

SEMICONDUCTOR TECHNICAL DATA

KTC4379

EPITAXIAL PLANAR NPN TRANSISTOR

POWER AMPLIFIER APPLICATIONS. POWER SWITCHING APPLICATIONS.

FEATURES

- · Low Saturation Voltage
 - : $V_{CE(sat)} = 0.5V(Max.) (I_C = 1A)$
- · High Speed Switching Time : t_{stg} =1.0 μ S(Typ.)
- · $P_C=1 \sim 2W$ (Mounted on Ceramic Substrate)
- · Small Flat Package.
- · Complementary to KTA1666.
- · Suffix $\underline{\mathbf{U}}$: Qualified to AEC-Q101.
 - ex) KTC4379-Y-RTF/H<u>U</u>

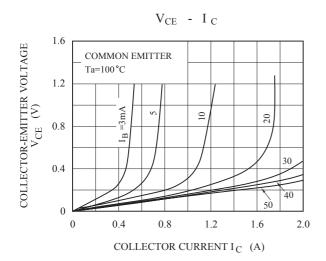
MAXIMUM RATING (Ta=25℃)

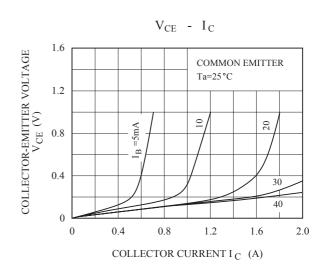
CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	50	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current	I_{C}	2	A
Base Current	I_{B}	0.4	A
Collector Power Dissipation	P _C	500	mW
Conector Fower Dissipation	P _C *	1	W
Junction Temperature	T _j	150	$^{\circ}$
Storage Temperature Range	T_{stg}	-55~150	$^{\circ}$

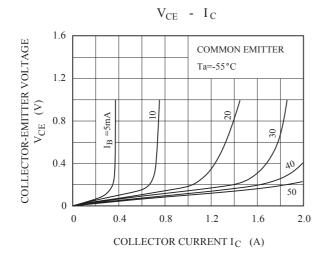
P_C*: KTC4379 mounted on ceramic substrate (250mm²x0.8t)

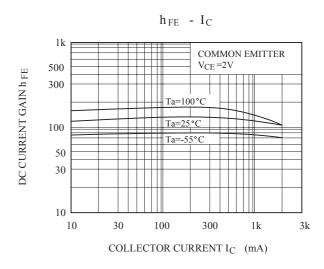
DIM MILLIMETERS A 4.70 MAX B 2.50 ±0.20 C 1.70 MAX D 0.45+0.15/-0.10 E 4.25 MAX F 1.50±0.10 G 0.40 TYP H 1.75 MAX J 0.75 MIN K 0.5+0.10/-0.05 L 1.40 ± 0.10 M 0.19 ± 0.10 N 0.47 ± 0.10 SOT-89

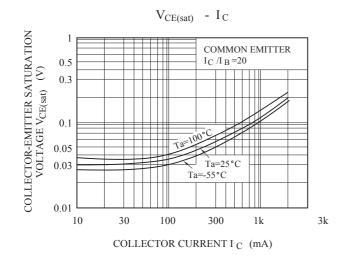
Marking hFE Rank Lot No. Type Name

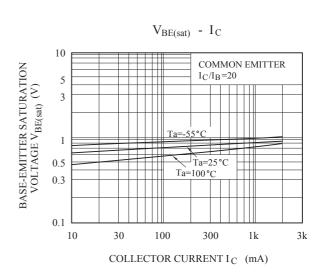

ELECTRICAL CHARACTERISTICS (Ta=25°C)

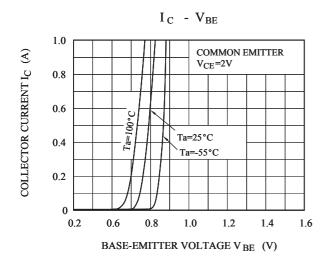

CHARA	CTERISTIC	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Collector Cut-off Current		I_{CBO}	$V_{CB} = 50V, I_{E} = 0$	-	-	0.1	μA
Emitter Cut-off Current		I_{EBO}	$V_{EB}=5V$, $I_{C}=0$	-	-	0.1	μ A
Collector-Emitter Breakdown Voltage		V _{(BR)CEO}	$I_{C}=10\text{mA},\ I_{B}=0$	50	-	-	V
DC Current Gain		h _{FE} (1) (Note2)	V _{CE} =2V, I _C =0.5A (Note 1)	70	-	240	
		h _{FE} (2)	V _{CE} =2V, I _C =1.5A (Note 1)	40	-	-	
Collector-Emitter Saturation Voltage		V _{CE(sat)}	I _C =1A, I _B =0.05A (Note 1)	-	-	0.5	V
Base-Emitter Saturation Voltage		V _{BE(sat)}	I _C =1A, I _B =0.05A (Note 1)	-	-	1.2	V
Transition Frequency		f_T	$V_{CE}=2V, I_{C}=0.5A$	-	120	-	MHz
Collector Output Capacitance		C _{ob}	$V_{CB}=10V, I_{E}=0, f=1MHz$	-	30	-	pF
Switching Time	Turn-on Time	t _{on}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	0.1	-	
	Storage Time	t _{stg}		-	1.0	-	μS
	Fall Time	t_{f}		-	0.1	-	

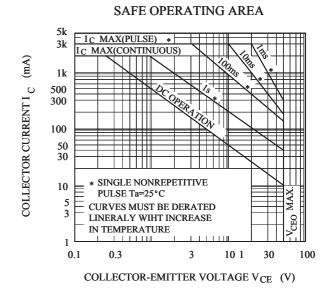

Note 1 : Pulse width $\leq 300 \,\mu\text{S}$, Duty Cycle $\leq 1\%$

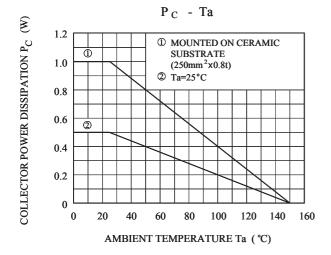

Note 2: $h_{FE}(1)$ Classification 0:70 ~ 140, Y:120 ~ 240


KTC4379









KTC4379

KTC4379

PRECAUTION ON USING KEC PRODUCTS

- 1. The products described in this data are intended to be used in general-purpose electronic equipment (Office equipment, telecommunication equipment, measuring equipment, home appliances)
- 2. When you intend to use these products with equipment or device which require an extremely high of reliability and special applications (such as automobile, air travel aerospace, transportation equipment, life support, system and safety devices) in which special quality and reliability and the failure or malfunction of products may directly jeopardize or harm the human body or damage to property and any application other than the standard application intended, please be sure to consult with our sales representative in advance.
- 3. On designing your application, please use product within the ranges guaranteed by KEC for maximum rating, operating supply voltage range, heat radiation characteristics and other characteristics. User shall be responsible for failure or damage when used beyond the guaranteed ranges.
- 4. The technical information described in this data is limited to showing representative characteristics and applied circuit examples of the products and it does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- 5. What are described in the data may be changed without any prior notice to reflect new technical development. Please confirm that you have received the latest product standards or specification before final design, purchase or use.
- 6. Although KEC is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. KEC shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by KEC.

单击下面可查看定价,库存,交付和生命周期等信息

>>KEC(开益禧)