

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HSW S01

Introduction

The HSW family is best suited for DC and AC currents measurement in high power and high voltage automotive applications. It features galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HSW family gives you a choice of having different current measuring ranges in the same housing (from ± 50 up to ± 400 A) or use dual output for redundancy measurement.

Features

- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range up to ±200 A
- Operating temperature range: -40 °C < T < +85 °C
- Output voltage: full ratio-metric (in sensitivity and offset).

Advantages

- Good accuracy
- Good linearity
- · Low magnetic offset
- · Low thermal offset drift
- Low thermal sensitivity drift.

Automotive applications

- Battery pack monitoring
- Hybrid vehicles
- EV and utility vehicles.

Principle of HSW Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall

voltage, is generated by the primary current $I_{\rm p}$ to be measured.

The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$B (I_{\rm P}) = a \times I_{\rm P}$$

The Hall voltage is thus expressed by:
$$U_{\rm H} = (c_{\rm H} / d) \times I_{\rm H} \times a \times I_{\rm P}$$

Except for $I_{\rm p}$ all terms of this equation are constant. Therefore:

$U_{\rm H} = b \times b$	r P
a	constant
b	constant
C _H	Hall coefficient
d	thickness of the Hall plate

I_H current across the Hall plates

The measurement signal $U_{\rm H}$ amplified to supply the user output voltage or current.

Fig. 1: Principle of the open loop transducer.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

Page 1/6

Dimensions (in mm)

Mechanical characteristics

Plastic case

PBT GF30 FeSi alloy

- Magnetic core FeSi
- Pins

•

Brass tin plated 18.3 g

Mass

Mounting recommendation

Connector type

TYCO connector P/N 1473672-1

Electronic schematic

Remarks

- $I_{\mathsf{P}} = \left(\frac{5}{U_{\mathsf{C}}} \times U_{\mathsf{out}} U_{\mathsf{O}}\right) \times \frac{1}{S}$ with S in (V/A)
- $U_{out} > U_{o}$ when I_{p} flows in the positive direction (see arrow on drawing).

System architecture (example)

 $C_{\rm L}$ < 100 nF EMC protection (optional) $R_{\rm c}$ Low pass filter (optional)

On board diagnostic

 $R_{\rm L} > 10 \text{ K}\Omega$. Resistor for signal line diagnostic (optional)

U _{out}	Diagnostic
Open circuit	U _{IN} ≤ 0.15 V
Short GND	U _{IN} ≤ 0.15 V

Page 2/6

04June2019/version 2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice.

LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

HSW S01

Absolute ratings (not operating)

Baramatar	Symbol	Unit	Specification			Conditions	
Parameter	Symbol		Min	Typical	Max	Conditions	
	$U_{\rm C\ max}$	v			8.5	Continuous	
Maximun supply voltage					30	Over voltage, 2 min	
			-14			Reverse voltage, 1 min @ T_A = 25 °C	
Output voltage	$U_{\rm out}$	V			8.5	Continuous	
Output voltage					14	Output over voltage, 1 min @ T_A = 25 °C	
Ambient storage temperature	Ts	°C	-40		125		
Creepage distance	d _{Cp}	mm		6.7			
Clearance	d _{ci}	mm		6.7			
Comparative traking index	CTI			125			
Maximum output current	I _{out max}	mA	-10		10	Continuous	
Electrostatic discharge voltage	$U_{\rm ESD}$	V			8		

Operating characteristics in nominal range ($I_{\rm P\,N}$)

Parameter	Symbol	Unit	Specification			Conditions			
T drameter	Cymbol		Min	Typical	Max	Conditions			
Electrical Data									
Supply voltage ¹⁾	$U_{\rm C}$	V	4.5	5	5.5				
Current consumption	$I_{\rm C}$	mA		8	10				
Output current	$I_{\rm out}$	mA	-1		1	Continuous			
Load resistance	RL	kΩ	10			Pull down resistor			
Output voltage (diagnostic detection open ground)	IJ	V			0.15	with pull-down resistor			
Output voltage (diagnostic detection open supply)	Uout				0.15	with pull-down resistor			
Capacitive loading	C_{L}	nF	1		100				
Ambient operating temperature	T_{A}	°C	-40		85	Temperature range with accuracy guaranteed \pm 3 sigma			
		Per	formance	Data 1)					
Primary nominal DC or current RMS	I _{PN}	А	-200		200				
Offset voltage	Uo	V		2.5		@ U _c = 5 V			
Sensitivity	S	mV/A		10		@ U _c = 5 V			
Output clamping voltage min 1)	I.I.	V		0.25		@ U _c = 5 V			
Output clamping voltage maxi 1)	U _{sz}	V		4.75		@ U _c = 5 V			
Output internal resistance	R _{out}	Ω		1	10				
Frequency bandwidth	BW	Hz		70		@ −3 dB, programmable up to 1114 Hz			
Power-up time		ms			1				

<u>Note</u>: ¹⁾ The output voltage U_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_{c} relative to the following formula:

$$T_{\mathsf{P}} = \left(\frac{5}{U_{\mathsf{C}}} \times U_{\mathsf{out}} - U_{\mathsf{O}}\right) \times \frac{1}{S} \text{ with } S \text{ in (V/A)}$$

Page 3/6

HSW S01

Accuracy data (±35, after PV test)

Parameter	Symbol	Unit	Specification Min Typical Max		ion Max	Conditions		
Electrical Data								
Electrical offset current	I _{oe}	mA		200		@ $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 5 V		
Magnetic offsent current	I _{om}	mA		70		@ $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 5 V		
Offect ourrent	I _o	А		0.3		@ $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 5 V		
iset current				0.5		@ -40 °C < T < 85 °C, $U_{\rm c}$ = 5 V		
Consitiuity orrer	e _s	%		1		@ T _A = 25 °C		
				2		@ −40 °C < <i>T</i> < 85 °C		
Linearity error	ε_{L}	%		0.3		of full range		

Total error

		Unit	Temperature						
Ι _p	Symbol		-40 °C	-20 °C	0 °C	25 °C	65 °C	85 °C	
0 A			0.5	0.45	0.41	0.35	0.45	0.5	
100 A	$\varepsilon_{ m tot}$	А	2.5	2.13	1.3	1.16	1.7	2.5	
200 A			4.5	3.89	3.15	2.3	3.77	4.5	

Accuracy curves

Additional accuracy data (±15, 0 KM)

-50 0 50 100 150 200 250

Primary Current (A)

04June2019/version 2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice.

LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

Page 4/6

HSW S01

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:

The maximum positive or negative discrepancy with a reference

straight line $U_{out} = f(I_P)$. Unit: linearity (%) expressed with full scale of I_{PN} .

Delay time $t_{D 90}$:

The time between the primary current signal $(I_{\rm P\ N})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity *S* is the slope of the straight line $U_{out} = f(I_p)$, it must establish the relation:

$$U_{\text{out}} (I_{\text{P}}) = U_{\text{C}}/5 (S \times I_{\text{P}} + U_{\text{O}})$$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^\circ$ C.

The offset variation I_{0T} is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift $TCI_{\rm O~E~AV}$ is the $I_{\rm O~T}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation S_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 S_{τ} = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift *TCS* _{AV} is the S_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $U_{\rm o}$ is $U_{\rm c}/2$. So, the difference of $U_{\rm o} - U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

04June2019/version 2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice. LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

Page 5/6

Environmental test specifications:

Name	Standard	Cor	ndition						
ELECTRICAL TESTS @ 25 °C									
Dielectric Withstand Voltage test	2500 V AC / 1 min / 50 Hz	Functional Test Before & After test	Test done before and after 85/85 test. Test until destruction only on 1 part, at the end to have the limit level.						
Insulation Resistance test	500 V DC, time = 60 s $R_{\rm INS} \ge 500$ MΩ Minimum	Functional Test Before & After test	Test done before and after 85/85 test.						
	ENVIRONMENTAL TE	STS (CLIMATIC)							
Thermal shock	IEC 60068-2-14 Na (01/2009)	ISO 16750-4 ξ 5.3.2 (04/2010) Connector up-side, Cover over to sensor to emulate junction box	$T = "T \circ C$ Operating Min & Max" $\circ C$, Duration = 500 cycles; 30 min/ 30 min U_c = NO power supply, but with handler; Check after stab. @ 25 $\circ C$ (End test)						
Steady state T °C Humidity bias life test	JESD 22-A101 (03/2009)	Connctor up-side, Cover over to sensor to emulate junction box	T = 85 °C; RH = 85 %; Duration = 1000 h $U_c = 5 \text{ V}; I_p = 100 \text{ A}; \text{ global error} monitoring}$ Check after stab. @ 25 °C (End test) Cross section with visual inspection according to IPC-A-610						
	MECHANICAL	TESTS							
Vibration Random in <i>T</i> °C	IEC 60068-2-64 (02/2008)	ISO 16750-3	8 h for each axes; $T = "T \circ C$ Operating Min & Max" $\circ C$, $U_c = 5 \forall; I_p = 0 A;$ Offset Monitoring Check after stab. @ 25 $\circ C$ (End test)						
Shocks	IEC 60068-2-27 (02/2008)	ISO 16750-3 ξ4.2 (12/2012)	Level & Frequency = by default ξ 4.2.2 Half-sine pulse; 10 * in each direction (total 60 shocks) Peak acceleration; Longitudinal 500 m/s ² duration 6 ms Transversal 500 m/s ² duration 6 ms Vertical 500 m/s ² duration 6 ms U_c = NO power supply Check after stab. @ 25°C (End test)						
	EMC								
RE 310 - Radiated RF Emissions	FORD - FMC 1278								
RI 112 - RF Immunity, Bulk Current Injection	FORD - FMC 1278								
RI 114 - Immunity, Reverberation Method	FORD - FMC 1278								
RI 115	FORD - FMC 1278								
RI 140 - Immunity to Magnetic Field	FORD - FMC 1278								
RI 140 - Coupled Immunity	FORD - FMC 1278								
RI 150 - Couped Immunity	FORD - FMC 1278								
CI 260 - Immunity to Voltage Dropout	FORD - FMC 1278								
CI 280 - Electrostatic Discharge - Handling	FORD - FMC 1278								
CI 280 - Electrostatic Discharge - Powered	FORD - FMC 1278								

Page 6/6

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)