

Issue date: April. 3, 2013 ML5238

Preliminary Ver. 7

16 series Li-ion secondary battery protection, Analog Front End IC

GENERAL DESCRIPTION

The ML5238 is analog front end IC for 16 series Lithium Ion secondary battery pack protection system. The ML5238 provides the function of cell voltage monitoring, charge/discharge current monitoring function, and it can detect over-charge/over-discharge of each battery cell charge/discharge over-current.

The ML5238 has short current detecting function which can turn off the external charge/discharge MOS-FET without external MCU.

FEATURES

- 16 cell highly accurate voltage monitoring function: output cell voltage by half from VMON pin
- built-in cell balancing switches for each cell
- charge/discharge current monitoring function :

Select voltage gain of ISP-ISM and output from IMON pin.

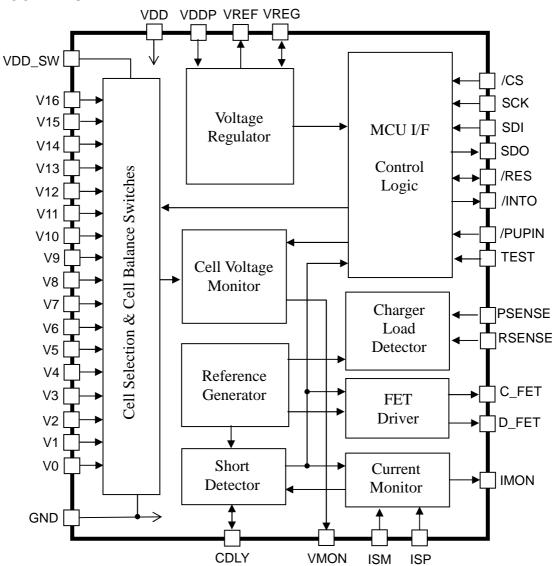
Voltage gain selection: x10 / x50

• short current detecting function: detecting threshold voltage is selectable,

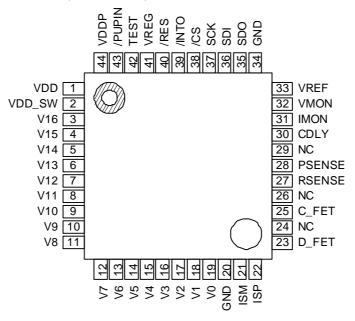
ISP-ISM voltage = 0.1V/0.2V/0.3V/0.4V (typ),

the detecting delay time is set by external capacitor

- external charge/discharge FET control: NMOS-FET driver built-in
- MCU interface: SPI serial interface (mode 0)
- 3.3V regulator for external MCU built-in: output current is 10mA (max)
- Reference voltage regulator for external ADC: 3.3V(typ), 3.28V(min), 3.34V(max) @Ta=-10°C to +60°C
- Small power consumption


Normal state $: 50\mu A \text{ (typ)}, 100\mu A \text{ (max)}$ Power save state : 25μA (typ), 50μA (max) Power down state $: 0.1 \mu A \text{ (typ)}, 1 \mu A \text{ (max)}$

: +7V to +80V• power supply voltage : -40° C to $+85^{\circ}$ C • operating temperature


 package : 44 pin plastic QFP (QFP44-P-910-0.80-2K)

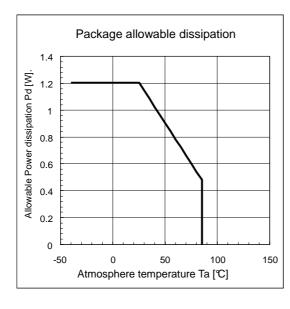
Note: The ML5238 is forbidden to be used for automotive or any equipment, device or system which requires an extremely high level of reliability.

BLOCK DIAGRAM

■ PIN CONFIGURATION (TOP VIEW)

■ PIN DESCRIPTION

Pin No.	Pin name	I/O	Description
1	VDD	_	Power supply input pin.
			Connect CR filters for noise rejection.
2	VDD_SW	_	Power supply input pin for battery selection switches and cell balancing
			switched. Connect this pin to VDD via resistor.
3	V16	1	Battery cell 16 high voltage input pin
	V 10	'	If number of connected cell is 5 to 16, connect this pin to VDD_SW pin.
4	V15	I	Battery cell 16 low voltage input and Battery cell 15 high voltage input pin
5	V14	I	Battery cell 15 low voltage input and Battery cell 14 high voltage input pin
6	V13	I	Battery cell 14 low voltage input and Battery cell 13 high voltage input pin
7	V12	I	Battery cell 13 low voltage input and Battery cell 12 high voltage input pin
8	V11	- 1	Battery cell 12 low voltage input and Battery cell 11 high voltage input pin
9	V10	1	Battery cell 11 low voltage input and Battery cell 10 high voltage input pin
10	V9	I	Battery cell 10 low voltage input and Battery cell 9 high voltage input pin For the 5 cell series connected battery pack application, connect this pin to GND
11	V8	ı	Battery cell 9 low voltage input and Battery cell 8 high voltage input pin For the 5 to 6 cell series connected battery pack application, connect this pin to GND
12	V7	ı	Battery cell 8 low voltage input and Battery cell 7 high voltage input pin For the 5 to 7 cell series connected battery pack application, connect this pin to GND
13	V6	I	Battery cell 7 low voltage input and Battery cell 6 high voltage input pin For the 5 to 8 cell series connected battery pack application, connect this pin to GND
14	V5	ı	Battery cell 6 low voltage input and Battery cell 5 high voltage input pin For the 5 to 9 cell series connected battery pack application, connect this pin to GND
15	V4	I	Battery cell 5 low voltage input and Battery cell 4 high voltage input pin For the 5 to 10 cell series connected battery pack application, connect this pin to GND
16	V3	I	Battery cell 4 low voltage input and Battery cell 3 high voltage input pin For the 5 to 11 cell series connected battery pack application, connect this pin to GND
17	V2	I	Battery cell 3 low voltage input and Battery cell 2 high voltage input pin For the 5 to 12 cell series connected battery pack application, connect this pin to GND
18	V1	I	Battery cell 2 low voltage input and Battery cell 1 high voltage input pin For the 5 to 13 cell series connected battery pack application, connect this pin to GND
19	V0	I	Battery cell 1 low voltage input pin For the 5 to 14 cell series connected battery pack application, connect this pin to GND
20, 34	GND	_	Ground pin.
21	ISM	I	Current sensing resistor connecting pin. Connect this pin to the low voltage terminal of the lowest level battery cell.
22	ISP	I	Current sensing resistor connecting pin. The voltage of this pin should be higher than the ISM pin in discharging state.
23	D_FET	0	Discharging NMOS-FET control signal pin. Connect this pin to the gate pin of the external NMOS FET. Output voltage is 14V (typ) for setting ON, output voltage is 0V for setting OFF.


Pin No.	Pin name	I/O	Description
25	C_FET	0	Charging NMOS-FET control signal output pin. Connect this pin to the gate pin of the external NMOS FET. Output voltage is 14V (typ) for setting ON, output is Hi-Z for setting OFF.
27	RSENSE	I	Input pin for detecting the load disconnection. Connect this pin to the negative side of the load.
28	PSENSE	I	Input pin for detecting the charger disconnection. Connect this pin to the negative side of the charger. If charger is connected to the same node as the load, connect this pin to the RSENSE pin.
30	CDLY	Ю	Short current detection delay time setting pin. Connect a capacitor between GND and this pin.
31	IMON	0	Current monitor output pin. The voltage amplified the voltage between ISP-ISM by 10 or 50 is outputted. When current is not flowing, 1V (typ) is outputted.
32	VMON	0	Cell voltage monitor output pin. The voltage amplified a cell voltage by 0.5 is outputted.
33	VREF	0	Reference voltage output (3.3V) for external ADC. Connect a $4.7\mu F$ capacitor between this pin and the GND pin.
35	SDO	0	Serial interface data output pin. If /CS input is "H", output of this pin is Hi-Z state.
36	SDI	I	Serial interface data input pin.
37	SCK	I	Serial interface clock input pin. Capture the SDI input at the rising edge of the SCK clock. Output the data from the SDO pin at the falling edge of the SCK.
38	/CS	I	Serial interface chip select pin. The serial interface is active if the input is "L".
39	/INTO	0	Interrupt signal output to external MCU. This pin is a NMOS open drain output pin and output is "L" level if interrupted.
40	/RES	Ю	Reset signal input and a reset signal output to external MCU. Since this pin is a NMOS open drain output pin, connect a $0.1\mu F$ capacitor between this pin and GND pin and pull-up resisitor. When recovered power-down state, "L" level reset pulse will be outputted and both ML5238 and external MCU will be initialized.
41	VREG	Ю	Built-in 3.3V regulator output pin. Connect a $4.7\mu F$ capacitor between this pin and GND pin. It can be used as a power supply to the external MCU. And it is also used as a power supply to the MCU interface circuit in this IC.
42	TEST	I	Test input pin. Fix to GND level.
43	/PUPIN	Ю	Power-up trigger input pin. If input is "L" level, the state of the ML5238 changes from power-down state to Initial state. A $100k\Omega$ pull-up resistor is built-in between this pin and the VDD pin.
44	VDDP		Power supply input pin for internal regulator. Connect CR filters for noise rejection.
24, 26, 29	NC	_	No connection pin. Open this pin.

■ ABSOLUTE MAXIMUM RATINGS

(CND-0	۱/	Ta=25℃	١
(GIND=0	٧.	1a=25℃)

Parametor	Symbol	Condition	Rating	Unit
Power supply voltage	V_{DD}	VDD, VDDP , VDD_SW	-0.3 to +86.5	V
	V _{IN1}	V16 ~ V0, Voltage difference between Vn+1 – Vn pin	-0.3 to +6.5	V
Input voltage	V _{IN2}	RSENSE, PSENSE	V_{DD} - 86.5 to $V_{\text{DD}}\text{+}0.3$	V
	V _{IN3}	/PUPIN	-0.3 to V _{DD} + 0.3	V
	V _{IN4}	/CS, SCK, SDI, ISM, ISP	-0.3 to V _{REG} + 0.3	V
	V _{OUT1}	D_FET	-0.3 to $V_{DD} + 0.3$	V
Output voltage	V_{OUT2}	C_FET	V_{DD} - 86.5 to V_{DD} + 0.3	V
	V _{OUT3}	/RES, /INTO	-0.3 to + 6.5	V
Output short current	los	VDD=50V, VREG, SDO, /RES, /INTO, C_FET, D_FET	20	mA
Cell balancing curren	I _{CB}	Per a cell balancing switch	200	mA
Allowable power Dissipation	P _D	Ta = 25℃	1.2	W
Junction temperature	Tj _{MAX}	-	125	℃
Package thermal resistance	θ ja	JEDEC 2 layer board	83	°C \W
Storage tempetrature	T _{STG}	_	-55 to +150	Ç

Package loss tolerant decreases as the atmosphere temperature (Ta) increase. If VREG pin output load current is large, make the power loss smaller than the value shown in this figure.

■ RECOMMENDED OPERATING CONDITIONS

(GND= 0 V)

Parameter	Symbol	Condition	Range	unit
Power supply voltage	V_{DD}	VDD, VDDP, VDD_SW	7 to 80	V
Opereating temperature	Ta	VREG no-loaded	-40 to +85	°C

■ ELECTRICAL CHARACTERISTICS

• DC CHARACTERISTICS

 V_{DD} =7 to 80V, GND=0 V, Ta=-40 to +85°C, VREG output no-loaded

	V	$_{DD}$ =7 to 80V, GND=0 V,	1a=-40 to +8	35°C, VREG	output no-	loaded
Parameter	Symbol	Condition	Min.	Тур.	Max.	unit
Digital "H" input voltage (note1)	V _{IH}	_	0.8×V _{REG}	_	V_{REG}	V
Digital "L" input voltage (note1)	V _{IL}	-	0		0.2×V _{REG}	V
/PUPIN-pin "H" input voltage	V_{IHP}	_	$0.8 \times V_{DD}$	-	V_{DD}	V
/PUPIN-pin "L" input voltage	V_{ILP}	_	0	-	0.2×V _{DD}	V
Digital "H" input current(note1)	I _{IH}	$V_{IH} = V_{REG}$	_	-	2	μΑ
Digital "L" input current (note1)	I _{IL}	V _{IL} = GND	-2	-	_	μA
/PUPIN-pin "H" input current	I _{IHP}	$V_{IH} = V_{DD}$	_	-	2	μΑ
/PUPIN-pin "L" input current	$I_{\rm ILP}$	V_{DD} = 64V, V_{IL} = GND	-128	-64	-32	μA
Digital "H" output voltage (note2)	V _{OH}	I _{OH} = -100μA	V _{REG} - 0.2	-	V_{REG}	V
Digital "L" output voltage (note3)	V _{OL}	I _{OL} = 1mA	0	I	0.2	V
Digital output Leak current (note3)	I _{OLK}	$V_{OH}=3V$ $V_{OL}=0V$	-2	I	2	μΑ
Cell monitoring pin Input current (note 4)	I _{INVC}	If measuring battery cell voltage	-5	-	15	μΑ
Cell monitoring pin Input leak current (note4)	I _{ILVC}	If not measuring battery cell voltage	-5	-	5	μΑ
FET "H" output voltage (note5)	V _{OH}	I _{OH} =-10μA V _{DD} =18V to 72V	10	14	18	V
FET "L" output voltage (note6)	V_{OL}	$I_{OL} = 100 \mu A$	0	-	0.3	V
C_FET output leak current	I _{LVC}	V _{CFET} =0V to V _{DD}	-5	-	5	μΑ
	V_{REG}	Output No-loaded	3.1	3.3	3.6	V
	V _{REG1}	10V <v<sub>DD<64V Ta=-10 to 60°C Load current < 10mA</v<sub>	3.1	3.3	3.5	V
VREG output voltage	V _{REG2}	10V <v<sub>DD<64V Ta=-40 to 70°C Load current < 10mA</v<sub>	3.0	3.3	3.6	V
	V_{REG3}	7V <v<sub>DD<10V Ta = -10 to 60℃ Load current < 5mA</v<sub>	3.1	3.3	3.5	V
	V_{REG4}	7V <v<sub>DD<10V Ta = -40 to 85℃ Load current < 5mA</v<sub>	3.0	3.3	3.6	V
VREF output voltage	V _{REF1}	Ta = -10 to 60℃ Load current < 1mA	3.28	3.30	3.34	V
VNEF output voitage	V_{REF2}	Ta = -40 to 85℃ Load current < 1mA	3.25	3.30	3.35	V
Cell balancing switch ON resistance	R _{BL}	Internal balancing FET $V_{DS} = 0.6V$ $V_{DD} = 18V \text{ to } 64V$	3	6	12	Ω

Note 1: Applied to pins: /CS, SCK, SDI

Note2: Applied to SDO pin

Note3: Applied to pins: SDO, /RES, /INTO

Note4: Applied to pins V16 to V0

Note5: Applied to pins C_FET, D_FET

Note6: Applied to D_FET pin

• SUPPLY CURRENT CHARACTERISTICS

 V_{DD} =7 to 64V, GND=0 V, Ta=-40 to +85°C, VREG, VREF output no noaded Parameter Symbol Condition Min. Тур. Max. Unit Normal operating Current 100 No-loaded 50 μΑ I_{DD_1} 25 50 Power save Current I_{DD_2} No-loaded μΑ 0.1 Power down Current No-loaded 1.0 μΑ I_{DDS}

(note) These power supply current is defined as the total current of VDD-pin and the VDDP-pin.

• DETECTING VOLTAGE CHARACTERISTICS (TA=25°C)

V_{DD}=48V, GND=0 V, Ta=25℃, VREG output no-loaded Symbol Condition Parameter Min. Тур. Max. Unit SC1,SC0 bit = (0,0)0.05 0.15 ٧ V_{SHRT0} 0.1 Short current detecting V_{SHRT1} SC1,SC0 bit = (0,1)0.1 0.2 0.3 ٧ V voltage V_{SHRT2} SC1,SC0 bit = (1,0)0.2 0.3 0.4 ٧ V_{SHRT3} SC1,SC0 bit = (1,1)0.3 0.4 0.5 Short current detecting 100 $C_{DLY} = 1nF$ 50 200 **t**SHRT μs delay time VREG low detecting 2.3 V_{RD} 2.45 2.6 voltage VREG recovery detecting V_{RR} 2.5 2.75 2.9 ٧ voltage

(note) Short detecting delay time tSC [µs]=CDLY[nF] x 100.

• DETECTING VOLTAGE CHARACTERISTICS (TA= -10 ~ 60°C)

 V_{DD} =48V, GND=0 V, Ta=-10~+60°C, VREG output no-loaded Symbol Min. Unit Parameter Condition Тур. Max. SC1,SC0 bit = (0,0)0.04 0.16 V V_{SHRT0} 0.1 Short current detecting V_{SHRT1} SC1,SC0 bit = (0,1)0.09 0.2 0.31 ٧ voltage V_{SHRT2} SC1,SC0 bit = (1,0)٧ 0.19 0.3 0.41 V V_{SHRT3} SC1,SC0 bit = (1,1)0.29 0.4 0.51 Short current detecting $C_{DLY} = 1nF$ 40 100 220 μs t_{SHRT} delay time VREG low detecting V_{RD} 2.20 2.45 2.70 V voltage VREG recovery detecting ٧ V_{RR} 2.40 2.75 3.00

(note) Short detecting delay time tSC [µs]=CDLY[nF] x 100.

⁽note) The load current is added to these power supply current, using the load with VREG connector.

• VOLTAGE AND CURRENT MONITORING CHARACTERISTICS (TA=25°C)

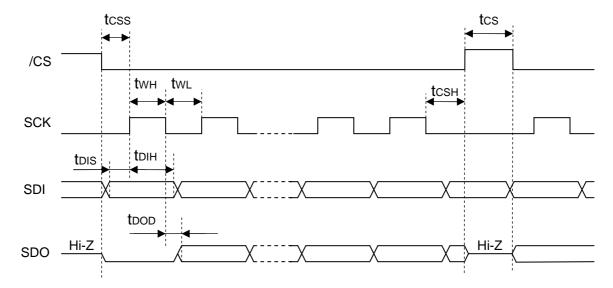
		$V_{DD}=4$	8V, GND=0V,	Ta=25℃,VF	REG output no	o-loaded
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	\/	Cell voltage = 3.6V	1.79	1.8	1.81	V
\/MON output voltage	V _{VMC1}	Output no-loaded	1.79	1.0	1.01	V
VMON output voltage	\/	Cell voltage = 1V	0.48	0.50	0.50	\/
	V_{VMC2}	Output no-loaded	0.46	0.50	0.52	V
	V _{IMON0}	ISP-ISM voltage		1.0	1.1	
		difference = 0V	0.9			V
IMON output valtage		GIM bit $=$ "0"				
IMON output voltage	V _{IMON1}	ISP-ISM voltage				
		difference = 0V	0.5	1.0	1.5	V
		GIM bit = "1"				
IMON output voltage gain	G _{IM0}	GIM bit = "0"	9	10	11	V/V
IMON output voltage gain	G _{IM1}	GIM bit = "1"	45	50	55	V/V

• VOLTAGE AND CURRENT MONITORING CHARACTERISTICS (TA=-10 ~60°C)

 V_{DD} =48V, GND=0V, Ta=-10~+60°C, VREG output no-loaded Condition Parameter Symbol Min. Тур. Max. Unit Cell voltage = 3.6V 1.78 1.8 1.82 ٧ V_{VMC1} Output no-loaded VMON output voltage Cell voltage = 1V 0.47 0.50 0.53 ٧ V_{VMC2} Output no-loaded ISP-ISM voltage difference = 0V ٧ 0.85 1.0 1.15 V_{IMON0} GIM bit = "0"IMON output voltage ISP-ISM voltage difference = 0V ٧ $V_{\text{IMON1}} \\$ 0.4 1.0 1.6 GIM bit = "1" $\underline{G}_{\underline{IM0}}$ GIM bit = "0" 10.0 V/V 8.5 11.5 IMON output voltage gain GIM bit = "1" 50 56 V/V G_{IM1} 44

• LOAD DISCONNECTION, CHARGER CONNECTION AND DISCONNECTION DETECTING VOLTAGE CHARACTERISTIC (TA=25°C)

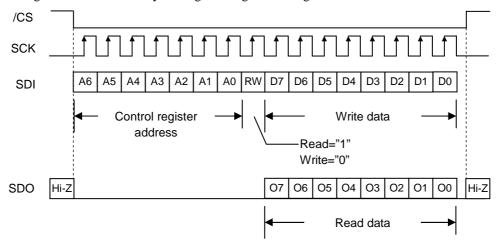
V_{DD}=48V, GND=0V, Ta=25℃ Parameter Symbol Condition Тур. Max. Unit **Detecting Charger** At power up from power connection PSENSE pin ٧ $V_{DD} \times 0.2$ $V_{DD} \textbf{x} 0.5$ V_{DD} ×0.8 V_{PC} down state voltage PSENSE register Detecting charger 0.2 0.3 ٧ V_{PLU} 0.1 PSL bit threshold disconnection PSENSE PSENSE register pin voltage $V_{DD} \times 0.75$ $V_{DD}\textbf{x}0.8$ ٧ V_{PLD} $V_{DD} \times 0.7$ PSH bit threshold Detecting load **RSENSE** register disconnection RSENSE 2.2 2.4 2.6 ٧ V_{RL} RRS bit threshold pin voltage PSENSE register PSENSE pull-up resistor 300 500 850 kΩ R_{PU} EPSL, EPSH = "1" RSENSE pull-down RSENSE register R_{PD} 2 $\mathsf{M}\Omega$ 1 3 resistor ERS = "1" PSENSE input leakage pull-up resistor is not I_{LPS} -2 2 μΑ current connected RSENSE input leakage Pull-down resistor is not -2 2 μΑ I_{LRS} current connected


• LOAD DISCONNECTION, CHARGER CONNECTION AND DISCONNECTION DETECTING VOLTAGE CHARACTERISTIC (TA=-10 ~60°C)

V _{DD} =48V, GND=0V, Ta=-10~						
Parameter	ameter Symbol Condition		Min.	Тур.	Max.	Unit
Detecting Charger connection PSENSE pin voltage	V _{PC}	At power up from power down state	V _{DD} × 0.2	V _{DD} ×0.5	V _{DD} ×0.8	V
Detecting charger	V_{PLU}	PSENSE register PSL bit threshold	0	0.2	0.4	V
pin voltage	V _{PLD} PSENSE register PSH bit threshold V _{DD} × 0.65	V _{DD} ×0.85	V			
Detecting load disconnection RSENSE pin voltage	V_{RL}	RSENSE register RRS bit threshold	2.0	2.4	2.8	V
PSENSE pull-up resistor	R _{PU}	PSENSE register EPSL、EPSH = "1"	200	500	1000	kΩ
RSENSE pull-down resistor	R_{PD}	RSENSE register ERS = "1"	0.5	2	4	ΜΩ
PSENSE input leakage current	I _{LPS}	pull-up resistor is not connected	-2	_	2	μΑ
RSENSE input leakage current	I _{LRS}	Pull-down resistor is not connected	-2	_	2	μΑ

• AC CHARACTERISTICS

|--|


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
/CS-SCK setup time	t _{CSS}	ı	100	_	_	ns
SCK-/CS hold time	t _{CSH}	ı	100	_	_	ns
SCK "H" pulse width	t _{WH}	ı	500	_	_	ns
SCK "L" pulse width	t _{WL}	ı	500	_	_	ns
SCK-SDI setup time	t _{DIS}	ı	50	_	_	ns
SCK-SDI hold time	t _{DIH}	ı	50	_	_	ns
SCK-SDO output delay time	t _{DOD}	ı	_	_	400	ns
/CS "H" pulse width	t _{CS}		500	_	-	ns

■ FUNCTIONAL DESCRIPTION

• MCU INTERFACE

SPI interface is built in the ML5238. Setting and control is held by writing /reading control registers.

Set the RW bit "0" to write data, and set the RW bit "1" to read data.

• CONTROL REGISTER

Control register map is shown below.

Address	Register	R/W	Initial value	Register setting
00H	NOOP	R/W	00H	No function assigned
01H	VMON	R/W	00H	Battery cell voltage Measurement
02H	IMON	R/W	00H	Current measurement setting
03H	FET	R/W	00H	FET setting
04H	PSENSE	R/W	00H	PSENSE pin comparator setting
05H	RSENSE	R/W	00H	Short current detection setting RSENSE pin comparator setting
06H	POWER	R/W	00H	Power save, Power down control
07H	STATUS	R/W	00H	Internal Status
08H	CBALH	R/W	00H	Upper 8 cell balancing switch ON/OFF setting
09H	CBALL	R/W	00H	Lower 8 cell balancing switch ON/OFF setting
0AH	SETSC	R/W	00H	Short current detecting voltage setting
others	TEST	R/W	00H	TEST (Don't use)

1. NOOP register (Adrs = 00H)

	7	6	5	4	3	2	1	0
Bit name	NO7	NO6	NO5	NO4	NO3	NO2	NO1	NO0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

No function is assigned to NOOP register, there is no status changes in the LSI even if this register is written or read. In the read operation written data is read

2. VMON register (Adrs = 01H)

	7	6	5	4	3	2	1	0
Bit name	ı	_	_	OUT	CN3	CN2	CN1	CN0
R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

VMON register sets the battery cell outputted to the VMON pin.

Select the battery cell by CN0, CN1, CN2, CN3 bits, and OUT bit enable the output from VMON pin.

OUT	CN3	CN2	CN1	CN0	Battery cell selection		
0	_	_	_	_	VMON pin = 0V (initial value)		
1	0	0	0	0	V1 cell (lower most)		
1	0	0	0	1	V2 cell		
1	0	0	1	0	V3 cell		
1	0	0	1	1	V4 cell		
1	0	1	0	0	V5 cell		
1	0	1	0	1	V6 cell		
1	0	1	1	0	V7 cell		
1	0	1	1	1	V8 cell		
1	1	0	0	0	V9 cell		
1	1	0	0	1	V10 cell		
1	1	0	1	0	V11 cell		
1	1	0	1	1	V12 cell		
1	1	1	0	0	V13 cell		
1	1	1	0	1	V14 cell		
1	1	1	1	0	V15 cell		
1	1	1	1	1	V16 cell (upper most)		

3. IMON register (Adrs = 02H)

	7	6	5	4	3	2	1	0
Bit name	-	_	_	OUT	GCAL1	GCAL0	ZERO	GIM
R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

IMON register set the current measuring.

GIM bit set the voltage gain of current measuring amplifier.

GIM	Voltage gain G _{IM}
0	10 times (initial value)
1	50 times

ZERO bit set the zero-correction of current measuring amplifier.

ZERO	ISP input	ISM input
0	Pin input	Pin input
1	GND level	GND level

Voltage gain of current measuring amplifier is corrected by GCAL0, GCAL1 bits.

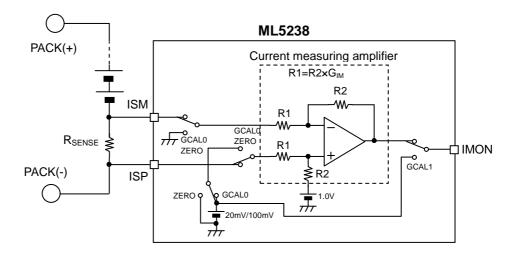
GCAL0 bit changes the ISP and ISM pin input to GND or internal reference voltage (20mV/100mV).

GCAL1 bit changes the IMON pin output to internal reference voltage output.

				<u> </u>	
GCAL1	GCAL0	ISP input		ISM input	IMON output
0	0	Pin input		Pin input	Amplified output
0	1	GIM=0	100mV	GND level	2V (typ)
U	·	GIM=1	20mV	GND level	2V (typ)
1	0	Pin input		Pin input	Amplified output
1	1	GIM=0	100mV	GND level	Reference voltage output 100mV (typ)
1		GIM=1	20mV	GND level	Reference voltage output 20mV (typ)

If the ZERO bit is set "1", setting GCAL1 and GCAL0 bits are neglected.

OUT bit enables to output the current measuring amplifier from IMON pin. If zero correction and gain correction is held, OUT bit is set "1" too.


	,
OUT	IMON pin output
0	0V (initial value)
1	Current measuring amplifier output

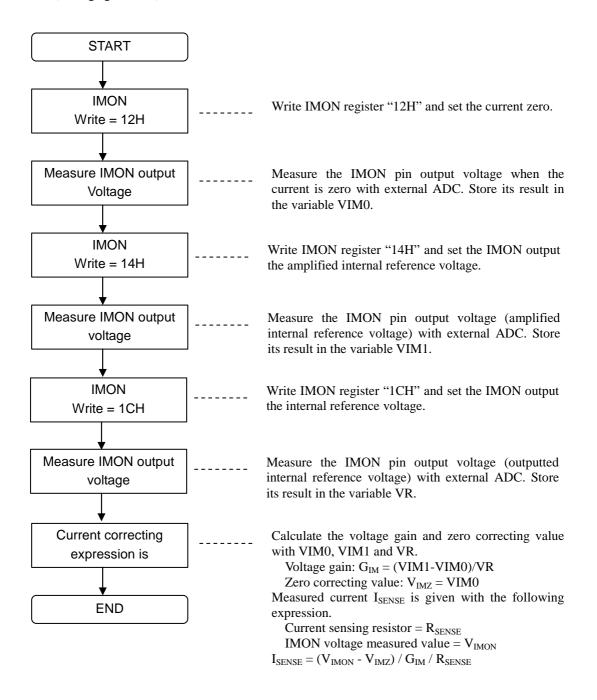
Current measurement is executed with current sensin resistor (R_{SENSE}) connected between ISP pin and ISM pin and by measuring input voltage difference between these pins.

Voltage difference between ISP and ISM is converted to voltage, its center is 1.0V (typ), and outputted from IMON pin. IMON pin output voltage V_{IMON} is given by the following equation with the current sensing resistor R_{SENSE} and its current I_{SENSE} .

$$V_{IMON} \ = \ (I_{SENSE} \times R_{SENSE}) \times G_{IM} + 1.0$$

The circuit of current measuring amplifier is shown below.

If the current is zero, V_{IMON} = 1.0V, in the discharging state, V_{IMON} > 1.0V, in the charging state, V_{IMON} < 1.0V.


When the ZERO bit is set "1", the input of ISM pin and ISM pin is switched to GND level in the LSI and set the input difference voltage of the current measuring amplifier to zero. The IMON pin output voltage in this state is set as the reference voltage of zero current, and internal 1.0V reference voltage and offset voltage of amplifier is corrected.

If the GCAL0 bit is set "1"; the ISM pin input is switched to GND level in the LSI; the ISP pin input is switched to 100mV (internal reference voltage) if the GIM bit is "0", and else if GIM bit is "1" the ISP pin input is switched to 20mV (internal reference voltage). The gain error is corrected with the difference between the IMON output voltage at this state and it at current zero, and internal reference voltage.

Internal reference voltage is outputted from IMON pin by setting the GCAL1 bit "1".

Short current detection characteristic is not depended on the IMON pin output setting.

The example flowchart of calibration for current measuring amplifier is shown below. (Voltage gain is 10)

4. FET register (Adrs = 03H)

	7	6	5	4	3	2	1	0
Bit name	1	_	_	DRV	_	_	CF	DF
R/W	R	R	R	R/W	R	R	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

FET register control the turn ON/OFF of the C_FET and D_FET pin, and read the state of its output.

DF bit sets the D_FET pin output state. If the short current is detected, the DF bit is automatically cleared to "0". Because the DF bit is not automatically set "1" even if the state is changed from short detection to normal state, external MCU must set this bit "1".

DF	Discharge FET	D_FET pin output
0	OFF (initial value)	0V
1	ON	14V (typ)

CF bit set the C_FET pin output state. If the short current is detected, the CF bit is automatically cleared tot "0". Because the CF bit is not automatically set "1" even if the state is changed from short detection to normal state, external MCU must set this bit "1".

CF	Charge FET	C_FET pin output
0	OFF (initial value)	Hi-Z
1	ON	14V (typ)

DRV bit set the output current drive capacity of internal FET driver. If the DRV bit is set "1", the rising time of D_FET, C_FET pins is short.

The duration to set the DRV bit "1" should be set depend on the capacitance load of the D_FET, C_FET pins. DRV bit should be cleared to "0", after the D_FET, C_FET pin output level is fully risen to "H".

If the DRV bit is left "1", power consumption or the "H" output voltage of D_FET, C_FET might be higher than the level specified in the electrical characteristics.

DRV	FET driver output capacity
0	Normal (initial value)
1	enhanced

5. PSENSE register (Adrs = 04H)

	7	6	5	4	3	2	1	0
Bit name	EPSH	IPSH	RPSH	PSH	EPSL	IPSL	RPSL	PSL
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R
Initial value	0	0	0	0	0	0	0	0

PSENSE register set the parameters of comparators which detect charger connection/disconnection with PSENSE pin input.

Two comparators with difference threshold are connected to PSENSE pin to manage ON and OFF states of discharge FET.

For detecting charger disconnection in the state of discharge FET ON, low level threshold (0.2V (typ)) type comparator is selected, because PSENSE pin voltage is clamped by the body-diode of charge FET.

Low level threshold type comparator is selected mainly for detecting charger open in the state of charge over-current detected,

Parameters of the low level threshold type comparator for detecting the charger open is set in EPSL, IPSL, and RPSL bits. Comparator output is assigned to PSL bit.

EPSL bit set the run/stop of the comparator for detecting charger open. If EPSL bit is set running, $500k\Omega$ pull-up resistor is connected to PSENSE pin in the LSI.

EPSL	State of comparator for detecting charger open	PSENSE pin status
0	Stop (initial value)	Hi-Z (initial value)
1	Run	500kΩ pull-up

IPSL bit enables asserting the interrupt from /INTO pin, if the output of comparator detecting charger open (PSL bit) is changed from "0" to "1". IPSL bit should be set "1" more than 1 msec later from setting the EPSL bit "1".

IPSL	Interrupt enable
0	Disable (initial value)
1	enable

RPSL bit indicates the interrupt assertion if the output of comparator detecting charger open (PSL bit) is changed from "0" to "1". To clear this interrupt, write "0" in the RPSL bit. Writing "1" in the RPSL bit is neglected. If IPSL bit is "0", RPSL bit is fixed to "0".

RPSL	Interrupt occurred	
0	No interrupt (initial value)	
1	Interrupted	

PSL bit indicates the state of charger connected. If the EPSL bit is "0", PSL bit is fixed to "0". Writing "1" in the PSL bit is neglected.

PSL	Charger connection	PSENSE pin voltage
0	Charger connected (initial value)	0.2V or less
1	Charger disconnected	Larger than 0.2V

For detecting charger disconnection in the state of discharge FET OFF, high level threshold $(V_{DD} \times 0.75)$ type comparator is selected, because PSENSE pin voltage rise up to power supply voltage (V_{DD}) .

High level threshold comparator is selected mainly for detecting charger open if the status changes to power down state.

Parameters of the high level threshold type comparator for detecting the charger open is set in EPSH, IPSH, and RPSH bits. Comparator output is assigned to PSH bit.

EPSH bit set the run/stop of the comparator for detecting charger open. If EPSH bit is set running, $500k\Omega$ pull-up resistor is connected to PSENSE pin in the LSI.

EPSH	State of comparator for detecting charger open	PSENSE pin status
0	Stop (initial value)	Hi-Z (initial value)
1	Running	500kΩ pull-up

IPSH bit enables asserting the interrupt from /INTO pin, if the output of comparator detecting charger open (PSH bit) is changed from "0" to "1". IPSH bit should be set "1" more than 1 msec later from setting the EPSH bit "1".

IPSH	Interrupt enable
0	Disable (initial value)
1	enabled

RPSH bit indicates the interrupt assertion if the output of comparator detecting charger open (PSH bit) is changed from "0" to "1". To clear this interrupt, write "0" in the RPSH bit. Writing "1" in the RPSH bit is neglected. If IPSH bit is "0", RPSH bit is fixed to "0".

RPSH	Interrupt occurred
0	No interrupt (initial value)
1	interrupted

PSH bit indicates the state of charger connected. If the EPSH bit is "0", PSH bit is fixed to "0". Writing "1" in the PSH bit is neglected.

PSH	Charger connection	PSENSE pin voltage
0	Charger connected (initial value)	V _{DD} ×0.75 or less
1	Charger disconnected	Larger than V _{DD} ×0.75

6. RSENSE register (Adrs = 05H)

	7	6	5	4	3	2	1	0
Bit name	ESC	ISC	RSC	SC	ERS	IRS	RRS	RS
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R
Initial value	0	0	0	0	0	0	0	0

RSENSE register set the parameters of detecting short current and the parameters of comparator which detect load connection/disconnection with RSENSE pin input.

ESC bit set the run/stop of the circuit detecting short current.

ESC	Status of the circuit detecting
ESC	short current
0	Stop (initial value)
1	Run

ISC bit enables asserting the interrupt from /INTO pin, if the short current is detected.

ISC Interrupt enable	
0	Disable (initial value)
1	enable

RSC bit indicates the interrupt assertion if the short current is detected. To clear the interrupt, write "0" in the RSC bit. Writing "1" in the RSC bit is neglected. If ISC bit is "0", RSC bit is fiexed to "0".

RSC	Interrupt occurred
0	No interrupt (initial value)
1	interrupted

SC bit indicates the output from the comparator detecting short current.

If the SC bit is changed from "0" to "1", charging the capacitor connected to CDLY pin is started. If this charging is finished, the RSC bit is automatically changed to "1" and the DF bit and the CF bit in the FET register is automatically cleared to "0". If the short current status is cleared before charging the capacitor connected to CDLY pin is finished, charging the CDLY pin is stopped and the CDLY pin is fixed to GND level.

If the ESC bit is "0", SC bit is fixed to "0". Writing "1" in the SC bit is neglected.

real is a factor is intented to a first time and a second in discount.						
SC	Status of the comparator output detecting short current	ISP-ISM voltage				
0	Short current is not detected (initial value)	Short current detecting voltage or lower				
1	Short current is detected	Higher than short current detecting voltage				

Short current detecting delay time is set with the charging time of capacitor C_{DLY} which is connected to CDLY pin; calculated with following formula.

Short current detecting delay time t_{sc} [μs] = $C_{DLY}[nF] \times 100$

ERS bit set the run/stop of the comparator for detecting load open. If ERS bit is set running, $2M\Omega$ pull-down resistor is connected to RSENSE pin in the LSI.

ERS	State of comparator for detecting load open	RSENSE pin status
0	Stop (initial value)	Hi-Z (initial value)
1	Running	2MΩ pull-down

IRS bit enables asserting the interrupt from /INTO pin, if the output of comparator detecting load open (RS bit) is changed from "0" to "1". IRS bit should be set "1" more than 1 msec later from setting the ERP bit "1".

IRS	Interrupt enable
0	Disable (initial value)
1	enabled

RRS bit indicates the interrupt assertion if he output of comparator detecting load open(RS bit) is changed from "0" to "1". To clear this interrupt, write "0" in the RRS bit. Writing "1" in the RRS bit is neglected. If IRS bit is "0", RRS bit is fixed to "0".

RRS	Interrupt occurred
0	No interrupt (initial value)
1	interrupted

RS bit indicates the state of load connected. If the ERS bit is "0", RS bit is fixed to "0". Writing "1" in the RS bit is neglected.

211 12 111 8111		
RS	Load connection	RSENSE pin voltage
0	Load connected (initial value)	2.4V or higher
1	Load disconnected	Lower than 2.4V

7. POWER register (Adrs = 06H)

	7	6	5	4	3	2	1	0
Bit name	PUPIN	-	_	PDWN	1	_	_	PSV
R/W	R	R	R	R/W	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0

Power register control the power save and the power down.

PSV bit set the state transition to power save.

PSV	Power save	
0	Normal state (initial value)	
1	Power save state	

In the power save state, circuits for VREG output and VREF output is operating, cell voltage measuring and current measuring is stopped, and the power consumption is reduced. FET driving and short detecting circuit works in the power save state. Comparators in the PSENSE pin and the RSENSE pin are stopped.

Clearing the PSV bit to "0" and the status is recovered from power save state to normal state.

To set the comparators in the PSENSE pin and the RSENSE pin running, set these comparators to run after recovering from the power save state.

PDWN bit set the state transition to power down

PDWN	Power down
0	Normal state (initial value)
1	Power down state

If the PDWN bit is set "1", $500k\Omega$ pull-up resistor is automatically connected to PSENSE pin in the LSI and all the circuit is stopped, and the /RES pin output is "L".

Before setting the PDWN bit "1", C_FET and D_FET should be set OFF and charger disconnection should be confirmed with the PSENSE register. When the /PUPIN pin input is "L", even if PDOWN bit is set to "1", the state doesn't get changed to power-down until the /PUPIN pin input rises to "H". Before setting the PDWN bit "1", it should be confirmed that /PUPIN pin is not "L" by reading the PUPIN bit.

PUPIN	/PUPIN pin state
0	"H" level
1	"L" level

If charger connection is detected with PSENSE pin or if /PUPIN pin is asserter "L" input, the LSI is recovered from power down state to normal state.

In the power down state, VREG output which is power supply for external micro-computer is set GND level. In recovering from power down state, every initial setting should be held after VREG is fully risen and after /RES pin output is fully changed from "L" level to "H" level.

8. STATUS register (Adrs = 07H)

	7	6	5	4	3	2	1	0
Bit name	RSC	RRS	RPSH	RPSL	INT	PSV	CF	DF
R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0

STATUS register indicates each status.

DF bit indicates the D_FET pin output status.

DF	D_FET pin status
0	OFF (initial value)
1	ON

CF bit indicates the C FET pin output status.

	rr
CF	C_FET pin status
0	OFF (initial value)
1	ON

PSVbit indicates the power save state.

	F
PSV	Power save state
0	Normal state (initial value)
1	Power save state

INT bit indicates the /INTO pin output status.

INT	/INTO pin output status						
0	No interrupt (initial value)						
1	Interrupted						

RPSL bit indicates interrupt status of charger disconnecting interrupt if charge over-current detected.

RPSL	Status of charger disconnecting interrupt if charge over-current detected.
0	No interrupt (initial value)
1	Charger disconnecting interrupt

RPSH bit indicates interrupt status of charger disconnecting interrupt if the status is power down.

RPSH	Status of charger disconnecting interrupt if the status is power down
0	No interrupt (initial value)
1	Charger disconnecting interrupt

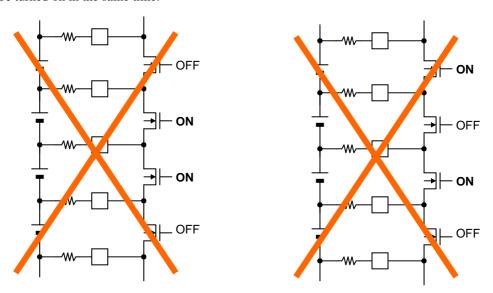
RRS bit indicates interrupt status of load disconnecting interrupt

RRS	Status of load disconnecting interrupt
0	No interrupt (initial value)
1	Load disconnecting interrupt

RSC bit indicates interrupt status of short current detecting interrupt.

	t indicates interrupt status or short current actecting interrupt.							
RSC Status of short current detecting interrupt								
	0 No interrupt (initial value)							
	1	Short current detecting interrupt.						

9. CBALH register (Adrs = 08H)


	7	6	5	4	3	2	1	0
Bit name	SW16	SW15	SW14	SW13	SW12	SW11	SW10	SW9
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

CBALH register set the cell balancing switches turning ON/OFF of upper 8 cells. SW16~SW9 bit sets switches turning ON/OFF of each cell.

2 W I	SW10~SW9 bit sets switches turning ON/OFF of each cent.									
SW16	SW15	SW14	SW13	SW12	SW11	SW10	SW9	Switch ON/OFF		
0	0	0	0	0	0	0	0	Upper 8 cells OFF (initial value)		
0	0	0	0	0	0	0	1	V9-V8 pin switch ON		
0	0	0	0	0	0	1	0	V10-V9 pin switch ON		
0	0	0	0	0	1	0	0	V11-V10 pin switch ON		
0	0	0	0	1	0	0	0	V12-V11 pin switch ON		
0	0	0	1	0	0	0	0	V13-V12 pin switch ON		
0	0	1	0	0	0	0	0	V14-V13 pin switch ON		
0	1	0	0	0	0	0	0	V15-V14 pin switch ON		
1	Λ	0	0	0	0	0	0	1/16-1/15 pin switch ON		

More than one switch can be turned on in the same time, but following settings are inhibited because internal cell balancing switch might be broken.

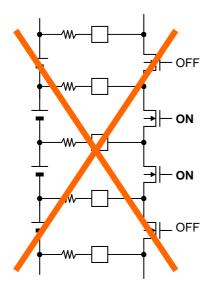
- (1) Side-by-side cell balancing switches are inhibited to be turned on in the same time.
- (2) the cell balancing switches of both side of a cell balancing switch which is turned off is inhibited to be turned on in the same time.

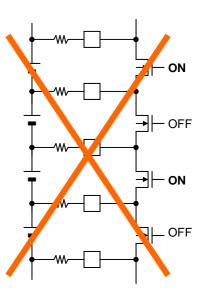
IC heats by cell balancing current and cell balancing switch resistor, restrict the number of switches of ON and time of ON, in order to keep the power consumption of cell balancing switch less than allowable power dissipation,

If cell voltage is outputted from VMON pin, the voltage of a cell whose cell balancing switch is turned on is measured as the voltage difference between two ports of cell balancing switch.

10. CBALL register (Adrs = 09H)

	7	6	5	4	3	2	1	0	
Bit name	SW8	SW7	SW6	SW5	SW4	SW3	SW2	SW1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	


CBALL register set the cell balancing switches turning ON/OFF of lower 8 cells.


SW8~SW1 bit sets switches turning ON/OFF of each cell.

				0				
SW8	SW7	SW6	SW5	SW4	SW3	SW2	SW1	Switch ON/OFF
0	0	0	0	0	0	0	0	lower 8 cells OFF (initial value)
0	0	0	0	0	0	0	1	V1-V0 pin switch ON
0	0	0	0	0	0	1	0	V2-V1 pin switch ON
0	0	0	0	0	1	0	0	V3-V2 pin switch ON
0	0	0	0	1	0	0	0	V4-V3 pin switch ON
0	0	0	1	0	0	0	0	V5-V4 pin switch ON
0	0	1	0	0	0	0	0	V6-V5 pin switch ON
0	1	0	0	0	0	0	0	V7-V6 pin switch ON
1	0	0	0	0	0	0	0	V8-V7 pin switch ON

More than one switch can be turned on in the same time, but following settings are inhibited because internal cell balancing switch might be broken.

- (1) Side-by-side cell balancing switches are inhibited to be turned on in the same time.
- (2) the cell balancing switches of both side of a cell balancing switch which is turned off is inhibited to be turned on in the same time.

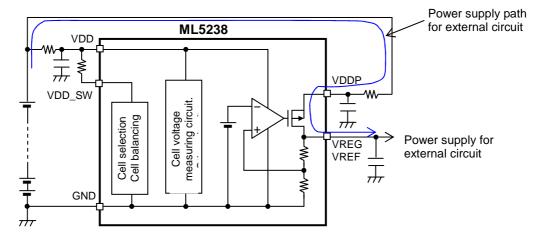
IC heats by cell balancing current and cell balancing switch resistor, restrict the number of switches of ON and time of ON, in order to keep the power consumption of cell balancing switch less than allowable power dissipation,

If cell voltage is outputted from VMON pin, the voltage of a cell whose cell balancing switch is turned on is measured as the voltage difference between two ports of cell balancing switch.

11. SETSC register (Adrs = 0AH)

	7	6	5	4	3	2	1	0
Bit name	1	_	_	_	_	1	SC1	SC0
R/W	R	R	R	R	R	R	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

SETSC register sets the short current detecting voltage. Short current detecting voltage is selected with SC0 and SC1 bit depend on current sensing resistor


SC1	SC0	Short current detecting voltage	Short current detecting current if Current sensing resistor value = $3m\Omega$
0	0	0.1V (initial value)	33.3A
0	1	0.2V	66.6A
1	0	0.3V	100A
1	1	0.4V	133.3A

• CONNECTING POWER SUPPLY (VDDP, VDD, VDD_SW)

VDDP pin is the power supply pin only for internal 3.3V regulator (VREG pin, VREF pin). If the output current of 3.3V regulator is large, it is recommended to make the voltage drop of RC filter resistor (for removing noise at the VDDP pin) smaller than 1V.

VDD_SW pin is the power supply pin only for cell selection switches and cell balancing switches. Connect this pin to VDD via 51Ω resistor.

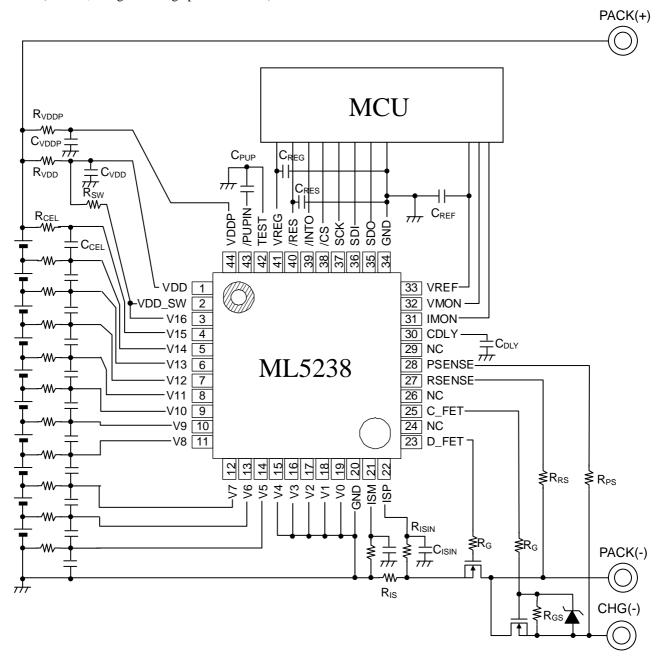
VDD pin is the power supply pin for all the circuit other than internal 3.3V regulator and cell selection switches and cell balancing switches.

POWER-ON / POWER-OFF SEQUENCE

Recommended connecting order is; connect the GND first, after that connect the VDD, VDDP, VDD_SW, and after that connect each cells from lower level. Power supply voltage rising time of power-on, power off order, power supply voltage falling time of power-off is not defined.

Following the power-on, the ML5238 normally enter into normal state. ML5238 may rarely enter into the Power down state by the chattering or another reason during the connection of the battery cells. In this case, input the voltage lower than or equal to the Detecting charger connection PSENSE pin voltage (V_{PC}) to PSENSE pins, or input the "L" level to the /PUPIN pin, in order to power-up.

Else after the power-on or after the power-up, cell voltage measurement and current measurement should be done after the internal analog circuit is settled. To get the settling time of analog circuit, confirm the output settling time of VREF pin, VMON pin, and IMON pin in the application system.

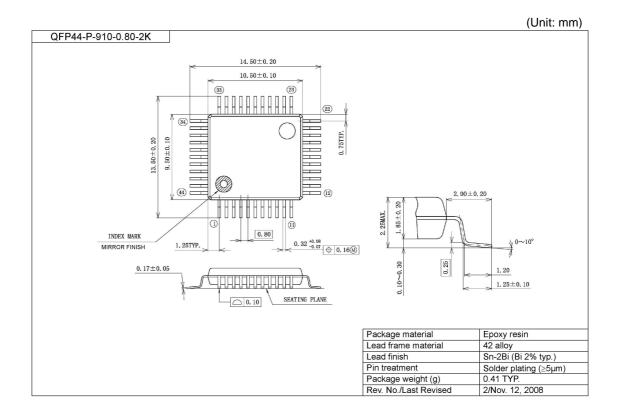

CELL CONNECTING

If the number of connected cells is less than 16, connecting order in following table is recommended.

Number of		V15 to										
Connected	V16	V10	V9	V8	V7	V6	V5	V4	V3	V2	V1	V0
cells												
15	VDD_SW	cell	cell	cell	cell	cell	cell	cell	cell	cell	cell	cell
14	VDD_SW	cell	cell	cell	cell	cell	cell	cell	cell	cell	cell	GND
13	VDD_SW	cell	cell	cell	cell	cell	cell	cell	cell	cell	GND	GND
12	VDD_SW	cell	cell	cell	cell	cell	cell	cell	cell	GND	GND	GND
11	VDD_SW	cell	cell	cell	cell	cell	cell	cell	GND	GND	GND	GND
10	VDD_SW	cell	cell	cell	cell	cell	cell	GND	GND	GND	GND	GND
9	VDD_SW	cell	cell	cell	cell	cell	GND	GND	GND	GND	GND	GND
8	VDD_SW	cell	cell	cell	cell	GND						
7	VDD_SW	cell	cell	cell	GND							
6	VDD_SW	cell	cell	GND								
5	VDD_SW	cell	GND									

■ EXAMPLE OF APPLICATION CIRCUIT

(10 cells, charge/discharge path is isolated)



PARTS LIST

Symbol	Value
R_{VDD}	510Ω
C_{VDD}	10μF or more
R_{VDDP}	100Ω
C_{VDDP}	10μF or more
R _{SW}	51Ω
R _{CEL}	18Ω or more
C_CEL	0.1μF or more
R _{IS}	3mΩ

Symbol	Value			
R _{ISIN}	1kΩ			
C_{ISIN} , C_{RES}	0.1μF			
C_{REG} , C_{REF}	4.7μF			
C_DLY	1nF to 10nF			
C_{PUP}	1μF			
R_{G}	10kΩ			
R_{GS}	1ΜΩ			
R _{RS}	10kΩ			
R _{PS}	1kΩ			

■ PACKAGE DIMENSIONS

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

■ REVISION HISTORY

		Page				
Document No.	Date	Previous Current		Description		
		Edition	Edition			
PEDL5238-01	2012.05.18	_	1	First Edition		
PEDL5238-02	2012.07.23	1	1	Note is added		
		19	19	POWER register; PUPIN bit is added		
		25	25	R_{PS} is revised to 1k Ω . Higher side PACK(-) is		
				revised to PACK(+)		
PEDL5238-03	2012.11.29	1	1	"switch ON resistance = 6Ω (typ)" is deleted.		
		6	6	V _{REF1/2} 3.3 → 3.30 V		
		7	7	"(note) The load current is VREG connector."		
				Is added.		
				"(note) Short detecting delay time tSC		
				[μs]=CDLY[nF] x 100" is added.		
		14	14	CF → CCF, DF → CDF		
PEDL5238-04	2013.02.01	3	3	Cell connecting order modified		
				Add D_FET, C_FET comment.		
		6	6	Add VREG output voltage: no-loaded state		
				condition		
				VREF output voltage @Ta=-10 to 60°C modified.		
		7	8	Detecting voltage characteristic (Ta=^10 to 60°C)		
				is added.		
		8	9	Load disconnection, charger connection /		
				disconnection detecting voltage characteristics		
				(Ta=-10 to 60°C) is added.		
		14	16	CCF→CF, CDF→CF		
		14	16	FET register: D_FET, C_FET pin output state is added.		
		17	19	RSENSE register: ISC bit mistyping is corrected.		
		21,22	23,24	CBALH,CBALL register: because of cell		
		21,22	20,24	balancing current, allowable power dissipation		
				exceeds its limit.		
		_	26	Cell connection reference added.		
		25	27	Application diagram: cell connection is modified.		
PEDL5238-05	2013.03.04	1	1	Reference voltage regulator for external ADC:		
=====================================		•	•	25℃ is deleted		
		6	6	VREF output voltage: V _{REF1} =3.27V(min),		
			-	3.33V(max) →3.28V(min), 3.34V(max)		
PEDL5238-06	2013.03.19	26	26	GND pin is connected first.		
PEDL5238-07	2013.04.03	6	6	Cell monitoring pin Input current: -0.5µA →		
				5µA(min)		
				Cell monitoring pin Input leak current: -0.5µA		
				(add)		
				FET "H" output voltage : V _{DD} =18V to 50V →18V		
				to 72V		
				VREG output voltage, Output No-loaded : 3.5V		
				→ 3.6V(max)		

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2012-2013 LAPIS Semiconductor Co., Ltd.

单击下面可查看定价,库存,交付和生命周期等信息

>>LAPIS