

Current Transducer LF 2005-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit

E	ect	rica	ai a	ata

$I_{\rm PN}$	Primary nominal RMS current		2000		Α
I_{PM}	Primary current, measuring	g range @ ±24 V	0 ±3	3500	Α
$\hat{I}_{\rm P max}$	Primary withstand peak current (maximum)		20		kA
R_{M}	Measuring resistance		$R_{ m M min}$	$R_{\rm M\; max}$	
	with ±15 V (±5 %)	@ ±2000 A _{max}	0	7.5	Ω
		@ ±2500 A _{max}	0	8.0	Ω
	with ±24 V (0/+20%)	@ ±3500 A _{max}	3	6	Ω
	with ±28.8 V (0 %)	@ $\pm 3000 A_{max}$	3	19	Ω
$I_{\mathrm{S\;N}}$	Secondary nominal RMS c	urrent	400		mA
$N_{\rm P}/N_{\rm S}$	Turns ratio		1:500	00	
$U_{\mathtt{C}}$	Supply voltage 1)		±15	24	V
$I_{\mathtt{C}}$	Current consumption		33 (@	±24 V) + I _S	mA

Accuracy - Dynamic performance data

$\varepsilon_{\mathrm{tot}}$	Total error @ I_{PN} , T_{A} = 25 °C		±0.3		%
$\varepsilon_{\scriptscriptstyle \! L}$	Linearity error		< 0.1		%
_			Тур	Max	
I_{O}	Offset current @ I_P = 0, T_A = 25 °C			±0.5	mA
$I_{\rm OM}$	Magnetic offset current @ $I_{\rm P}$ = 0 and speci	fied $R_{\rm M}$,			
	after an overload	of $3 \times I_{PN}$		±0.2	mA
I_{OT}			±0.2	±0.5	mA
	−40 °C	−25 °C		±1.5	mA
t _{D 90}	Delay time to 90 % of the final output value	for I_{PN} step	p ²⁾ < 1		μs
BW	Frequency bandwidth (-1 dB)		DC	150	kHz

General data

$T_{ m A} \ T_{ m Ast}$	Ambient operating temperature Ambient storage temperature	-40 +85 -50 +85	°C
$R_{\rm S}$	Resistance of secondary winding @ $T_{\rm A}$ = 85 °C	26	Ω
m	Mass Standards	1.5 EN 50155: 20 EN 50121-3-2	

Notes: 1) ±15 V (-5 %) ... ±24 V (+20 %)

 $^{2)}$ For a di/dt = 100 A/µs

³⁾ Additional information available on request.

$I_{PN} = 2000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $U_{\rm c}$ = ±15 ... 24 V ¹⁾
- $U_{\rm d} = 10 \, {\rm kV}$
- $T_A = -40 \, ^{\circ}\text{C} \dots +85 \, ^{\circ}\text{C}$
- Internal shield connected to "- $U_{\rm c}$ "
- Connection to secondary circuit on LEMO EEJ.1B.304.CYC.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phase inverters
- · Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

Railway (fixed installations and onboard).

N° 97.14.69.001.0

Current Transducer LF 2005-S/SP1

In	Insulation coordination				
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	10	kV		
U_{t}	Partial discharge RMS test voltage ($q_{\scriptscriptstyle \rm m}$ < 10 pC)	≥ 4.8 ¹) Min	kV		
$d_{\rm Cp}$	Creepage distance	43.2	mm		
d_{CI}	Clearance	42.2	mm		
CTI	Comparative tracking index (group I)	600			

Note: $^{1)}$ Test carried out with a non-insulated busbar, dimensions 290 × 50 × 10 mm, centered in the through hole.

Safety

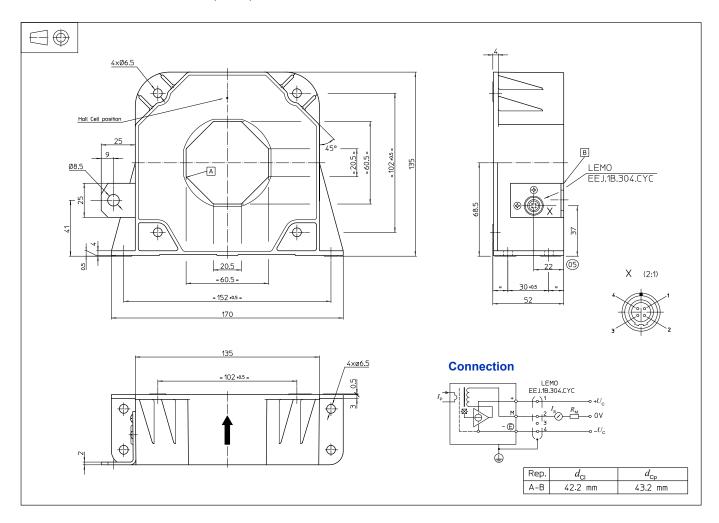
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 2005-S/SP1 (in mm)

Mechanical characteristics

General tolerance ±1 mm

Transducer fastening Vertical or flat position

4 holes Ø 6.5 mm 4 M6 steel screws

Recommended fastening torque

5.5 Nm Primary through-hole 60.5 × 20.5 mm Or Ø max 56 mm

Connection of secondary LEMO EEJ.1B.304.CYC

Connection to the ground hole Ø 8.5 mm M8 steel screw

 Recommended fastening torque 9 Nm

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and delay time) are best with a single bar completely filling the primary hole.

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)