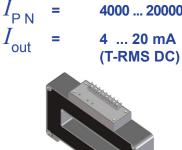


# Current Transducer HAZ 4000 ... 20000-SRI/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.



# **Electrical data**


| Ele                                                                                                                               | ectrical d                                                                             | ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                            |                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|
| Primar<br>DC cur<br>or AC p                                                                                                       |                                                                                        | Primary current measuring range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Туре                                     |                                            |                                                                                         |
| 1                                                                                                                                 | I <sub>Р N</sub> (А)                                                                   | I <sub>РМ</sub> (А)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                            |                                                                                         |
|                                                                                                                                   | 4000<br>6000                                                                           | ±4000<br>±6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | 4000-SRI/SP1<br>6000-SRI/SP1               |                                                                                         |
|                                                                                                                                   | 10000<br>12000                                                                         | ±10000<br>±12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HAZ                                      | 10000-SRI/SP1<br>12000-SRI/SP1             |                                                                                         |
|                                                                                                                                   | 14000<br>20000                                                                         | ±14000<br>±20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 14000-SRI/SP1<br>20000-SRI/SP1             |                                                                                         |
| $U_{\rm C}$<br>$I_{\rm C}$<br>$\hat{I}_{\rm P}$                                                                                   | Current c                                                                              | oltage (±5 %)<br>onsumption<br>capability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | ±15<br>±50<br>30000                        | V<br>mA<br>A                                                                            |
| R <sub>INS</sub><br>I <sub>out</sub>                                                                                              | Insulation<br>Output cu                                                                | resistance @ 500 V I<br>rrent (Analog) @ $\pm I_{PN}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | > 1000                                     | MΩ                                                                                      |
| R <sub>L</sub><br>R <sub>out</sub>                                                                                                | (+4 mA@<br>Load resi<br>Output in                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | approx.                                  | +4 20<br>< 300<br>20                       | mA DC<br>Ω<br>Ω                                                                         |
|                                                                                                                                   | curacy -                                                                               | Dynamic perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nance data                               |                                            |                                                                                         |
| $\varepsilon$<br>$\varepsilon_{\rm L}$<br>$I_{\rm OE}$<br>$I_{\rm OM}$<br>$TCI_{\rm OE}$<br>$TCI_{\rm OU}$<br>$t_{\rm D90}$<br>BW | Linearity<br>Electrical<br>Magnetic<br>after an e<br>Temperat<br>Temperat<br>Delay tim | $T_{PN}$ , $T_A = 25 \text{ °C}$ (exclude<br>error <sup>1)</sup> 0 $\pm I_{PN}$<br>offset current, $T_A = 25$<br>offset current @ $I_P = 0$<br>excursion of 1 × $I_{PN}$<br>cure of coefficient of $I_0$<br>rure of coefficient of $I_0$<br>e @ 90 % of $I_{PN}^{-2}$<br>explandwidth ( $\pm 3 \text{ dB}$ ), and the set of t | °C, @ $I_{p} = 0$<br>)<br>(% of reading) | < ±0.05<br>< 400                           | %<br>% of I <sub>PN</sub><br>8 mA<br>% of I <sub>PN</sub> /K<br>%/K<br>ms<br>5 to 3 kHz |
| Ge                                                                                                                                | eneral dat                                                                             | ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                            |                                                                                         |
| $T_{A}$<br>$T_{A  \text{st}}$<br>m                                                                                                | Ambient s<br>Mass                                                                      | operating temperature<br>storage temperature<br>s <sup>4), 5)</sup> : EN 50178: 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | approx.                                  | -25 +89<br>-30 +9<br>6<br>07, EN 50121-3-2 | 00 °C<br>kg                                                                             |
|                                                                                                                                   | <sup>2)</sup> For a d <i>i</i> /d<br><sup>3)</sup> To avoid e                          | data exclude the elect<br>t = 50 A/µs.<br>excessive core heating<br>onsult characterisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                        | technical details                          |                                                                                         |

- <sup>4)</sup> Please consult characterisation report for more technical details and application advice.
- <sup>5)</sup> Deviation of the offset during the test IEC 61000-4-3 @ 20 V/m between 100 and 220 MHz and between 450 and 550 MHz.

N° 74.85.74.001.0; N° 74.85.76.001.0; N° 74.85.78.001.0; N° 74.85.80.001.0; N° 74.85.81.001.0; N° 74.85.84.001.0;

13May2020/version 11

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice



=

4000 ... 20000 A

## **Features**

- Hall effect measuring principle
- Galvanic separation between • primary and secondary circuit
- Insulation voltage 17 kV RMS/50 Hz/1 min
- Low power consumption
- Package in PBT meeting UL 94-V0.

### **Special feature**

• True-RMS, 4 ... 20 mA DC current output.

## Advantages

- Easy installation
- Small size and space savings
- Only one design for wide current rating range
- High immunity to external interference.

### Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor • drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.
- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- · Battery chargers.

## **Application domain**

 Industrial and Railway (fixed installations and onboard).

Page 1/3

LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com



## Current Transducer HAZ 4000 ... 20000-SRI/SP1

| Insulation coordination       |                                                  |       |    |  |  |  |
|-------------------------------|--------------------------------------------------|-------|----|--|--|--|
| $U_{\rm d}$                   | RMS voltage for AC insulation test, 50 Hz, 1 min | 17    | kV |  |  |  |
| $U_{e}$                       | Partial discharge extinction RMS voltage @ 10 pC | 3.75  | kV |  |  |  |
| $U_{Ni}$                      | Impulse withstand voltage 1.2/50 µs              | 32    | kV |  |  |  |
|                               |                                                  | Min   |    |  |  |  |
| d <sub>Cp</sub>               | Creepage distance                                | > 45  | mm |  |  |  |
| $d_{_{ m Cp}} \ d_{_{ m Cl}}$ | Clearance                                        | > 45  | mm |  |  |  |
| CTI                           | Comparative Tracking Index (group I)             | > 600 |    |  |  |  |

## **Applications examples**

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

|                                      | EN 50178                 | IEC 61010-1     |
|--------------------------------------|--------------------------|-----------------|
| $d_{\rm Cp}, d_{\rm Cl}, U_{\rm Ni}$ | Rated insulation voltage | Nominal voltage |
| Basic insulation                     | 8000 V                   | 9000 V          |
| Reinforced insulation                | 3000 V                   | 4000 V          |

#### Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.



This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.



Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Page 2/3



## Dimensions HAZ 4000 ... 2000-SRI/SP1 (in mm)



### **Mechanical characteristics**

- General tolerance
- Aperture for primary conductor
- Transducer fastening

Recommended fastening torque

Connection to secondary

 $\pm 0.5$  mm 162 mm  $\times 42$  mm  $(\pm 2$  mm)  $4 \times M5$ (not supplied) < 5 N·m FUJICON F2322AZ (6 terminals)

#### **Remarks**

- $U_{\text{out}}$  is positive when  $I_{\text{P}}$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 120 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: www.lem.com/ SUPPORT/BROCHURES/LEM Transducers Generic Mounting Rules.

Page 3/3

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)