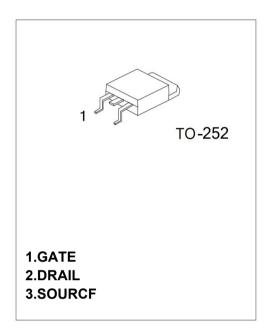


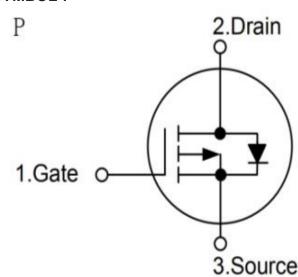
P-Channel 60-V(D-S) Enhancement Mode Field Effect Transistor


V(BR)DSS	RDS(on)MAX	ID
-60 V	200mΩ@ -10 V	-8.8A
		-0.0A

General Description:

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFR series) is for through-hole mounting applications. Power dissipation levels up to 1.5 W are possible in typical surface mount applications.


Equivalent Circuit:

FEATURE:

- **X Surface Mount**
- **X Straight Lead**
- Available in Tape and Reel
- Fast Switching
- ※ Repetitive Avalanche Rated
- **X** Simple Drive Requirements
- Lead (Pb)-free Available.
- Dynamic dV/dt Rating
- William Low On-Resistance

SYMBOL:

Maximum ratings (Ta=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	VDS	-60	_ V	
Gate-Source Voltage	VGS	±20	V	
Continuous Drain Current	ID	-8.8	Α	
Pulsed Diode Curren	IDM	-35	A	
Linear Derating Factor		0.33	W/°C	
Linear Derating Factor (PCB Mount)		0.02	W/°C	
Power Dissipation	PD	50	W	
Thermal Resistance from Junction to Ambient (t≤10s)	RθJA	45	°C/W	
Single Pulse Avalanche Energy	EAS	300	mJ	
Repetitive Avalanche Current	I AR	-8.8	Α	
Repetitive Avalanche Energy	EAR	5.0	mJ	
Peak Diode Recovery dV/dt	dV/dt	-4.5	V/ns	
Maximum Junction-to-Ambient	RthJA	110	°C/W	
Operating Junction	TJ	150	°C	
Storage Temperature	TSTG	-55~+155	$^{\circ}$	

Notes:

1.Repetitive rating; pulse width limited by maximum junction temperature

2.VDD = 25 V, starting TJ = 25 °C, L = 4.5 μ H, RG = 25 Ω , IAS = -8.8 A

 $3.ISD \le -11 A$, $dI/dt \le 140 A/\mu s$, $VDD \le VDS$,

4.1.6 mm from case.

5. When mounted on 1" square PCB (FR-4 or G-10 material).

MOSFET ELECTRICAL CHARACTERISTICS

Static Electrical Characteristics (Ta = 25 ℃ Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static					I.	
Drain-source breakdown voltage	V(BR)DSS	VGS = 0V, ID = - 250μA	-60			V
Gate-source threshold voltage	VGS(th)	VDS =VGS, ID = -250μA	-2		-4	V
Gate-source leakage	IGSS	VDS =0V, VGS = ±20V			±100	nA
Zero gate voltage drain current	IDSS	VDS = -60V, VGS =0V			-100	μA
Drain-source on-state resistancea	RDS(on)	VGS = -10V, ID = -5.3A		75	200	mΩ
Forward transconductancea	gfs	VDS = -25V, ID = -5.3A	2.9			S
Diode forward voltage	VSD	IS= -7.2A, VGS=0V			-1.8	V
Dynamic						
Input capacitance	Ciss			570		рF
Output capacitance	Coss	VDS = -25V, VGS =0V, f=1MHz		360		рF
Reverse transfer capacitanceb	Crss	1 1111112		65		pF
Total gate charge	Qg	VDS = -48V, VGS = - 10V, ID = -11A			19	nC
Gate-source charge	Qgs				5.4	nC
Gate-drain charge	Qgd				11	nC
Gate resistance	Rg	f=1MHz				Ω
Switchingb						
Turn-on delay time	td(on)			13		ns
Rise time	tr	VDD= -30V RD=3Ω, ID = -11A,		68		ns
Turn-off delay time	td(off)	VGEN = -10V,Rg = 18Ω		15		ns
Fall time	tf			29		ns
Internal Drain Inductance	LD	Between lead, 6 mm (0.25") from		4.5		nH
Internal Source Inductance	LS	package and center of ^a die contact		7.5		nH
Drain-Source Diode Characteris	stics				•	
Reverse Recovery Time	trr	IF= -11A, dl/dt=100A/s		100	200	ns
Reverse Recovery Charde	Qrr	IF= -11A, dl/dt=100A/s		0.32	0.64	μC
Continuous Source-Drain Diode Curre	IS	MOSFET symbol showing the			-8.8	А
Pulsed Diode Forward Current	ISM	integral reverse Gp - n junction diode	s		-35	Α

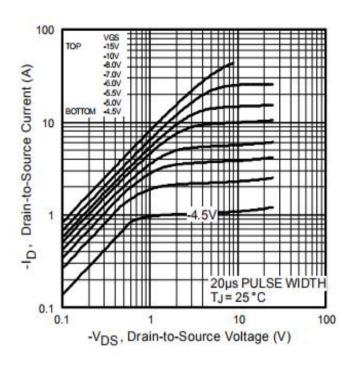


Fig 1. Typical Output Characteristics

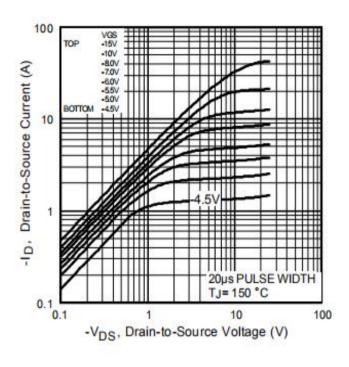


Fig 2. Typical Output Characteristics

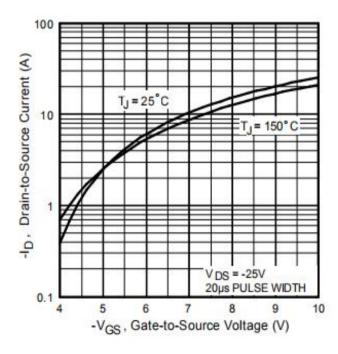


Fig 3. Typical Transfer Characteristics

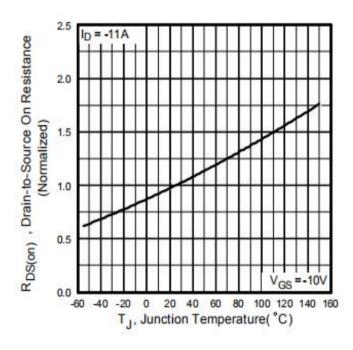


Fig 4. Normalized On-Resistance Vs. Temperature

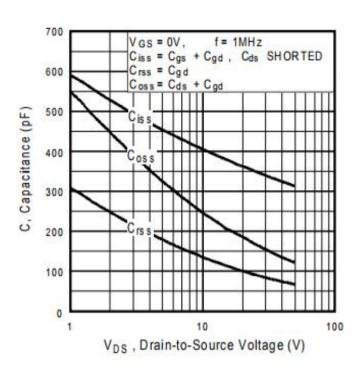


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

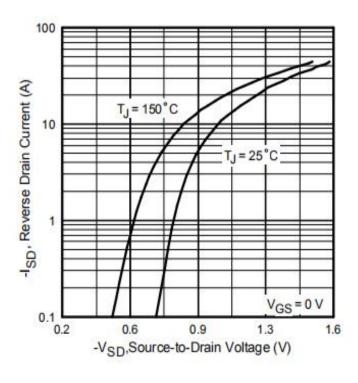


Fig 7. Typical Source-Drain Diode Forward Voltage

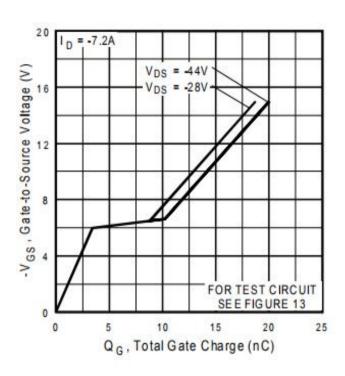


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

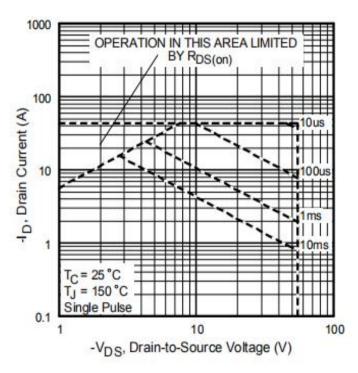


Fig 8. Maximum Safe Operating Area

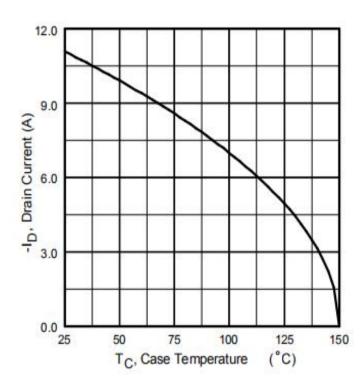


Fig 9. Maximum Drain Current Vs.

Case Temperature

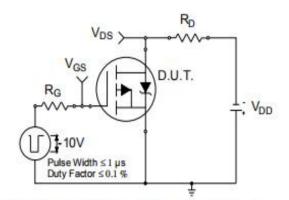


Fig 10a. Switching Time Test Circuit

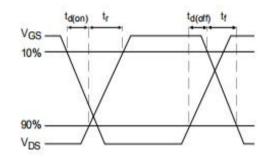


Fig 10b. Switching Time Waveforms

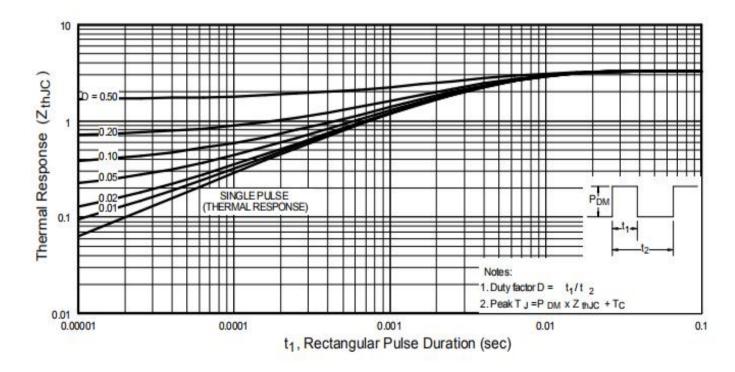


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

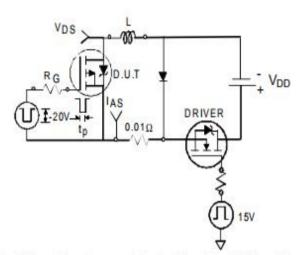


Fig 12a. Unclamped Inductive Test Circuit

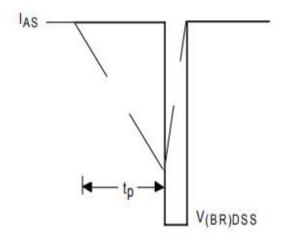


Fig 12b. Unclamped Inductive Waveforms

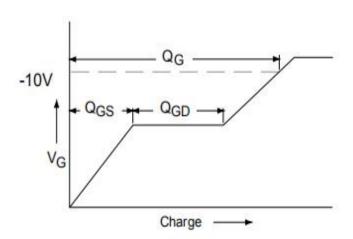


Fig 13a. Basic Gate Charge Waveform

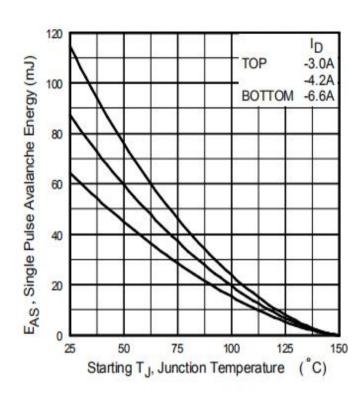


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

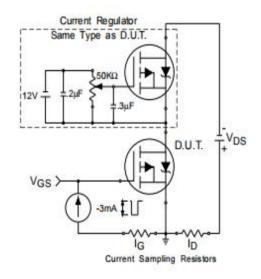
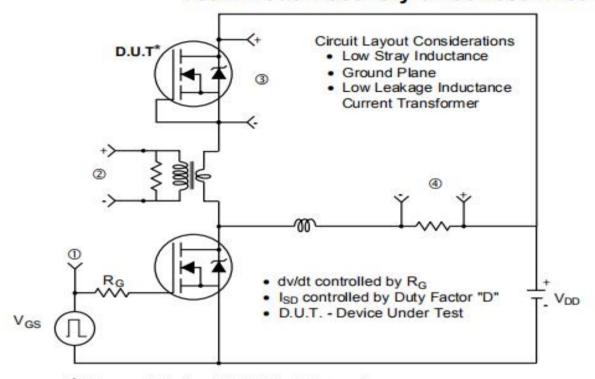



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel

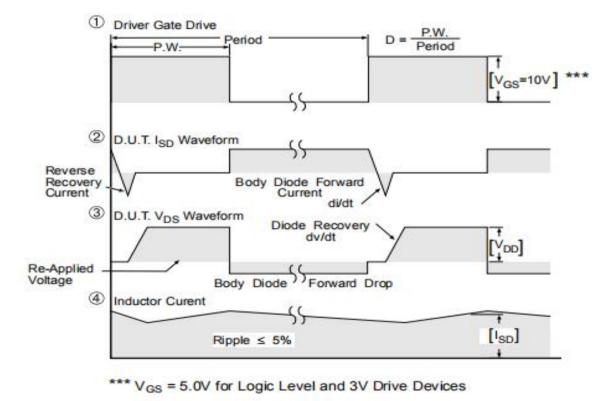
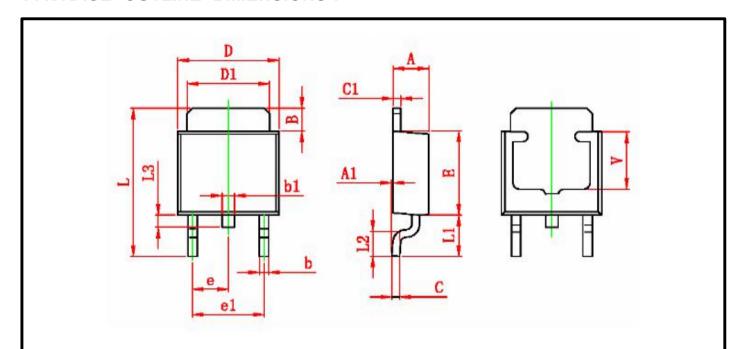



Fig 14. For P-Channel HEXFETS

PACKAGE OUTLINE DIMENSIONS:

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
В	1.350	1.650	0.053	0.065
b	0.500	0.700	0.020	0.028
b1	0.700	0.900	0.028	0.035
С	0.430	0.580	0.017	0.023
c1	0.430	0.580	0.017	0.023
D	6.350	6.650	0.250	0.262
D1	5.200	5.400	0.205	0.213
E	5.400	5.700	0.213	0.224
е	2.300 TYP		0.091 TYP	
e1	4.500	4.700	0.177	0.185
L	9.500	9.900	0.374	0.390
L1	2.550	2.900	0.100	0.114
L2	1.400	1.780	0.055	0.070
L3	0.350	0.650	0.014	0.026
٧	3.80 REF		0.150	REF

单击下面可查看定价,库存,交付和生命周期等信息

<u>>>KUU(永裕泰)</u>