dipped in solder of the following conditions.

Solder: Sn-3Ag-0.5Cu Flux: Activation flux

(CF-110VH-2A made by Tamura Kaken Corporation)

Solder temperature: 245 ± 3 °C Immersion period: 3 ± 0.5 seconds

Test result:

Good.

ICT

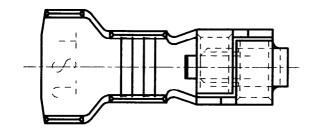
<u>JST</u>			Page 13/13
Title Subject:	XH Connector (Lead-free product)	No. T-1-2187	Revised: E
		(R-1-2187)	

7.5.2 Resistance to Soldering Heat

Requirement: There shall be no deformation or damage which may affect the performance.

Test method: A specimen shall be mounted on a PCB and subjected to a resistance to soldering heat test of the following conditions.

Solder: Sn-3Ag-0.5Cu Flux: Activation flux

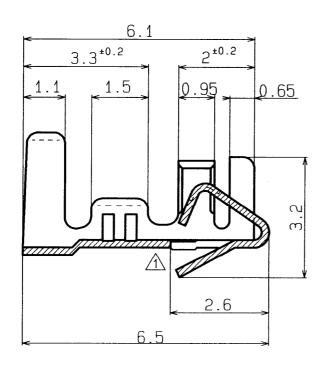

(CF-110VH-2A made by Tamura Kaken Corporation)

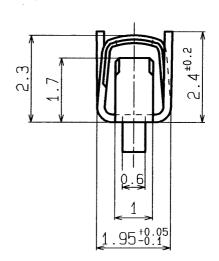
PCB to be used: Material; Paper based epoxy resin, Pattern on one side

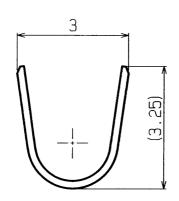
Solder temperature: 260 ± 5 °C 5 ± 0.5 seconds Immersion period:

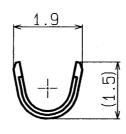
Test result:

There was no deformation or damage which may affect the performance.

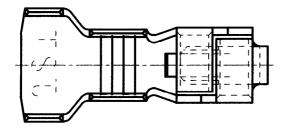



NOTE


1. Unless otherwise specified.
tolerances are ±0.3


REVISIONS

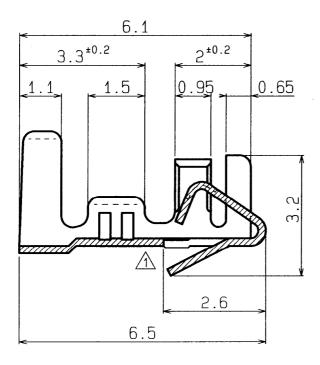
R1. 1)'96. 8. 28 2)Change of configuration. 3)M. N

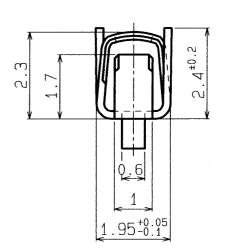


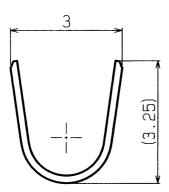
INSULATION BARREL

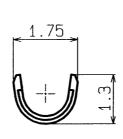
WIRE BARREL

No .	CONT	ACT PH tO	DSPHOR BRONZ 2 MATERIAL	E TIN (PR	-PLATED ETIN) REMARKS		REV ISIONS		
	② J. S. T.						PART NAME	×	CH CONNECTOR
APP	ROVED BY	CHECKED BY	DRAWN BY	SCALE	PROJECTION	DATE Dec. 20	PART No.	S	SXH-001T-P0. 6
1	17	5.4	7. Nago	free	♥ □	. 90	DRAWING I	No.	KRD - 5607-1 R1

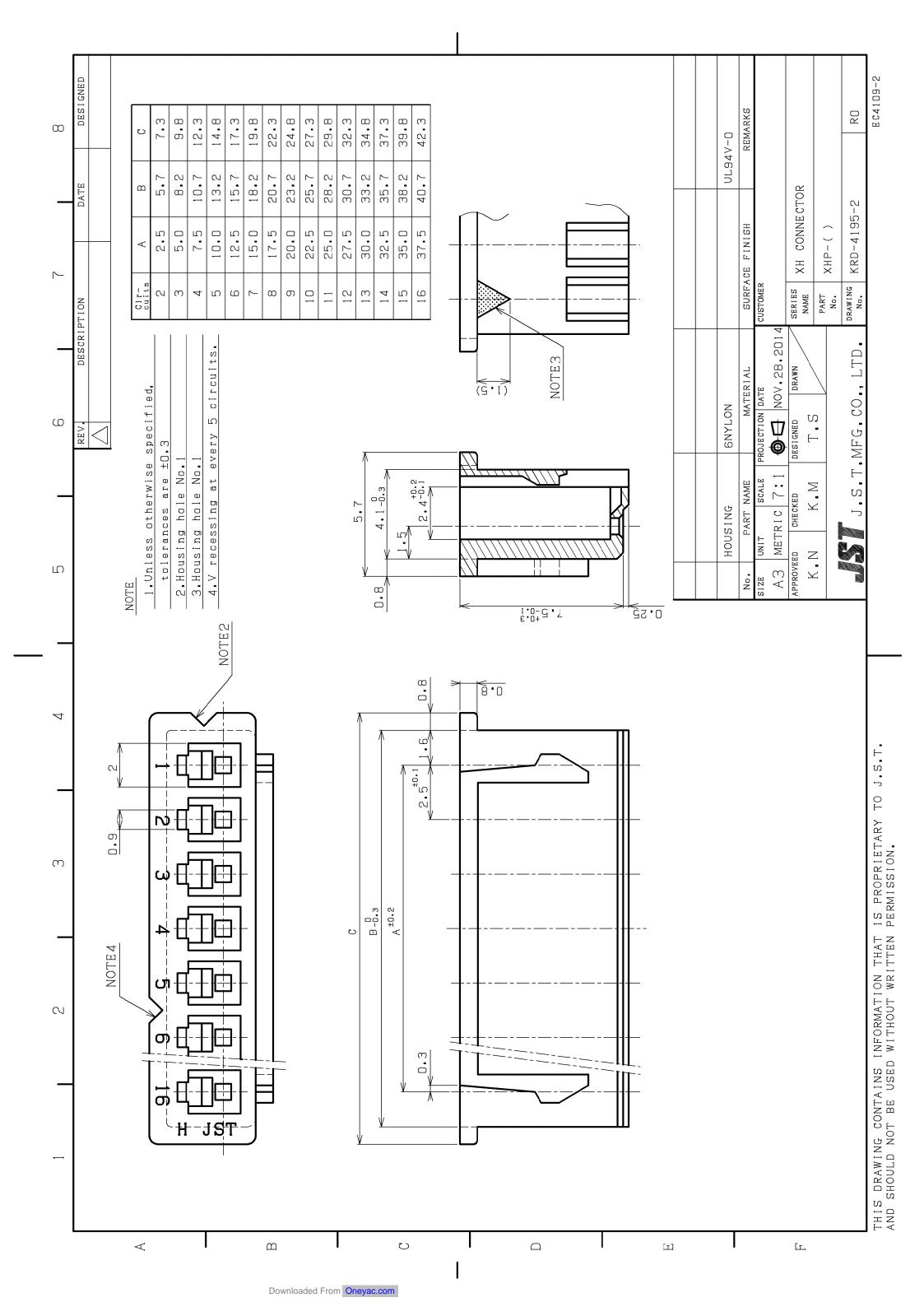


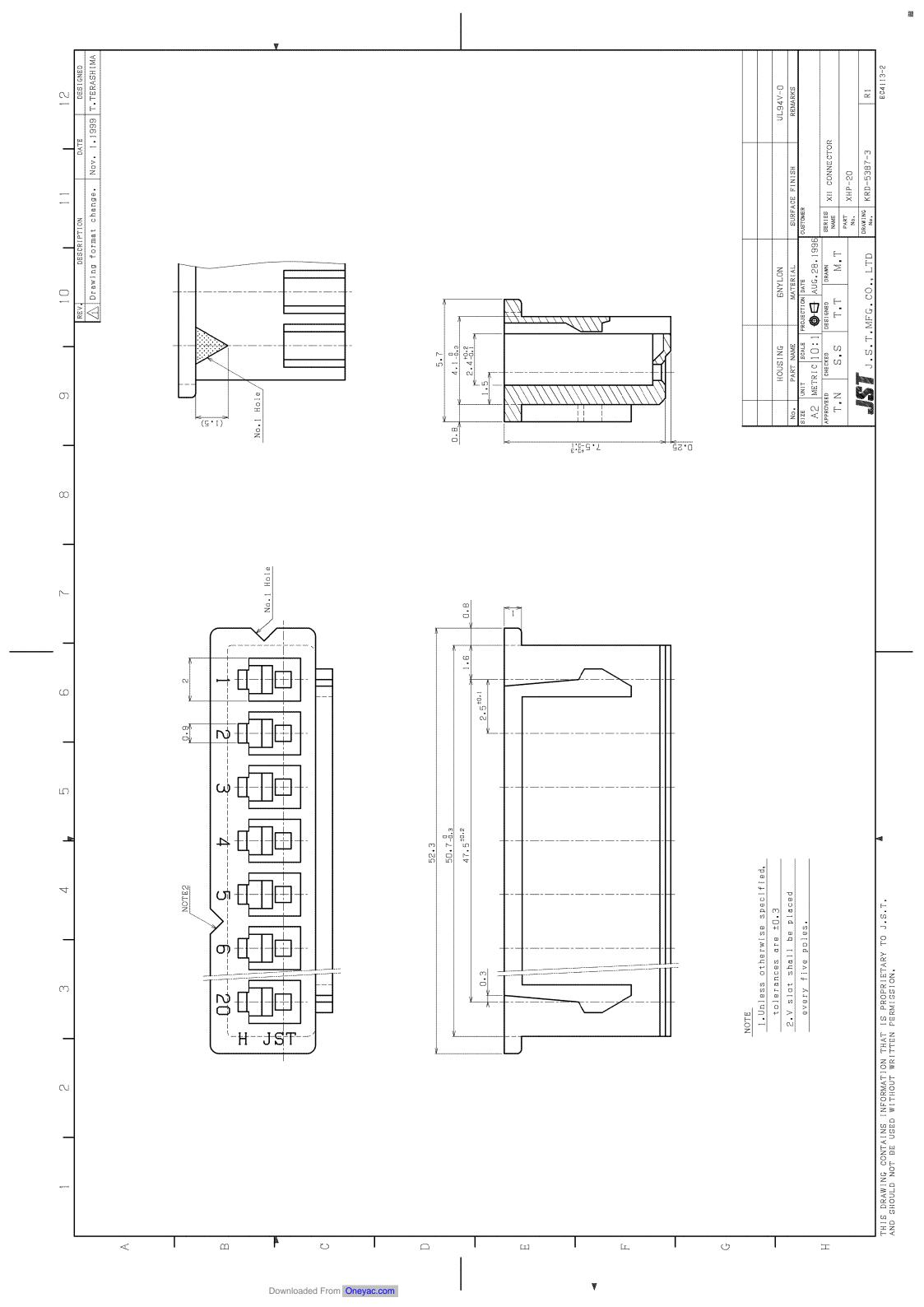

NOTE

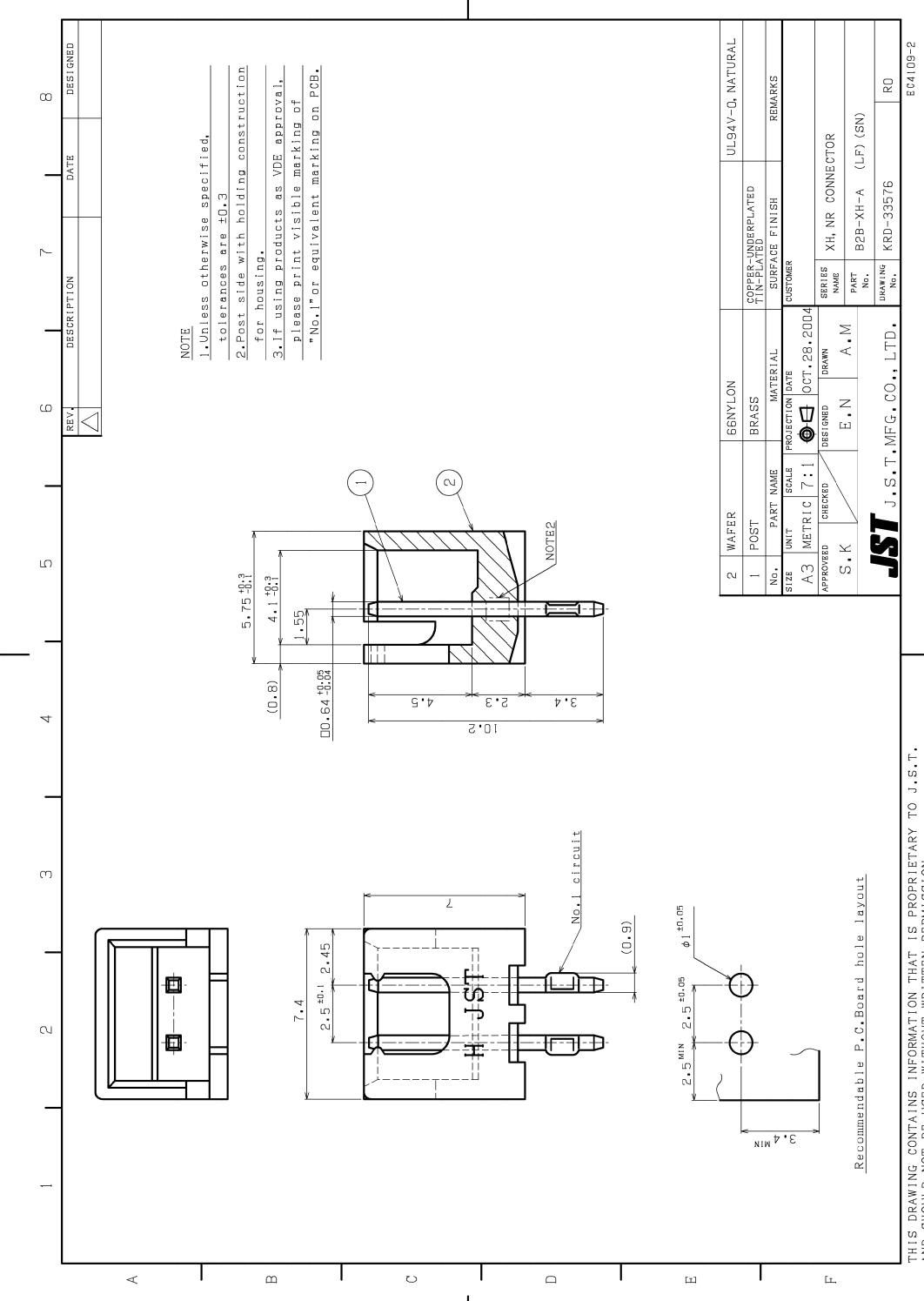

1. Unless otherwise specified. tolerances are ±0.3


REVISIONS

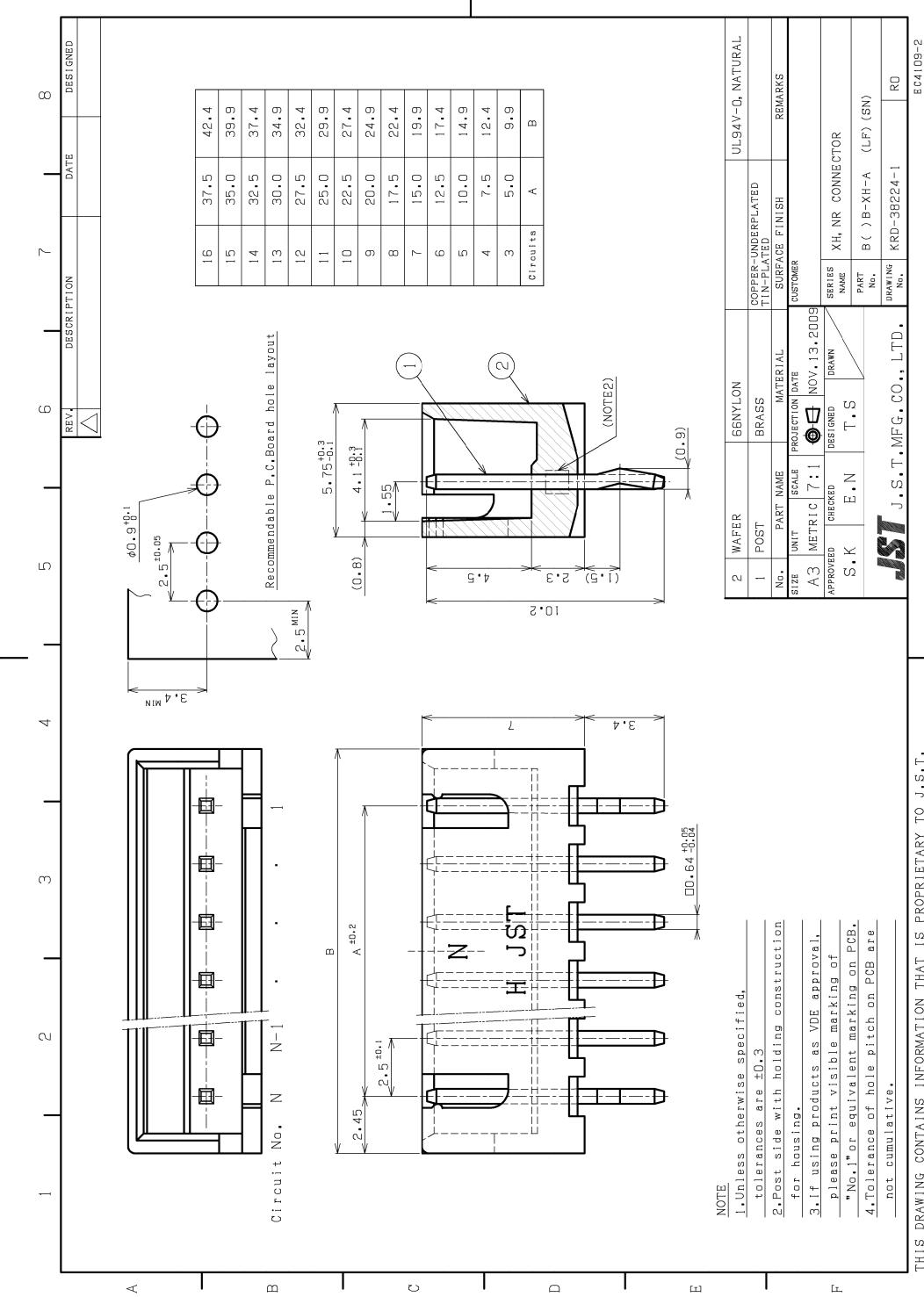
R1. 1)'96. 8. 28 2)Chanse of configuration. 3)M. N



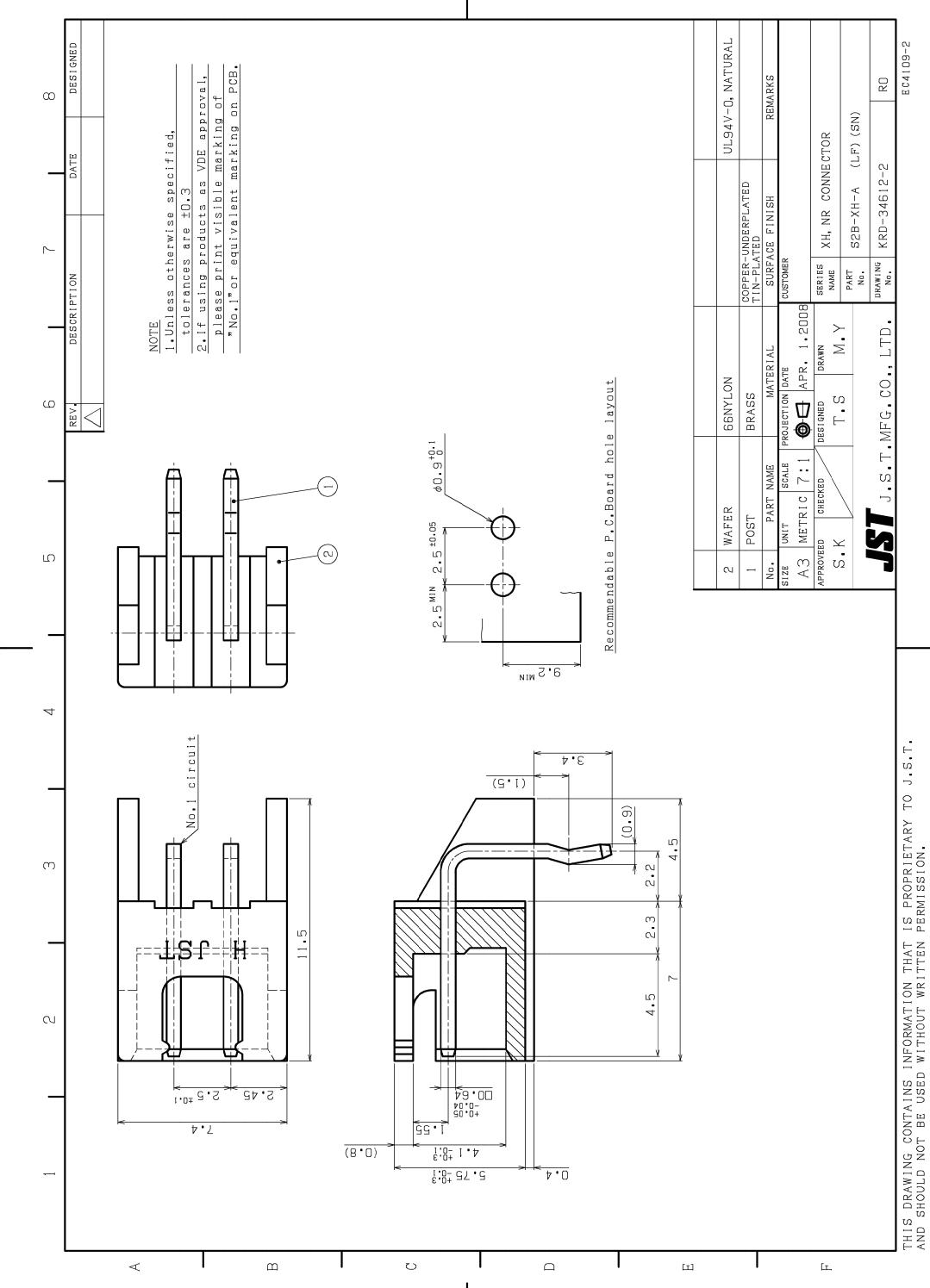


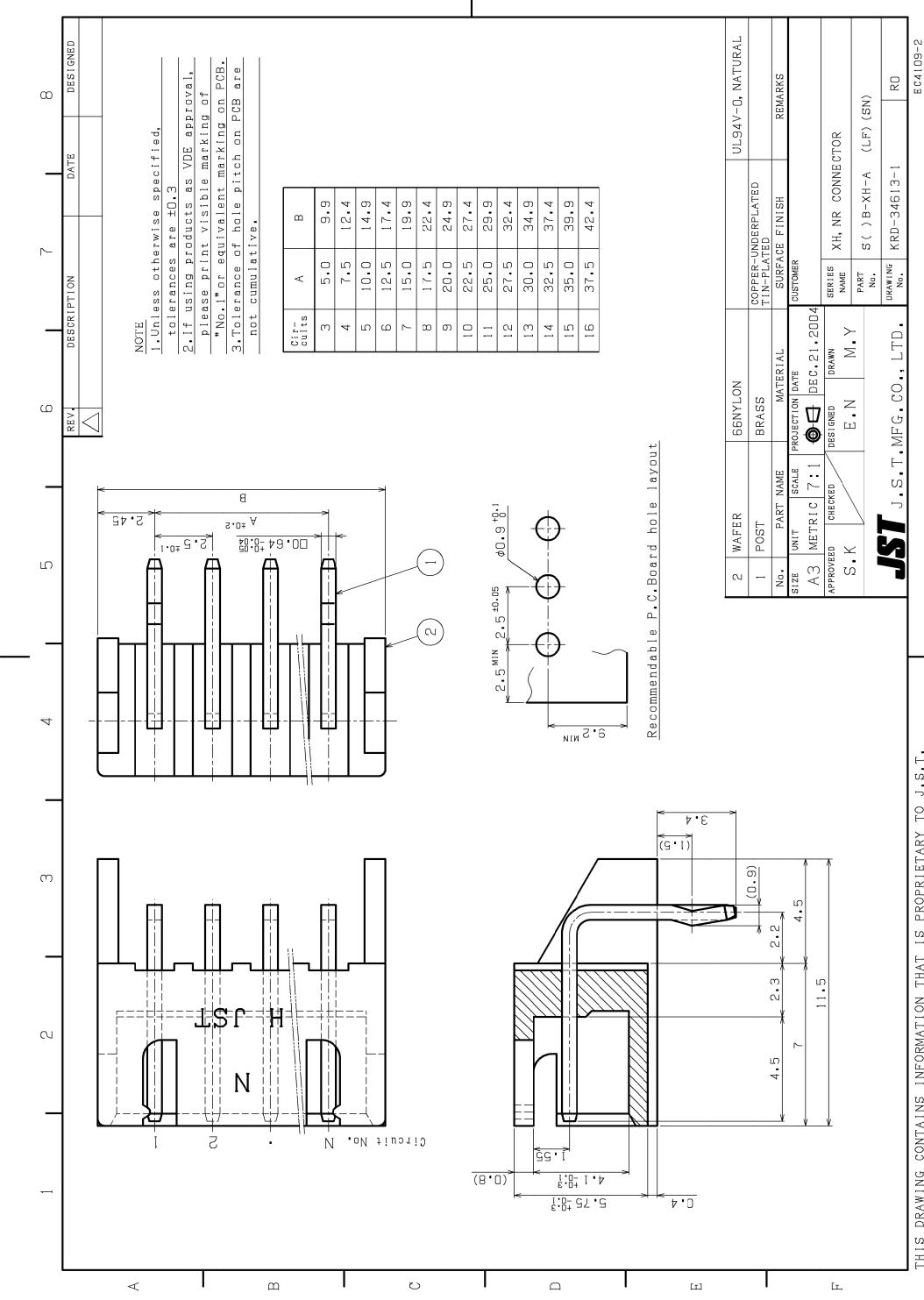

INSULATION BARREL

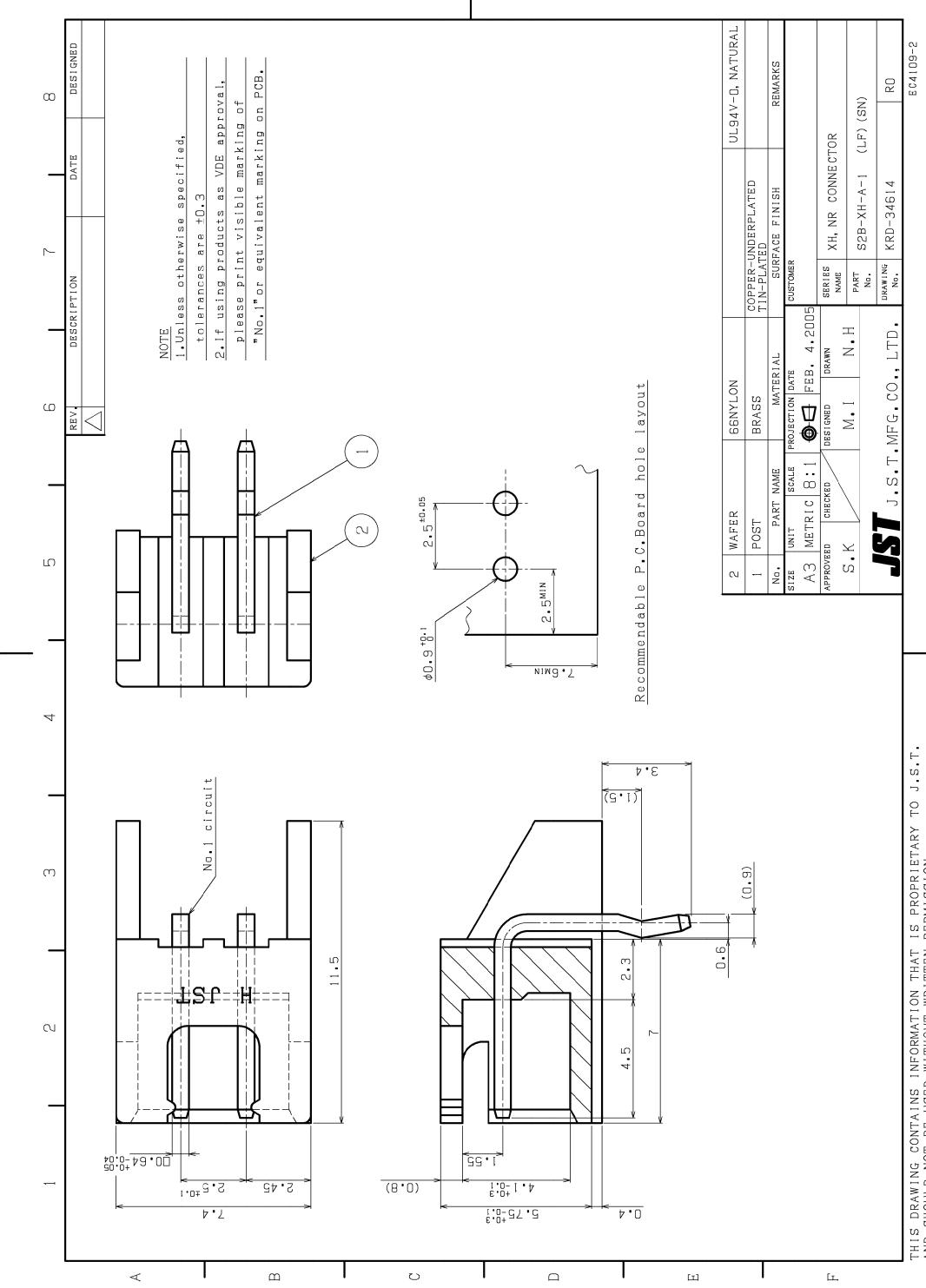
WIRE BARREL

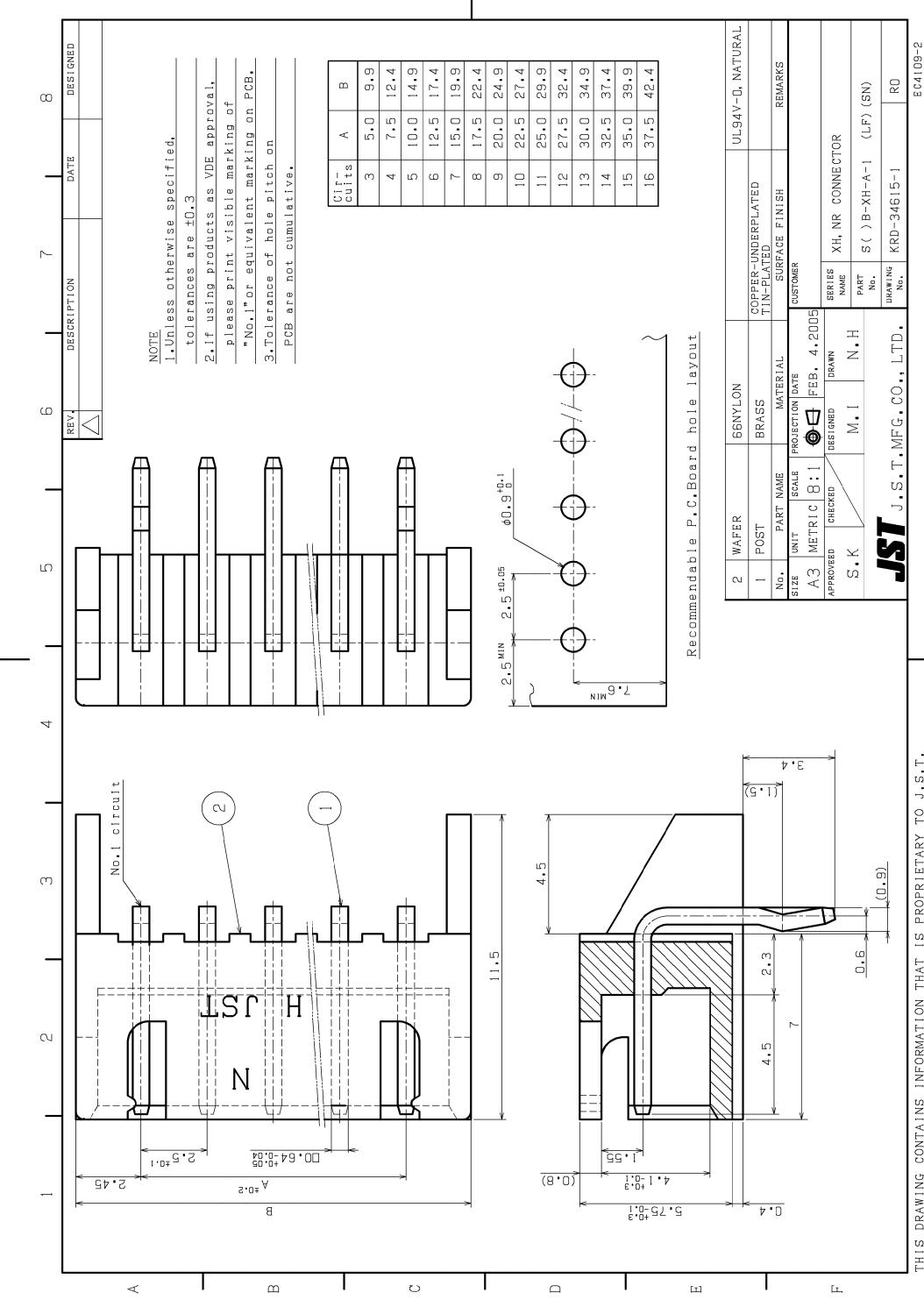

No .	CONT	ACT	t0. 2	HOR BRONZE	E TIN	-PLATED ETIN) REMARKS		REVISIONS			
	3 J. S. T.							PAF NAM		Χŀ	
APF	PROVED	CHEC		DRAWN BY		PROJECTION	DATE	PA No	RT		(H-002T-P0. 6
/	(-N		5.5.	Nago	free		Dec. 20 '90		WING No.	K	(RD - 4311-1 R1






THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO J.S.T. AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION.


THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO J.S.T. AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION.



THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO J.S.T. AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION.

THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO J.S.T. AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION.

THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO J.S.T. AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION.

单击下面可查看定价,库存,交付和生命周期等信息

>>JST(杰世腾)