


#### **Overview**

KEMET's COTS program is an extension of KEMET knowledge of high reliability test regimes and requirements. KEMET regularly supplies "up-screened" products by working with customer drawings and imposing specified design and test requirements. The COTS program offers the same high quality and high reliability components as up-screened products, but at a lower cost to the customer. This is accomplished by eliminating the need for customer-specific drawings to achieve the reliability level required for customer applications. A series of tests and inspections have been selected to provide the accelerated conditioning and 100% screening necessary to eliminate infant mortal failures from the population.

KEMET's X7R dielectric features a 125°C maximum operating temperature and is considered "temperature stable." The Electronics Components, Assemblies & Materials Association (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling applications or for frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage and boasts a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to  $\pm 15\%$  from  $-55^{\circ}$ C to  $+125^{\circ}$ C. All COTS testing includes voltage conditioning and post-electrical testing as per MIL–PRF–55681. For enhanced reliability, KEMET also provides the following test level options and conformance certifications:





#### **Ordering Information**

| С       | 1210                                                                 | Т                        | 104                                                    | K                               | 5                                                                                | R          | Α                                                                                                                                                                                                                                | С                                                                                    | TU                                                        |
|---------|----------------------------------------------------------------------|--------------------------|--------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Ceramic | Case Size<br>(L" x W")                                               | Specification/<br>Series | Capacitance<br>Code (pF)                               | Capacitance<br>Tolerance        | Rated<br>Voltage<br>(VDC)                                                        | Dielectric | Test Level                                                                                                                                                                                                                       | Termination<br>Finish <sup>1</sup>                                                   | Packaging/<br>Grade (C-Spec)                              |
|         | 0402<br>0603<br>0805<br>1206<br>1210<br>1805<br>1808<br>1812<br>2220 | T = COTS                 | Two<br>significant<br>digits and<br>number of<br>zeros | J = ±5%<br>K = ±10%<br>M = ±20% | 9 = 6.3<br>8 = 10<br>4 = 16<br>3 = 25<br>5 = 50<br>1 = 100<br>2 = 200<br>A = 250 | R = X7R    | A = Testing per MIL-<br>PRF-55681 PDA 8%<br>B= Testing per MIL-<br>PRF-55681 PDA 8%, DPA<br>per EIA-469<br>C = Testing per MIL-<br>PRF-55681 PDA 8%, DPA<br>per EIA-469, Humidity per<br>MIL-STD-202, Method 103,<br>Condition A | C = 100%<br>Matte Sn<br>L = SnPb (5%<br>Pb minimum)<br>G = Gold (Au)<br>100 µin min. | See<br>"Packaging<br>C-Spec<br>Ordering<br>Options Table" |

<sup>1</sup> Additional termination finish options may be available. Contact KEMET for details.

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com



#### **Benefits**

- -55°C to +125°C operating temperature range
- Lead (Pb)-free, RoHS and REACH compliant
- Voltage conditioning and post-electrical testing per MIL-PRF-55681
- Destructive Physical Analysis (DPA) per EIA-469
- Biased humidity testing (85/85) per MIL-STD-202
- Certificate of Compliance
- · Temperature stable dielectric
- EIA 0402, 0603, 0805, 1206, 1210, 1812, and 2220 case sizes

- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 50 V, 100 V, 200 V, and 250 V
- Capacitance offerings ranging from 10 pF to 22  $\mu F$
- Available capacitance tolerances of ±5%, ±10%, and ±20%
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability
- SnPb termination finish option available upon request (5% Pb minimum)

## **Applications**

Typical applications include military, space quality and high reliability electronics.

## Packaging C-Spec Ordering Options Table (100% Matte Sn and SnPb Terminations)

| Packaging Type <sup>1</sup>               | Packaging/Grade<br>Ordering Code (C-Spec)                                       |
|-------------------------------------------|---------------------------------------------------------------------------------|
| Bulk Bag/Unmarked                         | Not required (Blank)                                                            |
| 7" Reel/Unmarked                          | TU                                                                              |
| 13" Reel/Unmarked                         | 7411 (EIA 0603 and smaller case sizes)<br>7210 (EIA 0805 and larger case sizes) |
| 7" Reel/Unmarked/2 mm pitch <sup>2</sup>  | 7081                                                                            |
| 13" Reel/Unmarked/2 mm pitch <sup>2</sup> | 7082                                                                            |

<sup>1</sup> Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.

<sup>1</sup> The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. The option to laser mark is not available on these devices. For more information see "Capacitor Marking".
<sup>2</sup> The 2 mm nich option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to FIA 0603 (1608 metric) case.

<sup>2</sup> The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".



## Packaging C-Spec Ordering Options Table (Gold Termination)

| Termination Finish Options    | Packaging Type/Options                     | Packaging<br>Ordering Code (C-Spec)                                             |
|-------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|
|                               | Standard Packaging – Unmarked <sup>3</sup> |                                                                                 |
|                               | Bulk Bag                                   | Blank <sup>1</sup>                                                              |
|                               | Waffle Tray <sup>2</sup>                   | 7292                                                                            |
|                               | 7" Tape & Reel                             | TU                                                                              |
|                               | 13" Reel                                   | 7411 (EIA 0603 and smaller case sizes)<br>7210 (EIA 0805 and larger case sizes) |
| G = Gold (Au) 100 µin minimum | 7" Tape & Reel/2 mm pitch⁴                 | 7081                                                                            |
|                               | 7" Tape & Reel – 50 pieces                 | T050                                                                            |
|                               | 7" Tape & Reel – 100 pieces                | T100                                                                            |
|                               | 7" Tape & Reel – 250 pieces                | T250                                                                            |
|                               | 7" Tape & Reel – 500 pieces                | T500                                                                            |
|                               | 7" Tape & Reel – 1,000 pieces              | Т1К0                                                                            |

<sup>1</sup> Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.

<sup>1</sup> "Bulk Bag" packaging option is not available for Gold (Au) termination finish options and case sizes larger than 2225 (5664 Metric).

<sup>2</sup> "Waffle Tray" packaging option is not available for case sizes larger than 2225 (5664 Metric).

<sup>3</sup> The terms "Marked" and "Unmarked" pertain to laser marking option of components. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. The option to laser mark is not available on these devices.


<sup>3</sup> Reeling quantities are dependent upon chip size and thickness dimension. When ordering using the "T1K0" packaging option, 1812 through 2225 case size devices with chip thickness of ≥ 1.9 mm (nominal) may be shipped on multiple 7" reels or a single 13" reel. Additional reeling or packaging options may be available. Contact KEMET for details.

<sup>4</sup> The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

<sup>5</sup> Additional reeling or packaging options may be available. Contact KEMET for details.



## **Dimensions – Millimeters (Inches)**



| EIA Size<br>Code  | Metric Size<br>Code | L<br>Length                   | W<br>Width                    | T<br>Thickness                | B<br>Bandwidth                | S<br>Separation<br>Minimum | Mounting<br>Technique           |
|-------------------|---------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------|---------------------------------|
| 0402              | 1005                | 1.00 (0.040)<br>±0.05 (0.002) | 0.50 (0.020)<br>±0.05 (0.002) |                               | 0.30 (0.012)<br>±0.10 (0.004) | 0.30 (0.012)               | Solder Reflow<br>Only           |
| 0603              | 1608                | 1.60 (0.063)<br>±0.15 (0.006) | 0.80 (0.032)<br>±0.15 (0.006) |                               | 0.35 (0.014)<br>±0.15 (0.006) | 0.70 (0.028)               |                                 |
| 0805              | 2012                | 2.00 (0.079)<br>±0.20 (0.008) | 1.25 (0.049)<br>+0.20 (0.008) |                               | 0.50 (0.02)<br>±0.25 (0.010)  | 0.75 (0.030)               | Solder Wave or<br>Solder Reflow |
| 1206              | 3216                | 3.20 (0.126)<br>±0.20 (0.008) | 1.60 (0.063)<br>±0.20 (0.008) | _                             | 0.50 (0.02)<br>±0.25 (0.010)  |                            |                                 |
| 1210 <sup>1</sup> | 3225                | 3.20 (0.126)<br>+0.20 (0.008) | 2.50 (0.098)<br>±0.20 (0.008) | See Table 2 for<br>Thickness  | 0.50 (0.02)<br>±0.25 (0.010)  | -                          |                                 |
| 1805              | 4513                | 4.50 (0.177)<br>±0.50 (0.020) | 1.27 (0.050)<br>±0.38 (0.015) | -                             | 0.60 (0.024)<br>±0.35 (0.014) |                            |                                 |
| 1808              | 4520                | 4.70 (0.185)<br>±0.50 (0.020) | 0.185) 2.00 (0.079)           | 0.60 (0.024)<br>±0.35 (0.014) | N/A                           | Solder Reflow<br>Only      |                                 |
| 1812              | 4532                | 4.50 (0.177)<br>±0.30 (0.012) | 3.20 (0.126)<br>±0.30 (0.012) |                               | 0.60 (0.024)<br>±0.35 (0.014) |                            |                                 |
| 2220              | 5650                | 5.70 (0.224)<br>±0.40 (0.016) | 5.00 (0.197)<br>±0.40 (0.016) |                               | 0.60 (0.024)<br>±0.35 (0.014) |                            |                                 |

<sup>1</sup> For capacitance values  $\geq$  4.7  $\mu$ F add 0.02 (0.001) to the width tolerance dimension and 0.10 (0.004) to the length tolerance dimension.

## **Qualification/Certification**

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

## **Environmental Compliance**

Lead (Pb)-free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).



## **Electrical Parameters/Characteristics**

| Item                                                                  | Parameters/Characteristics                                                                 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Operating Temperature Range                                           | -55°C to +125°C                                                                            |
| Capacitance Change with Reference to<br>+25°C and 0 Vdc Applied (TCC) | ±15%                                                                                       |
| <sup>1</sup> Aging Rate (Maximum % Capacitance Loss/Decade Hour)      | 3.0%                                                                                       |
| <sup>2</sup> Dielectric Withstanding Voltage (DWV)                    | 250% of rated voltage<br>(5±1 seconds and charge/discharge not exceeding 50mA)             |
| <sup>3</sup> Dissipation Factor (DF) Maximum Limit at 25°C            | 5%(6.3V & 10V), 3.5%(16V & 25V) and 2.5%(50V to 250V)                                      |
| <sup>4</sup> Insulation Resistance (IR) Minimum Limit at 25°C         | See Insulation Resistance Limit Table<br>(Rated voltage applied for 120±5 seconds at 25°C) |

<sup>1</sup> Regarding Aging Rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.

<sup>2</sup> DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor.

 $^{\scriptscriptstyle 3}$  Capacitance and dissipation factor (DF) measured under the following conditions:

1kHz ± 50Hz and 1.0 ± 0.2 Vrms if capacitance ≤10 $\mu$ F

120Hz  $\pm$  10Hz and 0.5  $\pm$  0.1 Vrms if capacitance >10 $\mu F$ 

<sup>4</sup> To obtain IR limit, divide  $M\Omega$ - $\mu$ F value by the capacitance and compare to G $\Omega$  limit. Select the lower of the two limits.

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON".

## **Post Environmental Limits**

| I          | High Temperatu      | ıre Life, Biased     | l Humidity, Moist                 | ure Resistance       | 9                        |
|------------|---------------------|----------------------|-----------------------------------|----------------------|--------------------------|
| Dielectric | Rated DC<br>Voltage | Capacitance<br>Value | Dissipation Factor<br>(Maximum %) | Capacitance<br>Shift | Insulation<br>Resistance |
|            | > 25                |                      | 3.0                               |                      |                          |
| X7R        | 16/25               | All                  | 5.0                               | ±20%                 | 10% of Initial<br>Limit  |
|            | < 16                |                      | 7.5                               |                      | Liint                    |

#### **Insulation Resistance Limit Table**

| EIA Case Size | 1,000 Megohm<br>Microfarads or 100 GΩ | 500 Megohm<br>Microfarads or 10 GΩ |
|---------------|---------------------------------------|------------------------------------|
| 0201          | N/A                                   | ALL                                |
| 0402          | < 0.012 µF                            | ≥ 0.012 µF                         |
| 0603          | < 0.047 µF                            | ≥ 0.047 µF                         |
| 0805          | < 0.15 µF                             | ≥ 0.15 µF                          |
| 1206          | < 0.47 µF                             | ≥ 0.47 µF                          |
| 1210          | < 0.39 µF                             | ≥ 0.39 µF                          |
| 1805          | ALL                                   | N/A                                |
| 1808          | ALL                                   | N/A                                |
| 1812          | < 2.2 µF                              | ≥ 2.2 µF                           |
| 1825          | ALL                                   | N/A                                |
| 2220          | < 10 µF                               | ≥ 10 µF                            |
| 2225          | ALL                                   | N/A                                |



## Table 1A - Capacitance Range/Selection Waterfall (0402 - 1206 Case Sizes)

| Capacitance         Car<br>Cod           10 - 91 pF*         100 - 9<br>100 - 150 pF**         101 - 15<br>180 - 820 pF**           180 - 820 pF**         101 - 15<br>180 - 820 pF**         101 - 15<br>181 - 82           1,000 pF         122           1,500 pF         152           1,800 pF         182           2,200 pF         272           3,300 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         393           15,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         393           47,000 pF         473           56,000 pF         663           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.12 µF         124           0.13 µF         334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 910*<br>- 151**<br>- 821**<br>102<br>122<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>15                                     | Rat<br>Caj                                                                                          | tage C<br>ed Volt<br>(VDC)<br>pacita<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K | iage<br>nce<br>ce<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | 9<br>E:9<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>B        | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 4<br>92<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 3<br>52<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88 | <b>5</b><br><b>02</b><br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 9<br>CF<br>CF<br>CF<br>CF<br>CF<br>CF | 8<br>CF<br>CF<br>CF<br>CF<br>CF | 4<br>91<br>CF<br>CF<br>CF<br>CF |                            | CF<br>CF<br>CF<br>CF |                          | <b>2 fc</b><br>CF<br>CF   | 9<br>E:9<br>Dility<br>DN<br>DN | <b>ip T</b><br>DN | hick<br>DN        | ness<br>DN         | Din<br>DN         |                   | ions        |          | 9<br>8:9<br>EB<br>EB | <b>B</b><br><b>B</b><br><b>B</b><br><b>B</b> | 4<br>92<br>EB<br>EB | 3<br>52<br>EB<br>EB | 5<br>05<br>EB<br>EB | 1<br>001<br>EB<br>EB | EB<br>EB | 250 >>   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------|----------------------------|----------------------|--------------------------|---------------------------|--------------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------|----------|----------------------|----------------------------------------------|---------------------|---------------------|---------------------|----------------------|----------|----------|
| 10 - 91 pF*         100 - 9           10 - 150 pF**         101 - 15           180 - 820 pF**         101 - 15           180 - 820 pF**         181 - 82           1,000 pF         102           1,200 pF         122           1,500 pF         152           1,800 pF         182           2,200 pF         222           2,700 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         183           22,000 pF         223           27,000 pF         183           22,000 pF         1833           22,000 pF         1833           22,000 pF         1833           22,000 pF         1833           30,000 pF         563           68,000 pF         683           0.10 µF         104 <tr< th=""><th>- 910*<br/>- 151**<br/>- 821**<br/>102<br/>152<br/>152<br/>152<br/>222<br/>272<br/>332<br/>392<br/>472<br/>562<br/>562<br/>562<br/>682<br/>822<br/>103<br/>123</th><th>Caj<br/>Tc<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J<br/>J</th><th>(VDC)<br/>acita<br/>bleran<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K<br/>K</th><th>nce<br/>ce<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M<br/>M</th><th>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</th><th>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</th><th>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</th><th>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</th><th>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</th><th>CF<br/>CF<br/>CF<br/>CF<br/>CF</th><th>CF<br/>CF<br/>CF<br/>CF</th><th>CF<br/>CF<br/>CF<br/>CF</th><th>Pro<br/>S<br/>CF<br/>CF<br/>CF</th><th>CF<br/>CF<br/>CF<br/>CF</th><th>t Av<br/>able<br/>CF<br/>CF</th><th>ailat<br/>2 fc<br/>CF<br/>CF</th><th>oility<br/>or Ch<br/>DN</th><th>and<br/>ip T<br/>DN</th><th>Chi<br/>hick<br/>DN</th><th>p Th<br/>ness<br/>DN</th><th>ickn<br/>Din<br/>DN</th><th>ess<br/>nens<br/>DN</th><th>Cod<br/>ions</th><th>es</th><th>EB</th><th>EB<br/>EB</th><th>EB<br/>EB</th><th>EB</th><th>EB</th><th>EB</th><th>EB<br/>EB</th><th>250</th></tr<> | - 910*<br>- 151**<br>- 821**<br>102<br>152<br>152<br>152<br>222<br>272<br>332<br>392<br>472<br>562<br>562<br>562<br>682<br>822<br>103<br>123 | Caj<br>Tc<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J | (VDC)<br>acita<br>bleran<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K             | nce<br>ce<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M         | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                    | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                    | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                    | BB<br>BB<br>BB<br>BB<br>BB<br>BB                                      | CF<br>CF<br>CF<br>CF<br>CF            | CF<br>CF<br>CF<br>CF            | CF<br>CF<br>CF<br>CF            | Pro<br>S<br>CF<br>CF<br>CF | CF<br>CF<br>CF<br>CF | t Av<br>able<br>CF<br>CF | ailat<br>2 fc<br>CF<br>CF | oility<br>or Ch<br>DN          | and<br>ip T<br>DN | Chi<br>hick<br>DN | p Th<br>ness<br>DN | ickn<br>Din<br>DN | ess<br>nens<br>DN | Cod<br>ions | es       | EB                   | EB<br>EB                                     | EB<br>EB            | EB                  | EB                  | EB                   | EB<br>EB | 250      |
| $100 - 150 \text{ pF}^{**}$ $101 - 15$ $180 - 820 \text{ pF}^{**}$ $181 - 82$ $1,000 \text{ pF}$ $102$ $1,200 \text{ pF}$ $122$ $1,500 \text{ pF}$ $152$ $1,800 \text{ pF}$ $182$ $2,200 \text{ pF}$ $222$ $2,700 \text{ pF}$ $222$ $2,700 \text{ pF}$ $222$ $2,700 \text{ pF}$ $232$ $3,900 \text{ pF}$ $392$ $4,700 \text{ pF}$ $472$ $5,600 \text{ pF}$ $682$ $8,200 \text{ pF}$ $822$ $10,000 \text{ pF}$ $103$ $12,000 \text{ pF}$ $123$ $15,000 \text{ pF}$ $133$ $22,000 \text{ pF}$ $223$ $27,000 \text{ pF}$ $273$ $33,000 \text{ pF}$ $333$ $27,000 \text{ pF}$ $273$ $33,000 \text{ pF}$ $333$ $22,000 \text{ pF}$ $473$ $56,000 \text{ pF}$ $563$ $82,000 \text{ pF}$ $683$ $82,000 \text{ pF}$ $823$ $0.10 \mu F$ $104$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 151**<br>- 821**<br>102<br>122<br>152<br>182<br>222<br>272<br>332<br>392<br>472<br>562<br>682<br>822<br>103<br>123                         |                                                                                                     | Andrian<br>Jeran<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                                                   | Ce<br>M M M M M M M M M M M M M M M M M M M                                                            | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB       | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                          | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                    | BB<br>BB<br>BB<br>BB                                                  | CF<br>CF<br>CF<br>CF                  | CF<br>CF<br>CF                  | CF<br>CF<br>CF                  | CF<br>CF<br>CF<br>CF       | CF<br>CF<br>CF<br>CF | t Av<br>able<br>CF<br>CF | ailat<br>2 fc<br>CF<br>CF | DN DN                          | ip T<br>DN        | hick<br>DN        | ness<br>DN         | Din<br>DN         | ess<br>nens<br>DN | Cod<br>ions | es       |                      | EB                                           | EB                  |                     |                     | EB                   | EB<br>EB |          |
| $100 - 150 \text{ pF}^{**}$ $101 - 15$ $180 - 820 \text{ pF}^{**}$ $181 - 82$ $1,000 \text{ pF}$ $102$ $1,200 \text{ pF}$ $122$ $1,500 \text{ pF}$ $152$ $1,800 \text{ pF}$ $182$ $2,200 \text{ pF}$ $222$ $2,700 \text{ pF}$ $222$ $2,700 \text{ pF}$ $222$ $2,700 \text{ pF}$ $232$ $3,900 \text{ pF}$ $392$ $4,700 \text{ pF}$ $472$ $5,600 \text{ pF}$ $682$ $8,200 \text{ pF}$ $822$ $10,000 \text{ pF}$ $103$ $12,000 \text{ pF}$ $123$ $15,000 \text{ pF}$ $133$ $22,000 \text{ pF}$ $223$ $27,000 \text{ pF}$ $273$ $33,000 \text{ pF}$ $333$ $27,000 \text{ pF}$ $273$ $33,000 \text{ pF}$ $333$ $22,000 \text{ pF}$ $473$ $56,000 \text{ pF}$ $563$ $82,000 \text{ pF}$ $683$ $82,000 \text{ pF}$ $823$ $0.10 \mu F$ $104$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 151**<br>- 821**<br>102<br>122<br>152<br>182<br>222<br>272<br>332<br>392<br>472<br>562<br>682<br>822<br>103<br>123                         |                                                                                                     | х х х х х х х х х х х х х х х х х х х                                                                                               |                                                                                                        | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB       | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                          | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                    | BB<br>BB<br>BB<br>BB                                                  | CF<br>CF<br>CF<br>CF                  | CF<br>CF<br>CF                  | CF<br>CF<br>CF                  | CF<br>CF<br>CF             | CF<br>CF<br>CF       | CF<br>CF                 | CF<br>CF                  | DN                             | DN                | DN                | DN                 | DN                | DN                | DN          | 3        |                      | EB                                           | EB                  |                     |                     |                      | EB       |          |
| $100 - 150 \text{ pF}^{**}$ $101 - 15$ $180 - 820 \text{ pF}^{**}$ $181 - 82$ $1,000 \text{ pF}$ $102$ $1,200 \text{ pF}$ $122$ $1,500 \text{ pF}$ $152$ $1,800 \text{ pF}$ $182$ $2,200 \text{ pF}$ $222$ $2,700 \text{ pF}$ $222$ $2,700 \text{ pF}$ $222$ $2,700 \text{ pF}$ $232$ $3,900 \text{ pF}$ $392$ $4,700 \text{ pF}$ $472$ $5,600 \text{ pF}$ $682$ $8,200 \text{ pF}$ $822$ $10,000 \text{ pF}$ $103$ $12,000 \text{ pF}$ $123$ $15,000 \text{ pF}$ $123$ $22,000 \text{ pF}$ $223$ $27,000 \text{ pF}$ $273$ $33,000 \text{ pF}$ $333$ $22,000 \text{ pF}$ $273$ $33,000 \text{ pF}$ $333$ $22,000 \text{ pF}$ $473$ $56,000 \text{ pF}$ $563$ $82,000 \text{ pF}$ $683$ $82,000 \text{ pF}$ $823$ $0.10 \mu F$ $104$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 151**<br>- 821**<br>102<br>122<br>152<br>182<br>222<br>272<br>332<br>392<br>472<br>562<br>682<br>822<br>103<br>123                         |                                                                                                     | х х х х х х х х х х х х х х х х х х х                                                                                               |                                                                                                        | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB       | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                          | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                    | BB<br>BB<br>BB<br>BB                                                  | CF<br>CF<br>CF<br>CF                  | CF<br>CF<br>CF                  | CF<br>CF<br>CF                  | CF<br>CF                   | CF<br>CF             | CF                       | CF                        |                                |                   |                   |                    |                   |                   |             |          |                      | EB                                           | EB                  |                     |                     |                      | EB       |          |
| 1,000 pF         102           1,200 pF         122           1,500 pF         152           1,800 pF         182           2,200 pF         222           2,700 pF         332           3,900 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         562           6,800 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         153           18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         563           68,000 pF         563           0.10 µF <td< td=""><td>102       122       152       152       222       272       332       392       472       562       682       822       103       123</td><td></td><td>к к к к к к к к к к к к к к к к к к к</td><td></td><td>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</td><td>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</td><td>BB<br/>BB<br/>BB<br/>BB<br/>BB<br/>BB</td><td>BB<br/>BB<br/>BB<br/>BB<br/>BB</td><td>BB<br/>BB<br/>BB</td><td>CF<br/>CF</td><td>CF</td><td>CF</td><td></td><td></td><td>CE</td><td></td><td></td><td>UN</td><td>DN</td><td>DN</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>ED.</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102       122       152       152       222       272       332       392       472       562       682       822       103       123        |                                                                                                     | к к к к к к к к к к к к к к к к к к к                                                                                               |                                                                                                        | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                   | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                      | BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                      | BB<br>BB<br>BB<br>BB<br>BB                                                | BB<br>BB<br>BB                                                        | CF<br>CF                              | CF                              | CF                              |                            |                      | CE                       |                           |                                | UN                | DN                | DN                 |                   |                   |             |          |                      | -                                            |                     |                     |                     |                      | ED.      |          |
| 1,200 pF         122           1,500 pF         152           1,800 pF         182           2,200 pF         222           2,700 pF         272           3,300 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         183           22,000 pF         223           27,000 pF         183           22,000 pF         233           3,000 pF         333           39,000 pF         333           39,000 pF         563           68,000 pF         563           68,000 pF         563           68,000 pF         823           0.10 μF         104           0.12 μF         124           0.15 μF         154           0.18 μF         184           0.22 μF         224           0.33 μF         394           0.47 μF         474           0.56 μF         564           0.68 μF         684     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122<br>152<br>182<br>222<br>272<br>332<br>392<br>472<br>562<br>682<br>822<br>103<br>123                                                      |                                                                                                     | к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к                                         |                                                                                                        | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                         | BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                            | BB<br>BB<br>BB<br>BB<br>BB<br>BB                                                      | BB<br>BB<br>BB<br>BB                                                      | BB<br>BB                                                              | CF                                    |                                 |                                 | CF                         |                      |                          | CF                        | DN                             |                   | DN                | DN                 | DN                | DN                | DN          | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       |          |
| 1,500 pF         152           1,800 pF         182           2,200 pF         222           2,700 pF         272           3,300 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         333           39,000 pF         563           68,000 pF         683           82,000 pF         563           68,000 pF         683           82,000 pF         223           0.10 μF         104           0.12 μF         124           0.15 μF         154           0.18 μF         184           0.22 μF         224           0.33 μF         334           0.39 μF         394           0.47 μF         474           0.56 μF         564           0.68 μF         684     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152<br>182<br>222<br>272<br>332<br>392<br>472<br>562<br>682<br>822<br>103<br>123                                                             |                                                                                                     | к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к                                         | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M            | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                               | BB<br>BB<br>BB<br>BB<br>BB                                                                  | BB<br>BB<br>BB<br>BB<br>BB                                                            | BB<br>BB<br>BB                                                            | BB                                                                    |                                       | LF                              |                                 |                            | CF                   | CF                       | CF                        | DN                             |                   | DN                | DN                 |                   | DN                |             | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 1,800 pF         182           2,200 pF         222           2,700 pF         272           3,300 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         333           39,000 pF         333           39,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 182       222       332       3392       472       562       682       822       103       123                                               |                                                                                                     | К К К К К К К К К К К К К К К К К К К                                                                                               | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                          | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                               | BB<br>BB<br>BB<br>BB                                                                        | BB<br>BB<br>BB<br>BB                                                                  | BB<br>BB                                                                  |                                                                       |                                       | CF                              | CF<br>CF                        | CF<br>CF                   | CF<br>CF             | CF<br>CF                 | CF<br>CF                  | DN<br>DN                       | _                 | DN<br>DN          | DN<br>DN           | _                 | DN<br>DN          | _           | DN<br>DN | EB<br>EB             | EB<br>EB                                     | EB<br>EB            | EB<br>EB            | EB<br>EB            | EB<br>EB             | EB<br>EB | EB<br>EB |
| 2,200 pF         222           2,700 pF         272           3,300 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         562           6,800 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         123           27,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         333           39,000 pF         473           56,000 pF         683           82,000 pF         823           0.10 μF         104           0.12 μF         124           0.15 μF         154           0.18 μF         184           0.22 μF         224           0.27 μF         274           0.33 μF         334           0.39 μF         394           0.47 μF         474           0.56 μF         564           0.68 μF         684           0.82 μF         824           1.0 μF         105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 222<br>272<br>332<br>392<br>472<br>562<br>682<br>822<br>103<br>123                                                                           |                                                                                                     | К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К                                                                            | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                              | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                                     | BB<br>BB<br>BB<br>BB                                                                        | BB<br>BB<br>BB                                                                        | BB                                                                        |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             |                   | DN                |                    | DN                | DN                |             |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | EB       |
| 3,300 pF         332           3,900 pF         392           4,700 pF         472           5,600 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         223           27,000 pF         223           27,000 pF         233           39,000 pF         393           47,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332       392       472       562       682       822       103       123                                                                    | J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J<br>J                                                      | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                                                                                           | M<br>M<br>M<br>M<br>M<br>M<br>M                                                                        | BB<br>BB<br>BB<br>BB<br>BB                                                 | BB<br>BB                                                                                    | BB                                                                                    |                                                                           | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             |                   | DN                |                    |                   | DN                | DN          |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | EB       |
| 3,900 pF         392           4,700 pF         472           5,600 pF         562           6,800 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         123           15,000 pF         123           2,000 pF         223           27,000 pF         273           33,000 pF         393           47,000 pF         473           56,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.8 µF         824           0.27 µF         274           0.33 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 392<br>472<br>562<br>682<br>822<br>103<br>123                                                                                                |                                                                                                     | <u>к к к к к к</u>                                                                                                                  | M<br>M<br>M<br>M<br>M                                                                                  | BB<br>BB<br>BB<br>BB                                                       | BB                                                                                          |                                                                                       | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             | DN                | DN                | DN                 | DN                | DN                | DN          | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 4,700 pF         472           5,600 pF         562           6,800 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         153           18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         563           68,000 pF         563           68,000 pF         563           68,000 pF         563           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.8 µF         334           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 472<br>562<br>682<br>822<br>103<br>123                                                                                                       | )<br>)<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]                                                      | к<br>к<br>к<br>к<br>к<br>к                                                                                                          | M<br>M<br>M<br>M                                                                                       | BB<br>BB<br>BB                                                             |                                                                                             |                                                                                       | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             | _                 | DN                | DN                 |                   | DN                |             | _        | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 5,600 pF         562           6,800 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         153           18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         393           47,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 562<br>682<br>822<br>103<br>123                                                                                                              | J<br>J<br>J<br>J<br>J<br>J<br>J                                                                     | К<br>К<br>К<br>К<br>К                                                                                                               | M<br>M<br>M                                                                                            | BB<br>BB                                                                   | DD                                                                                          | BB                                                                                    | BB<br>BB                                                                  | BB<br>BB                                                              | CF<br>CF                              | CF<br>CF                        | CF<br>CF                        | CF<br>CF                   | CF<br>CF             | CF<br>CF                 | CF<br>CF                  | DN<br>DN                       |                   | DN<br>DN          | DN<br>DN           | DN<br>DN          | DN<br>DN          |             | DN       | EB<br>EB             | EB<br>EB                                     | EB<br>EB            | EB<br>EB            | EB<br>EB            | EB<br>EB             | EB<br>EB | EB<br>EB |
| 6,800 pF         682           8,200 pF         822           10,000 pF         103           12,000 pF         123           15,000 pF         153           18,000 pF         233           27,000 pF         223           27,000 pF         233           33,000 pF         333           39,000 pF         393           47,000 pF         473           56,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 682<br>822<br>103<br>123                                                                                                                     | ]<br>]<br>]<br>]<br>]                                                                               | K<br>K<br>K<br>K                                                                                                                    | M<br>M<br>M                                                                                            | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             |                   | DN                | DN                 | DN                | DN                |             | DN<br>DN | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 10,000 pF         103           12,000 pF         123           15,000 pF         153           18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         393           47,000 pF         473           56,000 pF         663           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103<br>123                                                                                                                                   | J<br>J<br>J                                                                                         | K<br>K<br>K                                                                                                                         | М                                                                                                      |                                                                            | BB                                                                                          | BB                                                                                    | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             |                   | DN                | DN                 | DN                | DN                |             | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 12,000 pF         123           15,000 pF         153           18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         393           47,000 pF         473           56,000 pF         663           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.8 µF         224           0.27 µF         224           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123                                                                                                                                          | J<br>J<br>J                                                                                         | K<br>K                                                                                                                              |                                                                                                        | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             | DN                | DN                | DN                 | _                 | DN                | DN          | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 15,000 pF         153           18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         393           47,000 pF         473           56,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.8 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.2 µF         125           1.5 µF         155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              | J<br>J                                                                                              | К                                                                                                                                   |                                                                                                        | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       | CF                        | DN                             |                   |                   |                    |                   | DN                |             | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | EB       |
| 18,000 pF         183           22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         393           47,000 pF         473           56,000 pF         683           82,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.8 µF         224           0.27 µF         224           0.33 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 153 1                                                                                                                                        | J                                                                                                   |                                                                                                                                     | М                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       |                           | DN                             |                   | DN                |                    |                   | DN                |             | DN       | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | EB       |
| 22,000 pF         223           27,000 pF         273           33,000 pF         333           39,000 pF         393           47,000 pF         473           56,000 pF         563           68,000 pF         683           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         125           1.2 µF         125           1.2 µF         125           1.5 µF         155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                     | K                                                                                                                                   | M<br>M                                                                                                 | BB<br>BB                                                                   | BB<br>BB                                                                                    | BB<br>BB                                                                              | BB<br>BB                                                                  | BB<br>BB                                                              | CF<br>CF                              | CF<br>CF                        | CF<br>CF                        | CF<br>CF                   | CF<br>CF             | CF<br>CF                 |                           | DN<br>DN                       |                   | DN<br>DN          |                    | DN<br>DN          | DP<br>DP          |             | DN<br>DN | EB<br>EB             | EB<br>EB                                     | EB<br>EB            | EB<br>EB            | EB<br>EB            | EB<br>EB             |          | EB<br>EB |
| 27,000 pF         273           33,000 pF         333           39,000 pF         393           47,000 pF         473           56,000 pF         683           82,000 pF         683           82,000 pF         683           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                     | K                                                                                                                                   | M                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        | BB                                                                    | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       |                           | DN                             |                   | DN                | DN                 |                   | DP                | DN          |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | EB       |
| 39,000 pF         393           47,000 pF         473           56,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | М                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       |                           | DN                             |                   | DN                | DN                 | DN                | DP                | DE          |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 47,000 pF         473           56,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 333                                                                                                                                          | J                                                                                                   | K                                                                                                                                   | М                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       |                           | DN                             |                   | DN                | DN                 | DN                | DP                | DE          |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EB       | EB       |
| 56,000 pF         563           68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | М                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    | BB                                                                        |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   | CF                       |                           | DN                             |                   | DN                | DN                 | DN                | DP                | DE          |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EC                   | EB       | EB       |
| 68,000 pF         683           82,000 pF         823           0.10 µF         104           0.12 µF         124           0.15 µF         154           0.18 µF         184           0.22 µF         224           0.27 µF         274           0.33 µF         334           0.39 µF         394           0.47 µF         474           0.56 µF         564           0.68 µF         684           0.82 µF         824           1.0 µF         105           1.2 µF         125           1.5 µF         155           1.8 µF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | J                                                                                                   | K<br>K                                                                                                                              | M<br>M                                                                                                 | BB<br>BB                                                                   | BB<br>BB                                                                                    | BB<br>BB                                                                              | BB                                                                        |                                                                       | CF<br>CF                              | CF<br>CF                        | CF<br>CF                        | CF<br>CF                   | CF<br>CF             | CF                       |                           | DN<br>DP                       | DN<br>DP          | DN<br>DP          | DN<br>DP           | DN<br>DP          | DE<br>DE          | DG<br>DG    |          | EB<br>EB             | EB<br>EB                                     | EB<br>EB            | EB<br>EB            | EB<br>EB            | EC<br>EB             | ED<br>ED | ED<br>ED |
| 82,000 pF         823           0.10 μF         104           0.12 μF         124           0.15 μF         154           0.18 μF         184           0.22 μF         224           0.27 μF         274           0.33 μF         334           0.39 μF         394           0.47 μF         474           0.56 μF         564           0.82 μF         824           1.0 μF         105           1.2 μF         125           1.5 μF         155           1.8 μF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | M                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    |                                                                           |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   |                          |                           | DP                             | DP                | DP                | DP                 | DP                | DE                | DG          |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | ED       |
| 0.12 μF         124           0.15 μF         154           0.18 μF         184           0.22 μF         224           0.33 μF         334           0.39 μF         394           0.47 μF         474           0.56 μF         564           0.68 μF         684           0.82 μF         824           1.0 μF         105           1.2 μF         125           1.5 μF         155           1.8 μF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              | Ĵ                                                                                                   | ĸ                                                                                                                                   | М                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    |                                                                           |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   |                          |                           | DP                             | DP                | DP                | DP                 | DP                | DE                |             |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   |          | ED       |
| 0.15 μF         154           0.18 μF         184           0.22 μF         224           0.27 μF         274           0.33 μF         334           0.39 μF         394           0.47 μF         474           0.56 μF         564           0.68 μF         684           0.82 μF         824           1.0 μF         105           1.2 μF         125           1.5 μF         155           1.8 μF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104                                                                                                                                          | J                                                                                                   | К                                                                                                                                   | М                                                                                                      | BB                                                                         | BB                                                                                          | BB                                                                                    |                                                                           |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   |                          |                           | DN                             | DN                | DN                | DN                 | DN                | DE                |             |          | EB                   | EB                                           | EB                  | EB                  | EB                  | EB                   | EM       | EM       |
| 0.18 µF 184<br>0.22 µF 224<br>0.27 µF 274<br>0.33 µF 334<br>0.39 µF 394<br>0.47 µF 474<br>0.56 µF 564<br>0.68 µF 684<br>0.82 µF 824<br>1.0 µF 105<br>1.2 µF 125<br>1.5 µF 155<br>1.8 µF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | М                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       | CF                                    | CF                              | CF                              | CF                         | CF                   |                          |                           | DN                             |                   | DN                | DN                 | DP                | DG                |             |          | EC                   | EC                                           | EC                  | EC                  | EC                  | EC                   | EG       |          |
| 0.22 µF 224<br>0.27 µF 274<br>0.33 µF 334<br>0.39 µF 394<br>0.47 µF 474<br>0.56 µF 564<br>0.68 µF 684<br>0.82 µF 824<br>1.0 µF 105<br>1.2 µF 125<br>1.5 µF 155<br>1.8 µF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       | CF                                    | CF<br>CF                        | CF<br>CF                        | CF<br>CF                   | CF                   | -                        |                           | DN                             |                   | DN<br>DN          | DN<br>DN           |                   | DG<br>DG          |             |          | EC                   | EC<br>EC                                     | EC<br>EC            | EC<br>EC            | EC                  | EC<br>EC             | EG       |          |
| 0.27 μF         274           0.33 μF         334           0.39 μF         394           0.47 μF         474           0.56 μF         564           0.68 μF         684           0.82 μF         824           1.0 μF         105           1.2 μF         125           1.5 μF         155           1.8 μF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              | J                                                                                                   | K<br>K                                                                                                                              | M<br>M                                                                                                 |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       | CF<br>CF                              | CF                              | CF                              | CF                         |                      |                          |                           | DN<br>DN                       |                   | DN                | DN                 | DP<br>DP          | DG                |             |          | EC<br>EC             | EC                                           | EC                  | EC                  | EC<br>EC            | EC                   |          |          |
| 0.33 µF 334<br>0.39 µF 394<br>0.47 µF 474<br>0.56 µF 564<br>0.68 µF 684<br>0.82 µF 824<br>1.0 µF 105<br>1.2 µF 125<br>1.5 µF 155<br>1.8 µF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              | Ĵ                                                                                                   | K                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       | CF                                    | CF                              | CF                              | 01                         |                      |                          |                           | DP                             | DP                | DP                | DP                 | DP                |                   |             |          | EB                   | EB                                           | EB                  | EB                  | EC                  | EM                   |          |          |
| 0.47 μF         474           0.56 μF         564           0.68 μF         684           0.82 μF         824           1.0 μF         105           1.2 μF         125           1.5 μF         155           1.8 μF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 334                                                                                                                                          | J                                                                                                   | К                                                                                                                                   | М                                                                                                      | 1                                                                          |                                                                                             |                                                                                       |                                                                           |                                                                       | CF                                    | CF                              | CF                              |                            |                      |                          |                           | DP                             | DP                | DP                | DP                 | DP                |                   |             |          | EB                   | EB                                           | EB                  | EB                  | EC                  | EG                   |          |          |
| 0.56 μF 564<br>0.68 μF 684<br>0.82 μF 824<br>1.0 μF 105<br>1.2 μF 125<br>1.5 μF 155<br>1.8 μF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | М                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       | CF                                    | CF                              | CF                              |                            |                      |                          |                           | DG                             | _                 | DG                | DG                 | DE                |                   |             |          | EB                   | EB                                           | EB                  | EB                  | EC                  | EG                   |          |          |
| 0.68 μF 684<br>0.82 μF 824<br>1.0 μF 105<br>1.2 μF 125<br>1.5 μF 155<br>1.8 μF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       | CF                                    | CF                              | CF                              |                            |                      |                          |                           | DP                             | DP                | DP<br>DP          | DP                 | DE                |                   |             |          | EC                   | EC<br>ED                                     | EC                  | EC                  | EC<br>EC            | EG                   |          |          |
| 0.82 μF 824<br>1.0 μF 105<br>1.2 μF 125<br>1.5 μF 155<br>1.8 μF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | J                                                                                                   | K<br>K                                                                                                                              | M<br>M                                                                                                 |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           | DP<br>DP                       | DP<br>DP          | DP                | -                  | DH<br>DH          |                   |             |          | ED<br>EE             | ED                                           | ED<br>EE            | ED<br>EE            | ED                  |                      |          |          |
| 1.0 μF         105           1.2 μF         125           1.5 μF         155           1.8 μF         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              | J                                                                                                   | ĸ                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           | DP                             | DP                | DP                | DG                 |                   |                   |             |          | EF                   | EF                                           | EF                  | EF                  | ED                  |                      |          |          |
| 1.5 μF 155<br>1.8 μF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                          | J                                                                                                   | К                                                                                                                                   | М                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           | DP                             |                   |                   | DG                 |                   |                   |             |          | EF                   | EF                                           | EF                  |                     | ED                  |                      |          |          |
| 1.8 μF 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | М                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           | DE                             |                   |                   |                    |                   |                   |             |          | ED                   |                                              | ED                  |                     | EH                  |                      |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           | DG                             |                   |                   |                    |                   |                   |             |          | EF                   |                                              |                     |                     | EH                  |                      |          |          |
| 2.2 μι 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              | J                                                                                                   | K<br>K                                                                                                                              | M<br>M                                                                                                 |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           |                                | DG<br>DG          |                   |                    |                   |                   |             |          | ED<br>ED             |                                              |                     | EF<br>EF            |                     |                      |          |          |
| 2.7 μF 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -20                                                                                                                                          | J                                                                                                   | K                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           | 50                             | 50                | 50                |                    |                   |                   |             |          | EN                   |                                              | EN                  |                     |                     |                      |          |          |
| 3.3 µF 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              | J                                                                                                   | K                                                                                                                                   | M                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           |                                |                   |                   |                    |                   |                   |             |          | ED                   | ED                                           | ED                  | EH                  |                     |                      |          |          |
| 3.9 µF 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 275                                                                                                                                          | J                                                                                                   | К                                                                                                                                   | М                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           |                                |                   |                   |                    |                   |                   |             |          | EF                   |                                              | EF                  |                     |                     |                      |          |          |
| 4.7 μF 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 275<br>335<br>395                                                                                                                            | J                                                                                                   | K                                                                                                                                   | М                                                                                                      |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           |                                |                   |                   |                    |                   |                   |             |          | EF                   |                                              |                     | EH                  |                     |                      |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 275<br>335<br>395<br>475                                                                                                                     | J                                                                                                   | K                                                                                                                                   | M<br>M                                                                                                 |                                                                            |                                                                                             |                                                                                       |                                                                           |                                                                       |                                       |                                 |                                 |                            |                      |                          |                           |                                |                   |                   |                    |                   |                   |             |          | EH<br>EH             | EH<br>EH                                     |                     |                     |                     |                      |          |          |
| 000<br>0.0 µi 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 275<br>335<br>395<br>475<br>565                                                                                                              | Rat                                                                                                 | ed Volt                                                                                                                             | age                                                                                                    | 6.3                                                                        | 10                                                                                          | 16                                                                                    | 25                                                                        | 50                                                                    | 6.3                                   | 10                              | 16                              | 25                         | 50                   | 100                      | 200                       | 6.3                            | 10                | 16                | 25                 | 50                | 100               | 200         | 250      | 6.3                  | 10                                           | 16                  | 25                  | 50                  | 100                  | 200      | 250      |
| Capacitance Cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 275<br>335<br>395<br>475                                                                                                                     |                                                                                                     | (VDC)<br>tage C                                                                                                                     |                                                                                                        | 9                                                                          | 8                                                                                           | 4                                                                                     | 3                                                                         | 5                                                                     | 9                                     | 8                               | 4                               | 3                          | 5                    | -<br>1                   | ×<br>2                    | و<br>9                         | 8                 | 4                 | 3                  | 5                 | -<br>1            | ₹<br>2      | A        | 9                    | 8                                            | 4                   | 3                   | 5                   | -<br>1               | ~<br>2   | Ä        |
| Capacitance Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 275<br>335<br>395<br>475<br>565<br>685<br><b>Cap</b> -                                                                                       | V~!                                                                                                 | ise Siz<br>Series                                                                                                                   | ze/                                                                                                    | '                                                                          |                                                                                             | 4<br>)402                                                                             |                                                                           | J                                                                     | 7                                     | U                               |                                 | 3<br>603                   |                      | •                        | 4                         | 7                              | 0                 |                   | 3<br>C08(          |                   | •                 | 2           | ^        | 7                    | U                                            |                     | 3<br>C12            |                     | <b>'</b>             | 4        |          |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82)



## Table 1A – Capacitance Range/Selection Waterfall (0402 – 1206 Case Sizes) cont.

|                 |                        | Case Size/<br>Series     |     | CO | 40   | 2C |     |     |    | CO | 60:  | 3C            |              |                |                 |              | C             | :08         | 05(            | C            |              |         |          |          | C  | :12( | 060 | ;   |     |     |
|-----------------|------------------------|--------------------------|-----|----|------|----|-----|-----|----|----|------|---------------|--------------|----------------|-----------------|--------------|---------------|-------------|----------------|--------------|--------------|---------|----------|----------|----|------|-----|-----|-----|-----|
| Capacitance     | Сар                    | Voltage Code             | 9   | 8  | 4    | 3  | 5   | 9   | 8  | 4  | 3    | 5             | 1            | 2              | 9               | 8            | 4             | 3           | 5              | 1            | 2            | A       | 9        | 8        | 4  | 3    | 5   | 1   | 2   | Α   |
| Code            | Rated Voltage<br>(VDC) | 6.3                      | 10  | 16 | 25   | 50 | 6.3 | 10  | 16 | 25 | 50   | 100           | 200          | 6.3            | 10              | 16           | 25            | 50          | 100            | 200          | 250          | 6.3     | 10       | 16       | 25 | 50   | 100 | 200 | 250 |     |
|                 |                        | Capacitance<br>Tolerance |     |    |      |    |     |     |    |    | Pro  | oduc<br>See 1 | t Av<br>able | aila<br>e 2 fe | bility<br>or Ch | i and<br>and | l Chi<br>hick | p Th<br>nes | nickr<br>s Dir | ness<br>nens | Cod<br>sions | es<br>S |          |          |    |      |     |     |     |     |
| 8.2 μF<br>10 μF |                        | JKM<br>JKM               |     |    |      |    |     |     |    |    |      |               |              |                |                 |              |               |             |                |              |              |         | EH<br>EH | EH<br>EH |    |      |     |     |     |     |
|                 | Can                    | Rated Voltage<br>(VDC)   | 6.3 | 10 | 16   | 25 | 50  | 6.3 | 10 | 16 | 25   | 50            | 100          | 200            | 6.3             | 10           | 16            | 25          | 50             | 100          | 200          | 250     | 6.3      | 10       | 16 | 25   | 50  | 100 | 200 | 250 |
| Capacitance     | Code                   | Voltage Code             | 9   | 8  | 4    | 3  | 5   | 9   | 8  | 4  | 3    | 5             | 1            | 2              | 9               | 8            | 4             | 3           | 5              | 1            | 2            | Α       | 9        | 8        | 4  | 3    | 5   | 1   | 2   | Α   |
|                 | Code Vo                | Case Size/<br>Series     |     | C  | 0402 | 20 |     |     |    | C  | 0603 | C             |              |                |                 |              |               | C08         | 05C            |              |              |         |          |          |    | C12( | 06C |     |     |     |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82)

#### Table 1B – Capacitance Range/Selection Waterfall (1210 – 1808 Case Sizes)

|                |             |          | e Siz<br>eries   | e/     |     |    |    | C12      | 10C              |                     |                       |                   | С                 | 1805              | С         | С  | 1808   | С   |
|----------------|-------------|----------|------------------|--------|-----|----|----|----------|------------------|---------------------|-----------------------|-------------------|-------------------|-------------------|-----------|----|--------|-----|
| Consoitoneo    | Сар         | Volt     | age Cod          | e      | 9   | 8  | 4  | 3        | 5                | 1                   | 2                     | A                 | 5                 | 1                 | 2         | 5  | 1      | 2   |
| Capacitance    | Code        | Rated V  | /oltage (        | VDC)   | 6.3 | 10 | 16 | 25       | 50               | 100                 | 200                   | 250               | 50                | 100               | 200       | 50 | 100    | 200 |
|                |             | Capacita | nce Tol          | erance |     |    |    | Pro<br>S | duct A<br>ee Tab | vailabi<br>le 2 foi | ility and<br>r Chip 1 | d Chip<br>Thickne | Thickn<br>ess Din | ess Co<br>nensior | des<br>1s |    |        |     |
| 10 - 91 pF*    | 100 - 910*  | J        | K                | М      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   |                   |                   |           |    |        |     |
| 100 -180 pF**  | 101 - 181** | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   |                   |                   |           |    |        |     |
| 220 pF         | 221         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                | NC        |    |        |     |
| 270 pF         | 271         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                | NC        |    |        |     |
| 330 pF         | 331         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                | NC        | LF | LF     | LF  |
| 390 pF         | 391         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                | NC        | LF | LF     | LF  |
| 470 - 820 pF** | 471 - 821** | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                | NC        | LF | LF     | LF  |
| 1,000 pF       | 102         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                | NC        | LF | LF     | LF  |
| 1,200 pF       | 122         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    |                   | NC                | NC                |           | LF | LF     | LF  |
| 1,500 pF       | 152         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FE                    |                   | NC                | NC                |           | LF | LF     | LF  |
| 1,800 pF       | 182         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FE                    |                   | NC                | NC                |           | LF | LF     | LF  |
| 2,200 pF       | 222         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NC                | NC                |           | LF | LF     | LF  |
| 2,700 pF       | 272         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                |                   |           | LF | LF     | LF  |
| 3,300 pF       | 332         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                |                   |           | LF | LF     |     |
| 3,900 pF       | 392         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                |                   |           | LF | LF     |     |
| 4,700 pF       | 472         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 5,600 pF       | 562         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 6,800 pF       | 682         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 8,200 pF       | 822         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 10,000 pF      | 103         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 12,000 pF      | 123         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 15,000 pF      | 153         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
| 18,000 pF      | 183         | J        | K                | M      | FB  | FB | FB | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD     |     |
|                |             | Rated V  | /oltage (        | VDC)   | 6.3 | 9  | 16 | 25       | 50               | 100                 | 200                   | 250               | 50                | 100               | 200       | 50 | 100    | 200 |
| Capacitance    | Cap<br>Code | Volt     | age Cod          | e      | 9   | 8  | 4  | 3        | 5                | 1                   | 2                     | A                 | 5                 | 1                 | 2         | 5  | 1      | 2   |
|                |             | Case     | Case Size/Series |        |     |    |    | C12      | 10C              |                     |                       |                   |                   | C1805(            | )         |    | C18080 | 0   |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82)



## Table 1B – Capacitance Range/Selection Waterfall (1210 – 2220 Case Sizes) cont.

|                  |             |          | e Siz<br>eries                       | e/     |          |          |          | C12      | 10C              |                     |                       |                   | C                 | 1805              | С         | C  | :1808 | C   |
|------------------|-------------|----------|--------------------------------------|--------|----------|----------|----------|----------|------------------|---------------------|-----------------------|-------------------|-------------------|-------------------|-----------|----|-------|-----|
| Capacitance      | Сар         | Volt     | age Cod                              | e      | 9        | 8        | 4        | 3        | 5                | 1                   | 2                     | A                 | 5                 | 1                 | 2         | 5  | 1     | 2   |
| Capacitance      | Code        | Rated V  | oltage (                             | VDC)   | 6.3      | 10       | 16       | 25       | 50               | 100                 | 200                   | 250               | 50                | 100               | 200       | 50 | 100   | 200 |
|                  |             | Capacita | nce Tol                              | erance |          |          |          | Pro<br>S | duct A<br>ee Tab | vailabi<br>le 2 foi | ility and<br>r Chip 1 | d Chip<br>Thickne | Thickn<br>ess Dim | ess Co<br>iensioi | des<br>1s |    |       |     |
| 22,000 pF        | 223         | J        | K                                    | М      | FB       | FB       | FB       | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD    |     |
| 27,000 pF        | 273         | J        | K                                    | М      | FB       | FB       | FB       | FB       | FB               | FB                  | FB                    | FB                | NA                | NA                |           | LD | LD    |     |
| 33,000 pF        | 333         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FB                  | FB                    | FB                | NA                |                   |           | LD | LD    |     |
| 39,000 pF        | 393         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FB                  | FB                    | FB                | NA                |                   |           | LD | LD    |     |
| 47,000 pF        | 473         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FB                  | FB                    | FB                | NA                |                   |           | LD | LD    |     |
| 56,000 pF        | 563         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FB                  | FC                    | FC                | NA                |                   |           | LD | LD    |     |
| 68,000 pF        | 683         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FB                  | FC                    | FC                | NA                |                   |           | LD |       |     |
| 82,000 pF        | 823         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FC                  | FF                    | FF                | NA                |                   |           | LD |       |     |
| 0.10 µF          | 104         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FD                  | FG                    | FG                | NA                |                   |           | LD |       |     |
| 0.12 µF          | 124         | J        | K                                    | M      | FB       | FB       | FB       | FB       | FB               | FD                  | FH                    | FH                |                   |                   |           | LD |       |     |
| 0.15 µF          | 154         | J        | K                                    | M      | FC       | FC       | FC       | FC       | FC               | FD                  | FM                    | FM                |                   |                   |           | LD |       |     |
| 0.18 µF          | 184         | J        | K                                    | M      | FC       | FC       | FC       | FC       | FC               | FD                  | FK                    | FK                |                   |                   |           | LD |       |     |
| 0.22 µF          | 224         | J        | K                                    | M      | FC       | FC       | FC       | FC       | FC               | FD                  | FK                    | FK                |                   |                   |           |    |       |     |
| 0.27 µF          | 274         | J        | K                                    | M      | FC       | FC       | FC       | FC       | FC               | FD                  |                       |                   |                   |                   |           |    |       |     |
| 0.33 µF          | 334         | J        | K                                    | M      | FD       | FD       | FD       | FD       | FD               | FD                  |                       |                   |                   |                   |           |    |       |     |
| 0.39 µF          | 394         | J        | K                                    | M      | FD       | FD       | FD       | FD       | FD               | FD                  |                       |                   |                   |                   |           |    |       |     |
| 0.47 µF          | 474         | J        | K                                    | M      | FD       | FD       | FD       | FD       | FD               | FD                  |                       |                   |                   |                   |           |    |       |     |
| 0.56 µF          | 564         | J        | K                                    | M      | FD       | FD       | FD       | FD       | FD               | FF                  |                       |                   |                   |                   |           |    |       |     |
| 0.68 µF          | 684<br>824  | J        | K                                    | M      | FD<br>FF | FD<br>FF | FD<br>FF | FD<br>FF | FD<br>FF         | FG                  |                       |                   |                   |                   |           |    |       |     |
| 0.82 µF          |             | J        | K                                    | M      |          | FH       | FH       | FH       | FH               | FL<br>FM            |                       |                   |                   |                   |           |    |       |     |
| 1.0 μF           | 105<br>125  | J        | K                                    | M      | FH       |          |          |          |                  | FM                  |                       |                   |                   |                   |           |    |       |     |
| 1.2 µF           | 125         | -        | K                                    | M      | FH<br>FH | FH<br>FH | FH<br>FH | FH<br>FH | FG<br>FG         |                     |                       |                   |                   |                   |           |    |       |     |
| 1.5 μF           |             | J        | K                                    | M      |          |          |          |          | -                |                     |                       |                   |                   |                   |           |    |       |     |
| 1.8 µF           | 185<br>225  | J        | K<br>K                               | M      | FH<br>FJ | FH<br>FJ | FH<br>FJ | FH<br>FJ | FG<br>FG         |                     |                       |                   |                   |                   |           |    |       |     |
| 2.2 µF           | 225         | J        | K                                    | M      | FJ       | FJ       | FE       | FG       | FG               |                     |                       |                   |                   |                   |           |    |       |     |
| 2.7 μF<br>3.3 μF | 335         | J        | K                                    | M      | FE       | FE       | FE       | FG       | FM               |                     |                       |                   |                   |                   |           |    |       |     |
| 3.3 μF<br>3.9 μF | 335         | J        | K                                    | M      | FG       | FG       | FG       | FM       | FM               |                     |                       |                   |                   |                   |           |    |       |     |
| 3.9 μF<br>4.7 μF | 475         | J        | K                                    | M      | FC       | FC       | FC       | FG       | FK               |                     |                       |                   |                   |                   |           |    |       |     |
| 4.7 μF<br>5.6 μF | 475<br>565  | J        | K                                    | M      | FF       | FC       | FC       | FG       | 13               |                     |                       |                   |                   |                   |           |    |       |     |
| 5.6 μF<br>6.8 μF | 685         | J        | K                                    | M      | FG       | FG       | FG       | FM       |                  |                     |                       |                   |                   |                   |           |    |       |     |
| 8.2 μF           | 825         | J        | K                                    | M      | FH       | FH       | FH       | FK       |                  |                     |                       |                   |                   |                   |           |    |       |     |
| ο.2 μr<br>10 μF  | 106         | J        | K                                    | M      | FH       | FH       | FH       | FS       |                  |                     |                       |                   |                   |                   |           |    |       |     |
| 10 μF<br>22 μF   | 226         | J        | K                                    | M      | FS       | FS       |          | 13       |                  |                     |                       |                   |                   |                   |           |    |       |     |
| 22 µi            | 220         |          | I N                                  | 191    |          |          |          |          |                  |                     |                       |                   | <u> </u>          |                   |           |    |       |     |
|                  |             | Rated V  | oltage (                             | VDC)   | 6.3      | 10       | 16       | 25       | 50               | 100                 | 200                   | 250               | 50                | 100               | 200       | 50 | 100   | 200 |
| Capacitance      | Cap<br>Code | Volt     | age Cod                              | e      | 9        | 8        | 4        | 3        | 5                | 1                   | 2                     | A                 | 5                 | 1                 | 2         | 5  | 1     | 2   |
|                  |             | Case S   | Voltage Code 9 8<br>Case Size/Series |        |          | C12      | 10C      |          |                  |                     |                       | C18050            | ;                 |                   | C1808     | C  |       |     |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82)

Downloaded From Oneyac.com



# Table 1C - Capacitance Range/Selection Waterfall (1812 - 2220 Case Sizes)

|                      |             |          | se Siz<br>eries |        |          | C        | :1812    | С        |     |    | C18 | 25C |     |          | C  | 2220  | C   |     |
|----------------------|-------------|----------|-----------------|--------|----------|----------|----------|----------|-----|----|-----|-----|-----|----------|----|-------|-----|-----|
| Capacitance          | Сар         | Volt     | tage Cod        | le     | 3        | 5        | 1        | 2        | A   | 5  | 1   | 2   | A   | 3        | 5  | 1     | 2   | A   |
| Capacitatice         | Code        | Rated V  | /oltage (       | VDC)   | 25       | 50       | 100      | 200      | 250 | 50 | 100 | 200 | 250 | 25       | 50 | 100   | 200 | 250 |
|                      |             | Capacita | nce Tol         | erance |          |          |          |          |     | •  |     |     |     | •        |    |       |     |     |
| 470 - 820 pF**       | 471 - 821** | J        | K               | М      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 1,000 pF             | 102         | J        | K               | M      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 1,200 pF             | 122         | J        | K               | M      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 1,500 pF             | 152         | J        | K               | M      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 1,800 pF             | 182         | J        | K               | M      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 2,200 pF             | 222         | J        | K               | M      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 2,700 pF             | 272         | J        | K               | M      | GB       | GB       | GB       | GB       |     |    |     |     |     |          |    |       |     |     |
| 3,300 pF             | 332         | J        | K               | M      | GB       | GB       | GB<br>GB | GB<br>GB |     |    |     |     |     |          |    |       |     |     |
| 3,900 pF             | 392         |          | K               | M      | GB       | GB       |          | GD       |     |    |     |     |     |          |    |       |     |     |
| 4,700 pF<br>5,600 pF | 472<br>562  | J        | K               | M      | GB<br>GB | GB<br>GB | GB<br>GB | GH       |     |    |     |     |     |          |    |       |     |     |
| 6,800 pF             | 682         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  |    |     |     |     | JE       | JE | JE    |     |     |
| 8,200 pF             | 822         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  |    |     |     |     | JE       | JE | JE    |     |     |
| 10,000 pF            | 103         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  |    |     |     |     | JE       | JE | JE    |     |     |
| 12,000 pF            | 123         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  |    |     |     |     | JE       | JE | JE    |     |     |
| 15,000 pF            | 153         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  |    |     |     |     | JE       | JE | JE    |     |     |
| 18,000 pF            | 183         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  |    |     |     |     | JE       | JE | JE    |     |     |
| 22,000 pF            | 223         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  | НВ | НВ  | НВ  | НВ  | JE       | JE | JE    |     |     |
| 27,000 pF            | 273         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  | НВ | HB  | HB  | HB  | JE       | JE | JE    |     |     |
| 33,000 pF            | 333         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  | НВ | НВ  | HB  | HB  | JB       | JB | JB    |     |     |
| 39,000 pF            | 393         | , J      | K               | M      | GB       | GB       | GB       | GB       | GB  | HB | HB  | HB  | HB  | JB       | JB | JB    |     |     |
| 47,000 pF            | 473         | Ĵ        | K               | M      | GB       | GB       | GB       | GB       | GB  | НВ | HB  | HB  | HB  | JB       | JB | JB    |     |     |
| 56,000 pF            | 563         | Ĵ        | K               | M      | GB       | GB       | GB       | GB       | GB  | НВ | HB  | HB  | HB  | JB       | JB | JB    |     |     |
| 68,000 pF            | 683         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  | HB | HB  | HB  | HB  | JB       | JB | JB    |     |     |
| 82,000 pF            | 823         | J        | K               | M      | GB       | GB       | GB       | GB       | GB  | HB | HB  | HB  | HB  | JB       | JB | JC    | JC  | JC  |
| 0.10 µF              | 104         | J        | К               | М      | GB       | GB       | GB       | GB       | GB  | НВ | НВ  | НВ  | HB  | JB       | JB | JC    | JC  | JC  |
| 0.12 µF              | 124         | J        | К               | м      | GB       | GB       | GB       | GB       | GB  | НВ | НВ  | НВ  | НВ  | JB       | JB | JC    | JC  | JC  |
| 0.15 µF              | 154         | J        | К               | м      | GB       | GB       | GB       | GE       | GE  | НВ | НВ  | НВ  | НВ  | JB       | JB | JC    | JC  | JC  |
| 0.18 µF              | 184         | J        | к               | м      | GB       | GB       | GB       | GG       | GG  | НВ | НВ  | НВ  | НВ  | JB       | JB | JC    | JC  | JC  |
| 0.22 µF              | 224         | J        | К               | м      | GB       | GB       | GB       | GG       | GG  | НВ | HB  | HB  | НВ  | JB       | JB | JC    | JC  | JC  |
| 0.27 µF              | 274         | J        | K               | М      | GB       | GB       | GG       | GG       | GG  | HB | HB  | HB  | HB  | JC       | JC | JC    | JC  | JC  |
| 0.33 μF              | 334         | J        | К               | М      | GB       | GB       | GG       | GG       | GG  | HB | HB  | HB  | HB  | JC       | JC | JC    | JC  | JC  |
| 0.39 μF              | 394         | J        | К               | М      | GB       | GB       | GG       | GG       | GG  | HD | HD  | HD  | HD  | JC       | JC | JC    | JC  | JC  |
| 0.47 µF              | 474         | J        | K               | М      | GB       | GB       | GG       | GJ       | GJ  | HD | HD  | HD  | HD  | JC       | JC | JC    | JC  | JC  |
| 0.56 µF              | 564         | J        | K               | М      | GC       | GC       | GG       |          |     | HD | HD  | HD  | HD  | JC       | JD | JD    | JD  | JD  |
| 0.68 µF              | 684         | J        | К               | M      | GC       | GC       | GG       |          |     | HD | HD  | HD  | HD  | JC       | JD | JD    | JD  | JD  |
| 0.82 µF              | 824         | J        | K               | M      | GE       | GE       | GG       |          |     | HF | HF  | HF  | HF  | JC       | JF | JF    | JF  | JF  |
| 1.0 µF               | 105         | J        | K               | M      | GE       | GE       | GG       |          |     | HF | HF  | HF  | HF  | JC       | JF | JF    | JF  | JF  |
| 1.2 µF               | 125         | J        | K               | M      |          |          |          |          |     |    |     |     |     | JC       | JC |       |     |     |
| 1.5 µF               | 155         | J        | K               | M      |          |          |          |          |     |    |     |     |     | JC       | JC |       |     |     |
| 1.8 µF               | 185         | J        | K               | M      |          |          |          |          |     |    |     |     |     | JD       | JD |       |     |     |
| 2.2 µF               | 225         | J        | K               | M      | GO       | GO       |          |          |     |    |     |     |     | JF       | JF |       |     |     |
| 3.9 μF               | 395         | J        | K               | M      | GK       | GK       |          |          |     |    |     |     |     |          |    |       |     |     |
| 4.7 μF               | 475         | J        | K               | M      | GK       | GK       |          |          |     |    |     |     |     | JF       | JF |       |     |     |
| 10 µF                | 106         | J        | K               | M      | GK       |          |          |          |     |    |     |     |     | JF       | JO |       |     |     |
| 15 μF<br>22 μF       | 156<br>226  | J        | K               | M      |          |          |          |          |     |    |     |     |     | 10<br>10 |    |       |     |     |
|                      |             | Rated V  | /oltage (       | VDC)   | 25       | 50       | 100      | 200      | 250 | 50 | 100 | 200 | 250 | 25       | 50 | 100   | 200 | 250 |
| Capacitance          | Cap<br>Code | Voli     | tage Cod        | le     | 3        | 5        | 1        | 2        | A   | 5  | 1   | 2   | A   | 3        | 5  | 1     | 2   | A   |
|                      |             | Case     | Size/Se         | ries   |          |          | C18120   | ;        |     |    | C18 | 25C |     |          |    | C2220 | C   |     |

\*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91) \*\*Capacitance range Includes E12 decade values only. (i.e., 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82)



## Table 2A - Chip Thickness/Tape & Reel Packaging Quantities

| Code         Siz           BB         04           CF         06           DN         08           DP         08 | 02 03 | <b>Range (mm)</b><br>0.50 ± 0.05   | 7" Reel | 13" Reel             | 7" Reel        |                  |
|------------------------------------------------------------------------------------------------------------------|-------|------------------------------------|---------|----------------------|----------------|------------------|
| CF 06<br>DN 08<br>DP 08                                                                                          | 03    | 0.50 ± 0.05                        |         | 7" Reel 13" Reel     |                | 13" Reel         |
| DN 08<br>DP 08                                                                                                   |       |                                    | 10,000  | 50,000               | 0              | 0                |
| DP 08                                                                                                            | 05    | 0.80 ± 0.07                        | 4,000   | 15,000               | 0              | 0                |
|                                                                                                                  |       | 0.78 ± 0.10                        | 4,000   | 15,000               | 0              | 0                |
|                                                                                                                  |       | 0.90 ± 0.10                        | 4,000   | 15,000               | 0              | 0                |
|                                                                                                                  | 05    | 1.00 ± 0.10                        | 0       | 0                    | 2,500          | 10,000           |
| DG 08                                                                                                            |       | 1.25 ± 0.15                        | 0       | 0                    | 2,500          | 10,000           |
| DH 08                                                                                                            |       | 1.25 ± 0.20                        | 0       | 0                    | 2,500          | 10,000           |
| EB 12                                                                                                            |       | 0.78 ± 0.10                        | 0       | 0                    | 4,000          | 10,000           |
| EC 12                                                                                                            |       | 0.90 ± 0.10                        | 0       | 0                    | 4,000          | 10,000           |
| EN 12                                                                                                            |       | 0.95 ± 0.10                        | 0       | 0                    | 4,000          | 10,000           |
| ED 12                                                                                                            |       | 1.00 ± 0.10                        | 0       | 0                    | 2,500          | 10,000           |
| EE 12                                                                                                            |       | 1.10 ± 0.10                        | 0       | 0                    | 2,500          | 10,000           |
| EF 12                                                                                                            |       | 1.20 ± 0.15                        | 0       | 0                    | 2,500          | 10,000           |
| EM 12                                                                                                            |       | 1.25 ± 0.15                        | 0       | 0                    | 2,500          | 10,000           |
| EG 12                                                                                                            |       | 1.60 ± 0.15                        | 0       | 0                    | 2,000          | 8,000            |
| EH 12<br>FB 12                                                                                                   |       | $1.60 \pm 0.20$                    | 0       | 0                    | 2,000<br>4,000 | 8,000            |
| FB 12<br>FC 12                                                                                                   |       | 0.78 ± 0.10<br>0.90 ± 0.10         | 0<br>0  | 0<br>0               | 4,000<br>4,000 | 10,000<br>10,000 |
| FD 12                                                                                                            |       | 0.90 ± 0.10<br>0.95 ± 0.10         | 0       | 0                    | 4,000<br>4,000 | 10,000           |
| FD 12<br>FE 12                                                                                                   |       | 0.95 ± 0.10<br>1.00 ± 0.10         | 0       | 0                    | 4,000<br>2,500 | 10,000           |
| FF 12                                                                                                            |       | 1.10 ± 0.10                        | 0       | 0                    | 2,500          | 10,000           |
| FG 12                                                                                                            |       | $1.10 \pm 0.10$<br>$1.25 \pm 0.15$ | 0       | 0                    | 2,500          | 10,000           |
| FL 12                                                                                                            |       | 1.40 ± 0.15                        | 0       | 0                    | 2,000          | 8,000            |
| FH 12                                                                                                            |       | 1.55 ± 0.15                        | 0       | 0                    | 2,000          | 8,000            |
| FM 12                                                                                                            |       | 1.70 ± 0.20                        | 0       | 0<br>0               | 2,000          | 8,000            |
| FJ 12                                                                                                            |       | 1.85 ± 0.20                        | 0       | 0                    | 2,000          | 8,000            |
| FK 12                                                                                                            |       | 2.10 ± 0.20                        | 0       | 0                    | 2,000          | 8,000            |
| FS 12                                                                                                            |       | 2.50 ± 0.30                        | 0       | 0                    | 1,000          | 4,000            |
| NA 18                                                                                                            | 05    | 0.90 ± 0.10                        | 0       | 0                    | 4,000          | 10,000           |
| NC 18                                                                                                            | 05    | 1.00 ± 0.15                        | 0       | 0                    | 4,000          | 10,000           |
| LD 18                                                                                                            |       | 0.90 ± 0.10                        | 0       | 0                    | 2,500          | 10,000           |
| LF 18                                                                                                            |       | 1.00 ± 0.15                        | 0       | 0                    | 2,500          | 10,000           |
| GB 18                                                                                                            |       | 1.00 ± 0.10                        | 0       | 0                    | 1,000          | 4,000            |
| GC 18                                                                                                            |       | 1.10 ± 0.10                        | 0       | 0                    | 1,000          | 4,000            |
| GD 18                                                                                                            |       | 1.25 ± 0.15                        | 0       | 0                    | 1,000          | 4,000            |
| GE 18                                                                                                            |       | 1.30 ± 0.10                        | 0       | 0                    | 1,000          | 4,000            |
| GH 18                                                                                                            |       | 1.40 ± 0.15                        | 0       | 0                    | 1,000          | 4,000            |
| GG 18                                                                                                            |       | 1.55 ± 0.10                        | 0       | 0                    | 1,000          | 4,000            |
| GK 18                                                                                                            |       | 1.60 ± 0.20                        | 0       | 0                    | 1,000          | 4,000            |
| GJ 18                                                                                                            |       | 1.70 ± 0.15                        | 0       | 0                    | 1,000          | 4,000            |
| GO 18<br>HB 18                                                                                                   |       | 2.50 ± 0.20<br>1.10 ± 0.15         | 0<br>0  | 0                    | 500<br>1,000   | 2,000<br>4,000   |
| HD 18                                                                                                            |       | $1.10 \pm 0.15$<br>$1.30 \pm 0.15$ | 0       | 0<br>0               | 1,000          | 4,000            |
| HF 18                                                                                                            |       | 1.50 ± 0.15<br>1.50 ± 0.15         | 0       | 0                    | 1,000          | 4,000            |
| JB 22                                                                                                            |       | 1.00 ± 0.15                        | 0       | 0                    | 1,000          | 4,000            |
| JC 22                                                                                                            |       | 1.10 ± 0.15                        | 0       | 0                    | 1,000          | 4,000            |
| JD 22                                                                                                            |       | 1.30 ± 0.15                        | 0<br>0  | 0                    | 1,000          | 4,000            |
| JE 22                                                                                                            |       | 1.40 ± 0.15                        | Ő       | 0<br>0               | 1,000          | 4,000            |
| JF 22                                                                                                            |       | 1.50 ± 0.15                        | 0       | 0                    | 1,000          | 4,000            |
| JO 22                                                                                                            |       | 2.40 ± 0.15                        | 0       | 0                    | 500            | 2,000            |
| Thickness Ca                                                                                                     | se    | Thickness ±                        | 7" Reel | 13" Reel             | 7" Reel        | 13" Reel         |
| Code Siz                                                                                                         |       | Range (mm)                         | Paper Q | uantity <sup>1</sup> | Plastic (      | Quantity         |

Package quantity based on finished chip thickness specifications. <sup>1</sup> If ordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com



## Table 2B – Bulk Packaging Quantities

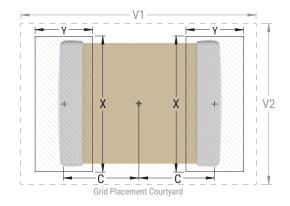
| Deeker   | ing Tuno               | Loose Pa               | ackaging               |
|----------|------------------------|------------------------|------------------------|
| Раскау   | ing Type               | Bulk Bag               | (default)              |
| Packagir | lg C-Spec <sup>1</sup> | N/                     | /A <sup>2</sup>        |
| Case     | e Size                 | Packaging Quantities ( | pieces/unit packaging) |
| EIA (in) | Metric (mm)            | Minimum                | Maximum                |
| 0402     | 1005                   |                        |                        |
| 0603     | 1608                   |                        |                        |
| 0805     | 2012                   |                        | 50,000                 |
| 1206     | 3216                   |                        |                        |
| 1210     | 3225                   | 1                      |                        |
| 1808     | 4520                   |                        |                        |
| 1812     | 4532                   |                        |                        |
| 1825     | 4564                   |                        | 20,000                 |
| 2220     | 5650                   | ]                      |                        |
| 2225     | 5664                   |                        |                        |

<sup>1</sup> The "Packaging C-Spec" is a 4 to 8 digit code which identifies the packaging type and/or product grade. When ordering, the proper code must be included in the 15th through 22nd character positions of the ordering code. See "Ordering Information" section of this document for further details. Commercial Grade product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. Contact KEMET if you require a bulk bag packaging option for Automotive Grade products.

<sup>2</sup> A packaging C-Spec (see note 1 above) is not required for "Bulk Bag" packaging (excluding Anti-Static Bulk Bag and Automotive Grade products). The 15th through 22nd character positions of the ordering code should be left blank. All product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging.



### Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351


| EIA<br>Size<br>Code | Metric<br>Size<br>Code | Density Level A:<br>Maximum (Most)<br>Land Protrusion (mm) |      |      | Density Level B:<br>Median (Nominal)<br>Land Protrusion (mm) |      |      | Density Level C:<br>Minimum (Least)<br>Land Protrusion (mm) |      |      |      |      |      |      |      |      |
|---------------------|------------------------|------------------------------------------------------------|------|------|--------------------------------------------------------------|------|------|-------------------------------------------------------------|------|------|------|------|------|------|------|------|
| Coue                | Coue                   | C                                                          | Y    | X    | V1                                                           | V2   | C    | Y                                                           | X    | V1   | V2   | C    | Y    | X    | V1   | V2   |
| 0402                | 1005                   | 0.50                                                       | 0.72 | 0.72 | 2.20                                                         | 1.20 | 0.45 | 0.62                                                        | 0.62 | 1.90 | 1.00 | 0.40 | 0.52 | 0.52 | 1.60 | 0.80 |
| 0603                | 1608                   | 0.90                                                       | 1.15 | 1.10 | 4.00                                                         | 2.10 | 0.80 | 0.95                                                        | 1.00 | 3.10 | 1.50 | 0.60 | 0.75 | 0.90 | 2.40 | 1.20 |
| 0805                | 2012                   | 1.00                                                       | 1.35 | 1.55 | 4.40                                                         | 2.60 | 0.90 | 1.15                                                        | 1.45 | 3.50 | 2.00 | 0.75 | 0.95 | 1.35 | 2.80 | 1.70 |
| 1206                | 3216                   | 1.60                                                       | 1.35 | 1.90 | 5.60                                                         | 2.90 | 1.50 | 1.15                                                        | 1.80 | 4.70 | 2.30 | 1.40 | 0.95 | 1.70 | 4.00 | 2.00 |
| 1210                | 3225                   | 1.60                                                       | 1.35 | 2.80 | 5.65                                                         | 3.80 | 1.50 | 1.15                                                        | 2.70 | 4.70 | 3.20 | 1.40 | 0.95 | 2.60 | 4.00 | 2.90 |
| 1210 <sup>1</sup>   | 3225                   | 1.50                                                       | 1.60 | 2.90 | 5.60                                                         | 3.90 | 1.40 | 1.40                                                        | 2.80 | 4.70 | 3.30 | 1.30 | 1.20 | 2.70 | 4.00 | 3.00 |
| 1812                | 4532                   | 2.15                                                       | 1.60 | 3.60 | 6.90                                                         | 4.60 | 2.05 | 1.40                                                        | 3.50 | 6.00 | 4.00 | 1.95 | 1.20 | 3.40 | 5.30 | 3.70 |
| 2220                | 5650                   | 2.75                                                       | 1.70 | 5.50 | 8.20                                                         | 6.50 | 2.65 | 1.50                                                        | 5.40 | 7.30 | 5.90 | 2.55 | 1.30 | 5.30 | 6.60 | 5.60 |

<sup>1</sup> Only for capacitance values  $\ge 22 \ \mu F$ 

**Density Level A:** For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

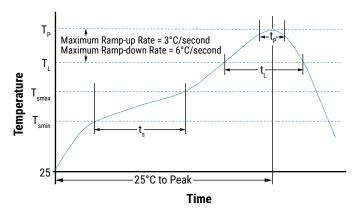
**Density Level B:** For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.



## **Soldering Process**

#### **Recommended Soldering Technique:**


- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

#### **Recommended Reflow Soldering Profile:**

KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

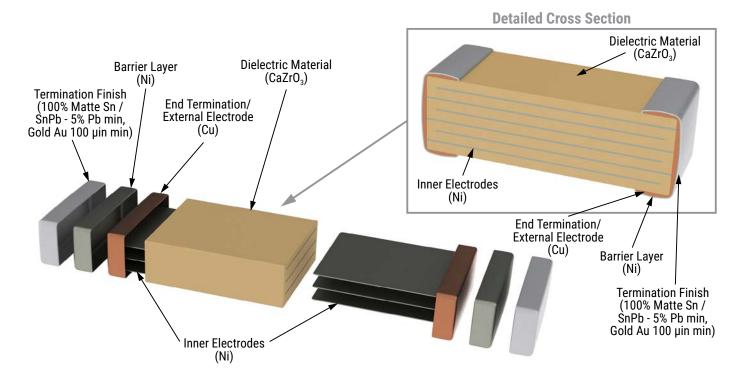
| Profile Feature                                                  | Terminati             | ion Finish            |
|------------------------------------------------------------------|-----------------------|-----------------------|
| Fromereature                                                     | SnPb                  | 100% Matte Sn         |
| Preheat/Soak                                                     |                       |                       |
| Temperature Minimum (T <sub>smin</sub> )                         | 100°C                 | 150°C                 |
| Temperature Maximum (T <sub>Smax</sub> )                         | 150°C                 | 200°C                 |
| Time ( $t_s$ ) from $T_{smin}$ to $T_{smax}$                     | 60 – 120 seconds      | 60 – 120 seconds      |
| Ramp-Up Rate (T <sub>L</sub> to T <sub>p</sub> )                 | 3°C/second<br>maximum | 3°C/second<br>maximum |
| Liquidous Temperature $(T_L)$                                    | 183°C                 | 217°C                 |
| Time Above Liquidous ( $t_L$ )                                   | 60 – 150 seconds      | 60 – 150 seconds      |
| Peak Temperature (T <sub>P</sub> )                               | 235°C                 | 260°C                 |
| Time Within 5°C of Maximum<br>Peak Temperature (t <sub>p</sub> ) | 20 seconds<br>maximum | 30 seconds<br>maximum |
| Ramp-Down Rate $(T_p to T_L)$                                    | 6°C/second<br>maximum | 6°C/second<br>maximum |
| Time 25°C to Peak<br>Temperature                                 | 6 minutes<br>maximum  | 8 minutes<br>maximum  |

Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.





## Table 4 – Performance & Reliability: Test Methods and Conditions


| Stress                 | Reference                         | Test or Inspection Method                                                                                                                                                                                                                                                                    |
|------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminal Strength      | JIS-C-6429                        | Appendix 1, Note: Force of 1.8 kg for 60 seconds.                                                                                                                                                                                                                                            |
| Board Flex             | JIS-C-6429                        | Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for COG. Flexible termination system – 3.0 mm (minimum).                                                                                                                                                |
|                        |                                   | Magnification 50 X. Conditions:                                                                                                                                                                                                                                                              |
| Solderability          | J-STD-002                         | a) Method B, 4 hours at 155°C, dry heat at 235°C                                                                                                                                                                                                                                             |
| Solderability          | J-31D-002                         | b) Method B at 215°C category 3                                                                                                                                                                                                                                                              |
|                        |                                   | c) Method D, category 3 at 260°C                                                                                                                                                                                                                                                             |
| Temperature Cycling    | JESD22 Method JA-104              | 1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/-4 hours after test conclusion.                                                                                                                                                                                                    |
| Biased Humidity        | MIL-STD-202<br>Method 103         | Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor.<br>Measurement at 24 hours +/-4 hours after test conclusion.<br>Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor.<br>Measurement at 24 hours +/-4 hours after test conclusion. |
| Moisture Resistance    | MIL-STD-202<br>Method 106         | t = 24 hours/cycle. Steps 7a and 7b not required.<br>Measurement at 24 hours +/-4 hours after test conclusion.                                                                                                                                                                               |
| Thermal Shock          | MIL-STD-202<br>Method 107         | -55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell time – 15 minutes. Air – Air.                                                                                                                                                                 |
| High Temperature Life  | MIL-STD-202<br>Method 108/EIA-198 | 1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.                                                                                                                                                                                                             |
| Storage Life           | MIL-STD-202<br>Method 108         | 150°C, 0 VDC for 1,000 hours.                                                                                                                                                                                                                                                                |
| Vibration              | MIL-STD-202<br>Method 204         | 5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz                                            |
| Mechanical Shock       | MIL-STD-202<br>Method 213         | Figure 1 of Method 213, Condition F.                                                                                                                                                                                                                                                         |
| Resistance to Solvents | MIL-STD-202<br>Method 215         | Add aqueous wash chemical, OKEM Clean or equivalent.                                                                                                                                                                                                                                         |

#### Storage & Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature-reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

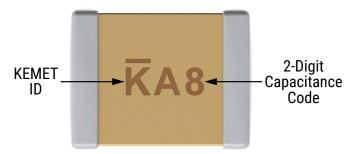


## Construction





## **Capacitor Marking (Optional)**


These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices, but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Laser marking option is not available on:

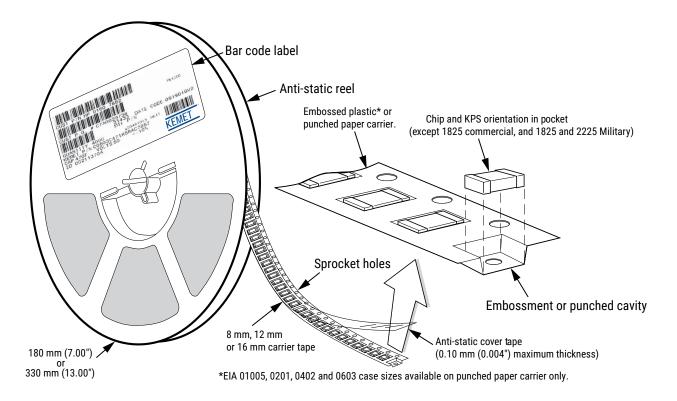
- COG, ultra stable X8R and Y5V dielectric devices.
- EIA 0402 case size devices.
- EIA 0603 case size devices with flexible termination option.
- KPS commercial and automotive grade stacked devices.
- X7R dielectric products in capacitance values outlined below.

| EIA Case Size | Metric Size Code | Capacitance |
|---------------|------------------|-------------|
| 0603          | 1608             | ≤ 170 pF    |
| 0805          | 2012             | ≤ 150 pF    |
| 1206          | 3216             | ≤ 910 pF    |
| 1210          | 3225             | ≤ 2,000 pF  |
| 1808          | 4520             | ≤ 3,900 pF  |
| 1812          | 4532             | ≤ 6,700 pF  |
| 1825          | 4564             | ≤ 0.018 µF  |
| 2220          | 5650             | ≤ 0.027 µF  |
| 2225          | 5664             | ≤ 0.033 µF  |

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100  $\mu$ F. Orientation of marking is vendor optional.






## Capacitor Marking (Optional) cont.

|            | Capacitance (pF) For Various Alpha/Numeral Identifiers |     |    |     |       |          |         |           |            |             |
|------------|--------------------------------------------------------|-----|----|-----|-------|----------|---------|-----------|------------|-------------|
| Alpha      |                                                        |     |    |     |       | Numera   | al      |           |            |             |
| Character  | 9                                                      | 0   | 1  | 2   | 3     | 4        | 5       | 6         | 7          | 8           |
| CildidClei |                                                        |     |    |     | Capa  | acitance | e (pF)  |           |            |             |
| А          | 0.10                                                   | 1.0 | 10 | 100 | 1,000 | 10,000   | 100,000 | 1,000,000 | 10,000,000 | 100,000,000 |
| В          | 0.11                                                   | 1.1 | 11 | 110 | 1,100 | 11,000   | 110,000 | 1,100,000 | 11,000,000 | 110,000,000 |
| С          | 0.12                                                   | 1.2 | 12 | 120 | 1,200 | 12,000   | 120,000 | 1,200,000 | 12,000,000 | 120,000,000 |
| D          | 0.13                                                   | 1.3 | 13 | 130 | 1,300 | 13,000   | 130,000 | 1,300,000 | 13,000,000 | 130,000,000 |
| E          | 0.15                                                   | 1.5 | 15 | 150 | 1,500 | 15,000   | 150,000 | 1,500,000 | 15,000,000 | 150,000,000 |
| F          | 0.16                                                   | 1.6 | 16 | 160 | 1,600 | 16,000   | 160,000 | 1,600,000 | 16,000,000 | 160,000,000 |
| G          | 0.18                                                   | 1.8 | 18 | 180 | 1,800 | 18,000   | 180,000 | 1,800,000 | 18,000,000 | 180,000,000 |
| Н          | 0.20                                                   | 2.0 | 20 | 200 | 2,000 | 20,000   | 200,000 | 2,000,000 | 20,000,000 | 200,000,000 |
| J          | 0.22                                                   | 2.2 | 22 | 220 | 2,200 | 22,000   | 220,000 | 2,200,000 | 22,000,000 | 220,000,000 |
| К          | 0.24                                                   | 2.4 | 24 | 240 | 2,400 | 24,000   | 240,000 | 2,400,000 | 24,000,000 | 240,000,000 |
| L          | 0.27                                                   | 2.7 | 27 | 270 | 2,700 | 27,000   | 270,000 | 2,700,000 | 27,000,000 | 270,000,000 |
| М          | 0.30                                                   | 3.0 | 30 | 300 | 3,000 | 30,000   | 300,000 | 3,000,000 | 30,000,000 | 300,000,000 |
| Ν          | 0.33                                                   | 3.3 | 33 | 330 | 3,300 | 33,000   | 330,000 | 3,300,000 | 33,000,000 | 330,000,000 |
| Р          | 0.36                                                   | 3.6 | 36 | 360 | 3,600 | 36,000   | 360,000 | 3,600,000 | 36,000,000 | 360,000,000 |
| Q          | 0.39                                                   | 3.9 | 39 | 390 | 3,900 | 39,000   | 390,000 | 3,900,000 | 39,000,000 | 390,000,000 |
| R          | 0.43                                                   | 4.3 | 43 | 430 | 4,300 | 43,000   | 430,000 | 4,300,000 | 43,000,000 | 430,000,000 |
| S          | 0.47                                                   | 4.7 | 47 | 470 | 4,700 | 47,000   | 470,000 | 4,700,000 | 47,000,000 | 470,000,000 |
| Т          | 0.51                                                   | 5.1 | 51 | 510 | 5,100 | 51,000   | 510,000 | 5,100,000 | 51,000,000 | 510,000,000 |
| U          | 0.56                                                   | 5.6 | 56 | 560 | 5,600 | 56,000   | 560,000 | 5,600,000 | 56,000,000 | 560,000,000 |
| V          | 0.62                                                   | 6.2 | 62 | 620 | 6,200 | 62,000   | 620,000 | 6,200,000 | 62,000,000 | 620,000,000 |
| W          | 0.68                                                   | 6.8 | 68 | 680 | 6,800 | 68,000   | 680,000 | 6,800,000 | 68,000,000 | 680,000,000 |
| х          | 0.75                                                   | 7.5 | 75 | 750 | 7,500 | 75,000   | 750,000 | 7,500,000 | 75,000,000 | 750,000,000 |
| Y          | 0.82                                                   | 8.2 | 82 | 820 | 8,200 | 82,000   | 820,000 | 8,200,000 | 82,000,000 | 820,000,000 |
| Z          | 0.91                                                   | 9.1 | 91 | 910 | 9,100 | 91,000   | 910,000 | 9,100,000 | 91,000,000 | 910,000,000 |
| а          | 0.25                                                   | 2.5 | 25 | 250 | 2,500 | 25,000   | 250,000 | 2,500,000 | 25,000,000 | 250,000,000 |
| b          | 0.35                                                   | 3.5 | 35 | 350 | 3,500 | 35,000   | 350,000 | 3,500,000 | 35,000,000 | 350,000,000 |
| d          | 0.40                                                   | 4.0 | 40 | 400 | 4,000 | 40,000   | 400,000 | 4,000,000 | 40,000,000 | 400,000,000 |
| e          | 0.45                                                   | 4.5 | 45 | 450 | 4,500 | 45,000   | 450,000 | 4,500,000 | 45,000,000 | 450,000,000 |
| f          | 0.50                                                   | 5.0 | 50 | 500 | 5,000 | 50,000   | 500,000 | 5,000,000 | 50,000,000 | 500,000,000 |
| m          | 0.60                                                   | 6.0 | 60 | 600 | 6,000 | 60,000   | 600,000 | 6,000,000 | 60,000,000 | 600,000,000 |
| n          | 0.70                                                   | 7.0 | 70 | 700 | 7,000 | 70,000   | 700,000 | 7,000,000 | 70,000,000 | 700,000,000 |
| t          | 0.80                                                   | 8.0 | 80 | 800 | 8,000 | 80,000   | 800,000 | 8,000,000 | 80,000,000 | 800,000,000 |
| y          | 0.90                                                   | 9.0 | 90 | 900 | 9,000 | 90,000   | 900,000 | 9,000,000 | 90,000,000 | 900,000,000 |



## **Tape & Reel Packaging Information**

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.



## Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

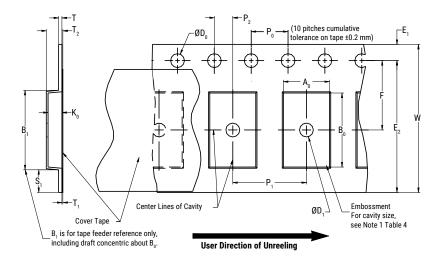
|                      | Таре | Embosse | ed Plastic         | Punche  | d Paper            |
|----------------------|------|---------|--------------------|---------|--------------------|
| EIA Case Size        | Size | 7" Reel | 13" Reel           | 7" Reel | 13" Reel           |
|                      | (W)* | Pitch   | (P <sub>1</sub> )* | Pitch   | (P <sub>1</sub> )* |
| 01005 - 0402         | 8    |         |                    | 2       | 2                  |
| 0603                 | 8    |         |                    | 2/4     | 2/4                |
| 0805                 | 8    | 4       | 4                  | 4       | 4                  |
| 1206 - 1210          | 8    | 4       | 4                  | 4       | 4                  |
| 1805 - 1808          | 12   | 4       | 4                  |         |                    |
| ≥ 1812               | 12   | 8       | 8                  |         |                    |
| KPS 1210             | 12   | 8       | 8                  |         |                    |
| KPS 1812<br>and 2220 | 16   | 12      | 12                 |         |                    |
| Array 0612           | 8    | 4       | 4                  |         |                    |

\*Refer to Figures 1 and 2 for W and P<sub>1</sub> carrier tape reference locations. \*Refer to Tables 6 and 7 for tolerance specifications.

#### New 2 mm Pitch Reel Options\*

| Packaging<br>Ordering Code<br>(C-Spec) | Packaging Type/Options             |
|----------------------------------------|------------------------------------|
| C-3190                                 | Automotive grade 7" reel unmarked  |
| C-3191                                 | Automotive grade 13" reel unmarked |
| C-7081                                 | Commercial grade 7" reel unmarked  |
| C-7082                                 | Commercial grade 13" reel unmarked |

\* 2 mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.


#### Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- Lower placement costs.
- Double the parts on each reel results in fewer reel changes and increased efficiency.
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste.

© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com



# Figure 1 – Embossed (Plastic) Carrier Tape Dimensions



# Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

|           | Constant Dimensions — Millimeters (Inches) |                                  |                              |                             |                              |                           |                                  |                                |                           |
|-----------|--------------------------------------------|----------------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|----------------------------------|--------------------------------|---------------------------|
| Tape Size | D <sub>0</sub>                             | D <sub>1</sub> Minimum<br>Note 1 | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>               | R Reference<br>Note 2     | S <sub>1</sub> Minimum<br>Note 3 | T<br>Maximum                   | T <sub>1</sub><br>Maximum |
| 8 mm      |                                            | 1.0<br>(0.039)                   |                              |                             |                              | 25.0<br>(0.984)           |                                  |                                |                           |
| 12 mm     | 1.5 +0.10/-0.0<br>(0.059 +0.004/-0.0)      | 1.5                              | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002)  | 30                        | 0.600<br>(0.024)                 | 0.600<br>(0.024)               | 0.100<br>(0.004)          |
| 16 mm     |                                            | (0.059)                          |                              |                             |                              | (1.181)                   |                                  |                                |                           |
|           |                                            | ,                                | Variable Dime                | ensions — Mil               | limeters (Inch               | nes)                      |                                  |                                |                           |
| Tape Size | Pitch                                      | B <sub>1</sub> Maximum<br>Note 4 | E <sub>2</sub><br>Minimum    | F                           | P <sub>1</sub>               | T <sub>2</sub><br>Maximum | W<br>Maximum                     | A <sub>0</sub> ,B <sub>0</sub> | & K <sub>0</sub>          |
| 8 mm      | Single (4 mm)                              | 4.35<br>(0.171)                  | 6.25<br>(0.246)              | 3.5 ±0.05<br>(0.138 ±0.002) | 4.0 ±0.10<br>(0.157 ±0.004)  | 2.5<br>(0.098)            | 8.3<br>(0.327)                   |                                |                           |
| 12 mm     | Single (4 mm)<br>and double (8 mm)         | 8.2<br>(0.323)                   | 10.25<br>(0.404)             | 5.5 ±0.05<br>(0.217 ±0.002) | 8.0 ±0.10<br>(0.315 ±0.004)  | 4.6<br>(0.181)            | 12.3<br>(0.484)                  | Not                            | te 5                      |
| 16 mm     | Triple (12 mm)                             | 12.1<br>(0.476)                  | 14.25<br>(0.561)             | 7.5 ±0.05<br>(0.138 ±0.002) | 12.0 ±0.10<br>(0.157 ±0.004) | 4.6<br>(0.181)            | 16.3<br>(0.642)                  |                                |                           |

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6.)

3. If S<sub>1</sub> < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)

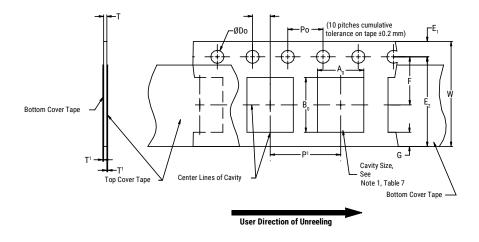
4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by  $A_{\mu}$ ,  $B_{\mu}$  and  $K_{\mu}$  shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)


(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4.)

(e) for KPS product,  $A_{a}$  and  $B_{a}$  are measured on a plane 0.3 mm above the bottom of the pocket.

(f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.



## Figure 2 – Punched (Paper) Carrier Tape Dimensions



# Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

|           | Constant Dimensions — Millimeters (Inches) |                              |                             |                             |                            |                 |                               |  |
|-----------|--------------------------------------------|------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------|-------------------------------|--|
| Tape Size | D <sub>o</sub>                             | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>              | T <sub>1</sub> Maximum     | G Minimum       | R Reference<br>Note 2         |  |
| 8 mm      | 1.5 +0.10 -0.0<br>(0.059 +0.004 -0.0)      | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002) | 0.10<br>(0.004)<br>maximum | 0.75<br>(0.030) | 25<br>(0.984)                 |  |
|           |                                            | Variable D                   | imensions — M               | illimeters (Inche           | es)                        |                 |                               |  |
| Tape Size | Pitch                                      | E2 Minimum                   | F                           | P <sub>1</sub>              | T Maximum                  | W Maximum       | A <sub>0</sub> B <sub>0</sub> |  |
| 8 mm      | Half (2 mm)                                | 6.25                         | 3.5 ±0.05                   | 2.0 ±0.05<br>(0.079 ±0.002) | 1.1                        | 8.3<br>(0.327)  | Note 1                        |  |
| 8 mm      | Single (4 mm)                              | (0.246)                      | (0.138 ±0.002)              | 4.0 ±0.10<br>(0.157 ±0.004) | (0.098)                    | 8.3<br>(0.327)  | Note I                        |  |

1. The cavity defined by  $A_{\alpha}$ ,  $B_{\alpha}$  and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

c) rotation of the component is limited to 20° maximum (see Figure 3.)

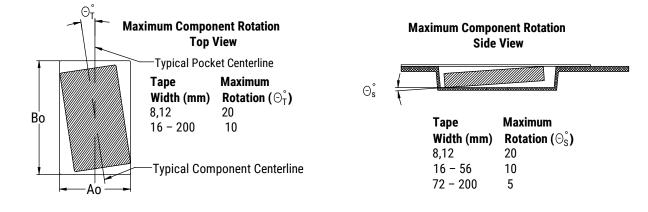
d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)

e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

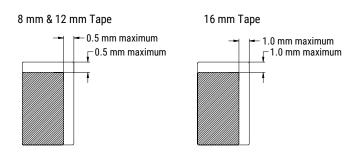
2. The tape with or without components shall pass around R without damage (see Figure 6.)



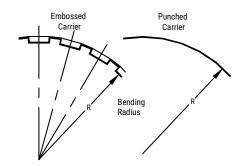
### **Packaging Information Performance Notes**


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

| Tape Width   | Peel Strength                    |
|--------------|----------------------------------|
| 8 mm         | 0.1 to 1.0 newton (10 to 100 gf) |
| 12 and 16 mm | 0.1 to 1.3 newton (10 to 130 gf) |

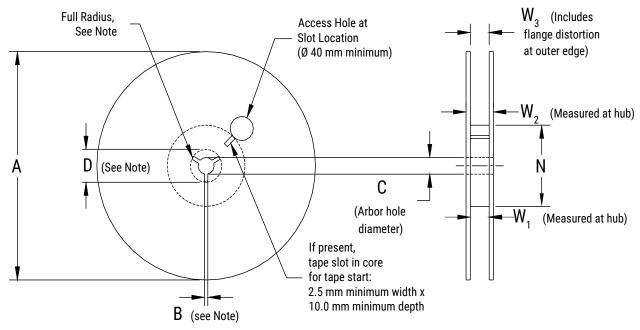

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be  $165^{\circ}$  to  $180^{\circ}$  from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of  $300 \pm 10 \text{ mm/minute}$ .

**3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.


#### Figure 3 – Maximum Component Rotation



#### Figure 4 – Maximum Lateral Movement




## Figure 5 – Bending Radius



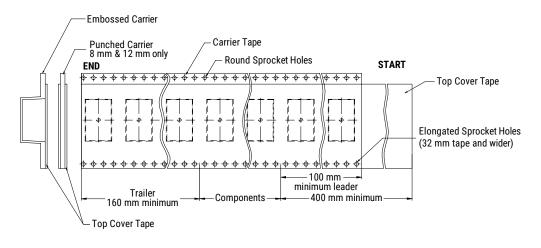


## **Figure 6 – Reel Dimensions**

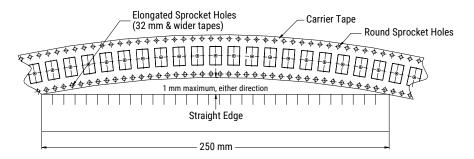


Note: Drive spokes optional; if used, dimensions B and D shall apply.

### Table 8 – Reel Dimensions


Metric will govern

| Constant Dimensions – Millimeters (Inches) |                                                                   |                                       |                                        |                                                   |
|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|
| Tape Size                                  | А                                                                 | B Minimum                             | С                                      | D Minimum                                         |
| 8 mm                                       | 178 ±0.20<br>(7.008 ±0.008)<br>or<br>330 ±0.20<br>(13.000 ±0.008) | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |
| 12 mm                                      |                                                                   |                                       |                                        |                                                   |
| 16 mm                                      |                                                                   |                                       |                                        |                                                   |
| Variable Dimensions – Millimeters (Inches) |                                                                   |                                       |                                        |                                                   |
| Tape Size                                  | N Minimum                                                         | W <sub>1</sub>                        | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |
| 8 mm                                       | 50<br>(1.969)                                                     | 8.4 +1.5/-0.0<br>(0.331 +0.059/-0.0)  | 14.4<br>(0.567)                        | Shall accommodate tape width without interference |
| 12 mm                                      |                                                                   | 12.4 +2.0/-0.0<br>(0.488 +0.078/-0.0) | 18.4<br>(0.724)                        |                                                   |
| 16 mm                                      |                                                                   | 16.4 +2.0/-0.0<br>(0.646 +0.078/-0.0) | 22.4<br>(0.882)                        |                                                   |


Downloaded From Oneyac.com



## Figure 7 – Tape Leader & Trailer Dimensions



## Figure 8 – Maximum Camber





### **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.

单击下面可查看定价,库存,交付和生命周期等信息

>>KEMET(基美)