

1. Electrical Specification

1-1 Test condition

Varistor voltage In = 1 mA DC Leakage current Vdc = 24 V DC

Maximum clamping voltage Ic = 1 A

Rated peak single pulse transient current 8 / 20 µs waveform, +/- each 1 time induce

Capacitance 10/1000 μ s waveform Insulation resistance after reflow soldering f = 1MHz, Vrms = 0.5 V

Soldering paste: Tamura (Japan) RMA-20-21L

Stencil: SUS, 120 µm thickness

Reflow soldering condition Pad size: 0.8 (Width) x 0.9 (Length)

0.8 (Distance between pads)

Soldering profile : 260 $\pm 5\,$ °C, 5 sec.

1-2 Electrical specification

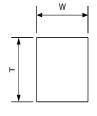
Maximum allowable continuous DC voltage	24	V	
trigger voltage / Varistor voltage / breakdown voltage	ger voltage / Varistor voltage / breakdown voltage 100-150		
Maximum clamping voltage	180	V	Maximum
Rated peak single pulse transient current	1	Α	Maximum
Nonlinearity coefficient	> 12		
Leakage current at continuous DC voltage	< 0.1	μΑ	
Response time	< 1.0	ns	
Varistor voltage temperature coefficient	< 0.05	%/°C	
Capacitance measured at 1MHz	3.0	pF	Typical
Capacitance tolerance	40	%	
Insulation resistance after reflow soldering on PCB	> 10	$M\Omega$	
Operating ambient temperature	-55 to +85	°C	
Storage temperature	-55 to +125	°C	

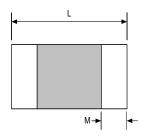
1-3 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement	
Pulse current capability	lmax 8/20 μs	IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d Vn /Vn≤ 10% no visible damage	
Electrostatic discharge capability	ESD C=150 pF, R=330Ω	IEC 1000-4-2 Each 10 times in positive/negative direction in 10 sec at 8KV contact discharge (Level 4)		
Environmenta I reliability	Thermal shock IEC 68-2-14 Condition for 1 cycle Step 1 : Min40°C, 30±3 min. Step 2 : Max. +125°C, 30±3 min. Number of cycles: 30 times		d Vn /Vn≤ 5% no visible damage	
	Low temperature	IEC 68-2-1 Place the chip at -40±5°C for 1000± 12hrs. Remove and place for 24±2hrs at room temp. condition, then measure	d Vn /Vn≤ 5% no visible damage	
	High temperature	IEC 68-2-2 Place the chip at 125±5°C for 1000± 24hrs. Remove and place for 24±2hrs at room temp. condition, then measure	d Vn /Vn≤ 5% no visible damage	
	Heat resistance	IEC 68-2-3 Apply the rated voltage for 1000±48hrs at 85±3°C. Remove and place for 24 ±2hrs at room temp. condition, then measure	d Vn /Vn≤ 5% no visible damage	
	Humidity resistance	IEC 68-2-30 Place the chip at 40±2°C and 90 to 95% humidity for 1000±24hrs. Remove and place for 24±2hrs at room temp. condition, then measure	d Vn /Vn≤ 10% no visible damage	
	Pressure cooker test	Place the chip at 2 atm, 120°C, 85%RH for 60 hrs. Remove and place for 24± 2hrs at room temp. condition, then measure	d Vn /Vn≤ 10% no visible damage	

	Operating life	Apply the rated voltage for 1000±48hrs at 125±3°C. Remove and place for 24±2hrs at room temp. condition, then measure	d Vn /Vn≤ 10% no visible damage
Mechanical Reliability	Solderability	IEC 68-2-58 Solder bath method, 230±5°C, 2s	At least 95% of terminal electrode is covered by new solder
	Resistance to soldering heat	IEC 68-2-58 Solder bath method, 260±5°C, 10±0.5s, 270±5°C, 3±0.5s	d Vn /Vn≤ 5% no visible damage
	Bending strength	IEC 68-2-21 Warp:2mm, Speed:0.5mm/sec, Duration: 10sec. The measurement shall be made with board in the bent position	d Vn /Vn≤ 5% no visible damage
	Adhesive strength	IEC 68-2-22 Applied force on SMD chip by fracture from PCB	Strength>10 N no visible damage

2. Material Specification

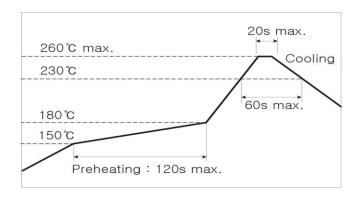

Body ZnO based ceramics


Internal electrode Silver – Palladium

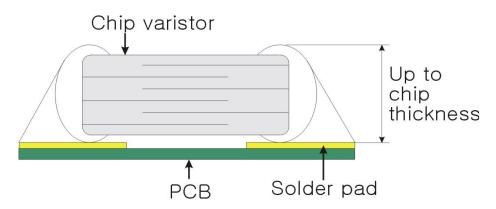
External electrode Silver – Nickel – Tin

Thickness of Ni/Sn plating layer Nickel > 1 μ m, Tin > 2 μ m

3. Dimension Specification


Size	L(mm)	W(mm)	T(mm)	M(mm)
0402	1.0±0.10	0.5±0.10	≤ 0.6	0.20±0.10
0603	1.6±0.15	0.8±0.15	≤ 0.9	0.35±0.10

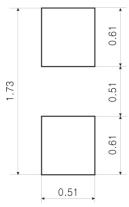
4. Soldering Recommendations


4-1 Soldering profile

4-1-1 Pb free solder paste

4-1-2 Repair soldering

- Allowable time and temperature for making correction with a soldering iron
 : 350 ± 10 °C, 3 sec.
- Optimum solder amount when corrections are made using a soldering iron


4-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

Rev: 01.06.2018 4/5 www.leiditech.com

4-3 Solder pad layout

5. Storage condition

- Storage environment must be at an ambient temperature of 25~35 °C and an ambient humidity of 40~60 % RH
- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.

If 6 months of more have elapsed, check solderability before use.-

Shanghai Leiditech Electronic Co.,Ltd

Email: sale1@leiditech.com Tel: +86- 021 50828806 Fax: +86- 021 50477059

单击下面可查看定价,库存,交付和生命周期等信息

>>Leiditech(雷卯电子)