

Introduction

The HC5FW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HC5FW family gives you the choice of having different current measuring ranges in the same housing.

Features

- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range up to ±100 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T° < +150 °C
- Operating temperature range: -40 °C < T° < +125 °C
- Output voltage: full ratiometric (sensitivity and offset)
- High speed transducer.

Special feature

• Cover without sleeve (reduced insulation).

Advantages

- Good accuracy
- Good linearity
- Low thermal offset drift
- · Low thermal sensitivity drift.

Automotive applications

- Electrical Power Steering
- Starter Generators
- Converters.

Principle of HC5FW family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density *B*, contributing to the rise of the Hall voltage, is generated by the primary current $I_{\rm p}$ to be measured. The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$B(I_{\rm P})$$
 = constant (a) × $I_{\rm P}$

The hall voltage is thus expressed by:

 $V_{\rm H}$ = (Hall coefficient / d) × I × constant (a) × $I_{\rm P}$

With d = thickness of the hall plates

I = current accross the Hall plates

Except for $I_{\rm p},$ all terms of this equation are constant. Therefore:

 $V_{\rm H}$ = constant (b) x $I_{\rm P}$

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.

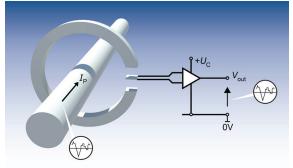
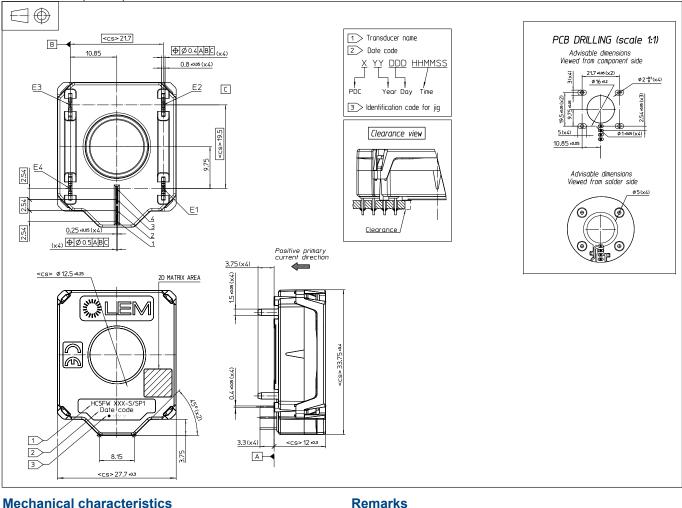
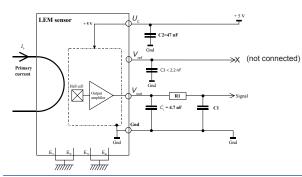



Fig. 1: Principle of the open loop transducer

Dimensions (in mm)

Mechanical characteristics

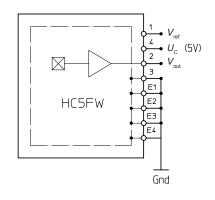
- Plastic case PA 66 GF 25 •
- Magnetic core FeSi alloy •
- Mass 27.5 g •
- Electrical terminal coating Tin plated


IPx00

IP level •

Mounting recommendation

- Connector type • None
- Assembly torque max None
- Soldering profile See page 7 •


Electronic schematic

18December2015/version 1

• R1, C1: low pass filter (optional).

on drawing)

• $V_{out} > V_{o}$ when I_{P} flows in the positive direction (see arrow

Page 2/7

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

www.lem.com

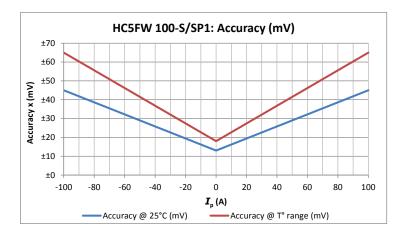
Absolute ratings (not operating)

Parameter	Symbol	Unit	Specification			O and little and
			Min	Typical	Max	Conditions
Maximum supply voltage	U _c	v			8	not operating
					6.5	Exceeding this voltage may temporary reconfigure the circuit until the next power-on
Maximum primary current peak	$\hat{I}_{_{\mathrm{P}}}$	A			3)	
Ambient storage temperature	Ts	°C	-40		125	
Electrostatic discharge voltage	U	kV			2	JESD22-A114-B class 2
Maximum admissible vibration (random)	γ	m·s ⁻²		90	~	10 to 1000 Hz
Rms voltage for AC insulation test, 50 Hz, 1 min	U _d	kV			2.5	50 Hz, 1 min, IEC 60664 part1
Insulation resistance	R _{IS}	MΩ	500			
Creepage distance	d _{cp}	mm	3.6			
Clearance	d _{cı}	mm	2.7			
Comparative traking index	СТІ			550		
Maximum reverse current	I _R	mA	-80		80	

Operating characteristics in nominal range (I_{PN})

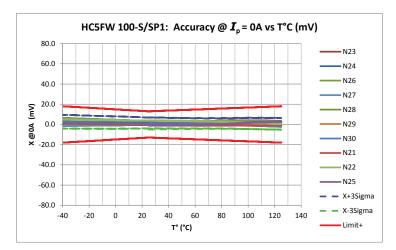
Parameter	Symbol	Unit	Specification			Conditions	
			Min	Typical	Max	Conditions	
Electrical Data							
Primary current, measuring range	$I_{\rm PM}$	A	-100		100		
Primary nominal DC or rms current	I _{PN}	A	-100		100		
Supply voltage 1)	U _c	V	4.75	5.00	5.25		
Ambient operating temperature	T _A	°C	-40		125		
Output voltage (Analog)	V _{out}	V	$V_{\rm out} = (U_{\rm c}/5) \times (V_{\rm o} + G \times I_{\rm P})$		$G \times I_P$)	@ <i>U</i> _c	
Sensitivity	G	mV/A		20		@ U _c = 5 V	
Offset voltage	Vo	v		2.5		@ U _c = 5 V	
Current consumption	I _c	mA		19	25	@ $U_{\rm c} = 5 \text{ V}, -40 \text{ °C} < T_{\rm A} < 125 \text{ °C}$	
Load resistance	R	ΚΩ	10				
Capacitive loading	CL	nF		4.7	6.8		
Output internal resistance	R _{out}	Ω			10	DC to 1 KHz	
		Perforn	nance Data 1)				
Ratiometricity error	ε _r	%		0.5			
Sensitivity error	ε _g	%		±0.6		@ T _A = 25 °C	
Electrical offset voltage	V _{OE}	mV		±3.5		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V	
Magnetic offset voltage	V _{OM}	mV		±2		(a) $T_{\rm A}$ = 25 °C, (b) $U_{\rm C}$ = 5 V, after ± $I_{\rm P}$	
Global accuracy @ 0 A	X _G	mV	-13		13	@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V, Hysteresis included	
Average temperature coefficient of V _{OE}	TCV	mV/°C	-0.08		0.08	@ -40 °C < T° < 125 °C	
Average temperature coefficient of G	TCG _{AV}	%/°C	-0.03		0.03	@ -40 °C < T° < 125 °C	
Linearity error	ε	% I _P	-1		1	Of full range	
Step response time to 90 % $I_{\rm PN}$	t,	μs		2	6	d <i>i</i> /d <i>t</i> = 100 A/µs	
Frequency bandwidth 2)	BW	kHz	40			@ -3 dB	
Phase shift	$\Delta \varphi$	°C	-4		0	@ DC to 1 kHz	
Minimum output voltage	N	V			0.2	@ U _c = 5 V	
Maximum output voltage	- V _{sz}	V	4.8			@ U _c = 5 V	
Output voltage noise peak-peak	V _{no pp}	mV			15	DC to 1 MHz	

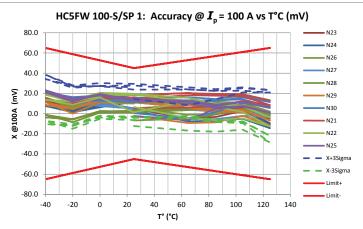
Notes: ¹⁾ The output voltage V_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_c relative to the following formula:


$$I_{\rm P} = \left(\frac{5}{U_{\rm C}} \times V_{\rm out} - V_{\rm O}\right) \times \frac{1}{G} \text{ with G in (V/A)}$$

²⁾ Small signal only to avoid excessive heating of the busbar, core and heating. Measurement with C3 = 1 nF.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

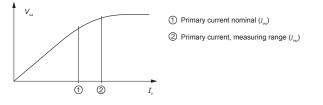



Global Absolute Error (mV)

I _p (A)	Accuracy @ 25 °C (mV)	Accuracy @ T° Rrange (mV)
-100	±45	±65
0	±13	±18
100	±45	±65

Accuracy error specified at ±3 sigma.

Curves in red line represent the tolerance Curves in dotted line represent average ±3 sigma.


18December2015/version 1

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

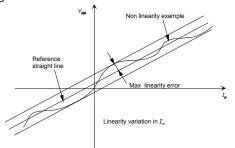
Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

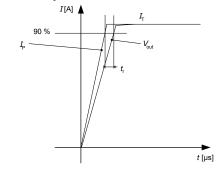

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{\rm PN}$.

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{out} = f(I_p)$. Unit: linearity (%) expressed with full scale of I_{pN} .

Response time (delay time) t.:

The time between the primary current signal $(I_{\rm PN})$ and the output signal reach at 90 % of its final value.



Sensitivity:

The transducer's sensitivity G is the slope of the straight line $V_{out} = f(I_{P})$, it must establish the relation:

$$V_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (G \times I_{\text{P}} + V_{\text{o}})$$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C.

The offset variation $I_{o\tau}$ is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift $TCI_{\rm OEAV}$ is the $I_{\rm OT}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 G_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C. The sensitivity drift $TCG_{\rm AV}$ is the G_{τ} value divided by the temperature range. Deeper and detailed info available is our

Offset voltage @ $I_{p} = 0$ A:

LEM technical sales offices (www.lem.com).

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm o}$ is $U_{\rm c}/2$. So, the difference of $V_{\rm o}$ $-U_{c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

Name	Standard						
THERMAL FATIGUE							
Ageing 85 °C / 85 % HR / 1000 h Thermal cycle test -40 °C / 125 °C / 1000 h Thermal shocks -40 °C / 125 °C / 1000 h High temperature storage at 125 °C / 1000 h Low temperature storage at -50 °C / 1000 h	IEC 60068-2-78 (2001) IEC 60068-2-14 test Nb (01.2009) IEC 60068-2-14 test Na (01.2009) IEC 60068-2-2 (07.2007) IEC 60068-2-1 (03.2007)						
MECHANICAL FATIGUE							
Shocks test (50 m·s² x 10 x 3 axis) Vibration test (random 10 - 2000 Hz / 9.723 g)	IEC 60068-2-27 test Ea (2008)						
ELECTRICAL TESTS							
Phase delay Output noise di/dt (100 A/µs) dv/dt (2 kVA/µs to 2 kV) Withstand voltage (2500 V rms - 50 Hz / 1 min) Insulation resistance (500 Vdc / 1 min)	 98.20.00.575.0 98.20.00.545.0 98.20.00.545.0 ISO 16750-2 (2012)						
EMC TESTS							
Radiated Emissions: Absorber Lined Shielded Enclosure (ALSE) Radiated Immunity: Bulk Current Injection (BCI) Radiated Immunity: Anechoic chamber Resistance to Electrostatic Discharge Voltage	IEC CISPR25 ISO 11452-1 & -4 ISO 11452-1 & -2 ISO 10605 (2001)						

Moisture sensitivity level (MSL) information:

HC5FW 100-S/SP1

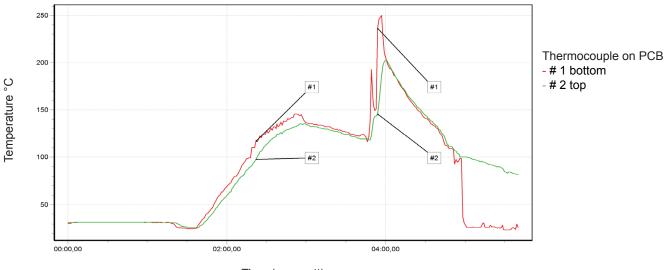
MSL level 1

PCB recommendations:

- Thickness 1.6 mm
- Plated-through holes

Mass/Body pin (E1 to E4. See drawing on page 2): 2 mm diameter Asic pin (1,2,3,4. See drawing on page 2): 1 mm diameter.

Soldering recommendations:


1. Hand soldering

Mass/Body pin (E1 to E4. See drawing on page 2): 200 W / 370 °C iron temperature / 7 mm flat tip (Weller W200) Asic pin (1, 2, 3, 4. See drawing on page 2): 80 W / 410 °C iron temperature / 0.8 mm round tip (Metcal STTC125).

2. Wave soldering

LEM recommends to use the following equipment/parameters for the soldering of the HC5FW family in order to be compliant with the IPC A-610 (less than 75 % land coverage):

- Machine VITRONICS SOLTEC 6622 in combi wave mode
- Flux SLS 65
- Sn96 lead free solder (SAC 305)
- Temperature profile as below.

Time (mm:ss,tt)

3 - SMD soldering by pin in paste STH (SMD through hole)

• Must be validated by user.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)