

Voltage transducer DVL 1000/SP9

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Bipolar and insulated measurement up to 1500 V
- Input connection with M5 studs.

Special features

- Voltage output
- Output connections with M5 inserts.

Advantages

- Low consumption and low losses
- Compact design
- Good behavior under common mode variations
- Excellent accuracy (offset, sensitivity, linearity)
- Good delay time
- Low temperature drift
- High immunity to external interferences.

Applications

- AC variable speed and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Renewable Energy (Solar and Wind)
- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- High power drives
- Substations.

Standards

- EN 50155: 2017
- EN 50178: 1997
- EN 50124-1: 2017
- EN 50121-3-2: 2016
- UL 508: 2013
- IEC 61010-1: 2010.

Application Domains

- Railway (fixed installations and onboard)
- Industrial.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Page 1/9

Absolute maximum ratings

DVL 1000/SP9

Parameter	Symbol	Unit	Value
Maximum supply voltage (U_{P} = 0 V, 0.1 s)	$\pm \hat{U}_{\rm C\ max}$	V	±34
Maximum supply voltage (working) (-40 85 °C)	$\pm U_{\rm C\;max}$	V	±26.4
Maximum input voltage (-40 85 °C)	U_{Pmax}	V	1500
Maximum steady state input voltage (-40 85 °C)	U _{PN max}	V	1000 see derating on figure 2

Absolute maximum ratings apply at 25 °C unless otherwise noted.

Stresses above these ratings may cause permanent damage.

Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 7

Standards

- USR indicated investigation to the Standard for Industrial Control Equipment UL 508.
- CNR Indicated investigation to the Canadian standard for Industrial Control Equipment CSA C22.2 No. 14-13.

Conditions of acceptability

When installed in the end-use equipment, consideration shall be given to the following:

- 1 These devices must be mounted in a suitable end-use enclosure.
- 2 The terminal have not been evaluated for field wiring.
- 3 Low voltage circuits are intended to be powered by a circuit derived from an isolating source (such as transformer, optical isolator, limiting impedance or electro-mechanical relay) and having no direct connection back to the primary circuit (other than through the grounding means).

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Page 2/9

DVL 1000/SP9

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	$U_{\rm d}$	kV	8.5	100 % tested in production
Impulse withstand voltage 1.2/50 μs	$U_{ m Ni}$	kV	16	
Partial discharge RMS test voltage (q_m < 10 pC)	$U_{\rm t}$	V	2700	
Insulation resistance	R _{INS}	MΩ	200	Measured at 500 V DC
Clearance (pri sec.)	d _{ci}	mm	See dimensions	Shortest distance through air
Creepage distance (pri sec.)	d _{Cp}	mm	drawing on page 9	Shortest path along device body
Case material	-	-	V0	According to UL 94
Comparative tracking index	CTI		600	
Maximum DC common mode voltage	$\begin{array}{c} U_{\rm H+} \mbox{+} U_{\rm H-} \\ \mbox{and} \ U_{\rm H+} \mbox{-} U_{\rm H-} \end{array}$	kV	≤ 4.2 ≤ U _{PM}	

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Мах	
Ambient operating temperature	T _A	°C	-40		85	
Ambient storage temperature	T _{Ast}	°C	-50		90	
Equipment operating temperature class					EN 50155: OT6	
Switch-on extended operating temperature class					EN 50155: ST0	
Rapid temperature variation class					EN 50155: H2	
Conformal coating type					EN 50155: PC2	
Mass	m	g		250		

RAMS data

Parameter	Symbol	Unit	Min	Тур	Max
Useful life class					EN 50155: L4
Mean failure rate	λ	h-1		1/1835004	According to IEC 62380: 2004 $T_A = 45 \text{ °C}$ ON: 20 hrs/day ON/OFF: 320 cycles/year $U_C = \pm 24 \text{ V}, U_P = 1000 \text{ V}$

Page 3/9

Electrical data

DVL 1000/SP9

At $T_A = 25 \text{ °C}$, $\pm U_C = \pm 24 \text{ V}$, $R_M = 100 \text{ k}\Omega$, unless otherwise noted. Lines with a * in the conditions column apply over the -40 ... 85 °C ambient temperature range.

Parameter	Symbol	Unit	Min	Тур	Max		Conditions
Primary nominal RMS voltage	U _{pn}	V		1000		*	
Primary voltage, measuring range	U _{PM}	V	-1500		1500	*	
Measuring resistance	R _M	Ω	2000			*	
Secondary nominal RMS voltage	U _{SN}	V		6.66		*	
Secondary voltage	$U_{\rm S}$	V	-10		10	*	
Supply voltage	$\pm U_{\rm c}$	V	±13.5	±24	±26.4	*	
Rise time of $U_{\rm c}$ (10 – 90 %)	t _{rise}	ms			100		
Current consumption	I _c	mA		20	25		
nrush current							NA (EN 50155)
nterruptions on power supply voltage class							NA (EN 50155)
Supply change-over class							NA (EN 50155)
Offset voltage	U_{O}	mV	-7	0	7		100 % tested in production
Temperature variation of U_{o}	U _{o T}	mV	-25 -30		25 30		−25 85 °C −40 85 °C
Sensitivity	S	mV/V		6.66			10 V for primary 1500 V
Sensitivity error	€ _S	%	-0.2	0	0.2		
Thermal drift of sensitivity	ε_{s_T}	%	-0.5		0.5	*	
inearity error	$\varepsilon_{\rm L}$	% of $U_{\rm PM}$	-0.5		0.5	*	±1500 V range
Total error	$\varepsilon_{\mathrm{tot}}$	% of $U_{\rm PN}$	-0.5 -1		0.5 1	*	25 °C; 100 % tested in production −40 85 °C
RMS noise voltage referred to primary	$U_{\rm no}$	mV		3			1 Hz to 100 kHz
Delay time @ 10 % of the final output value U_{PN} step	t _{D 10}	μs		30			
Delay time @ 90 % of the final output value U_{PN} step	t _{D 90}	μs		50	60		0 to 1000 V step, 6 kV/µs
Frequency bandwidth	BW	kHz		14 8 2			-3 dB -1 dB -0.1 dB
Start-up time	t _{start}	ms		190	250	*	
Resistance of primary (winding)	R _P	ΜΩ		11.3		*	
Total primary power loss @ U _{PN}	Pp	mW		0.09		*	

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of a product.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Page 4/9

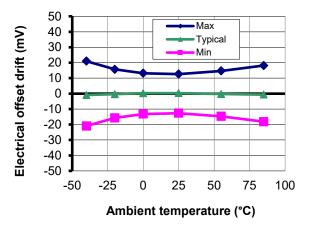


Figure 1: Electrical offset thermal drift

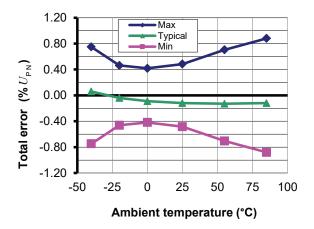


Figure 2: Total error in temperature

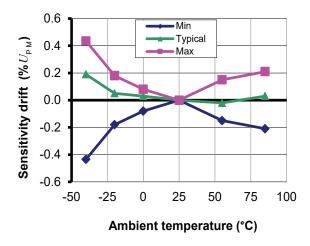


Figure 3: Sensitivity thermal drift

input volta	ge						LeCroy
		1	 				
outp	ut current	/	-				
			 Input (_: 200	V/div		
			 Output Timeba	U _s : 1.3	3 V/d <i>iv</i> us/d <i>iv</i>		
			 		H-0, 41,		
		odput ourrent	odput current	output current	ortenda a construction of the second of the	output current	

Figure 4: Typical step response (0 to 1000 V)

Page 5/9

Typical performance characteristics continued

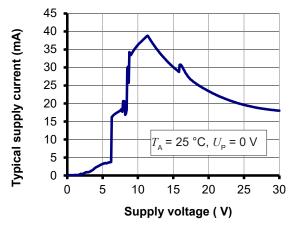


Figure 5: Supply current function of supply voltage

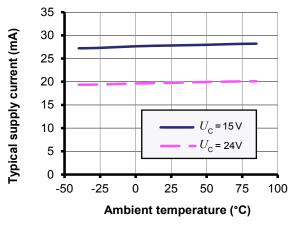
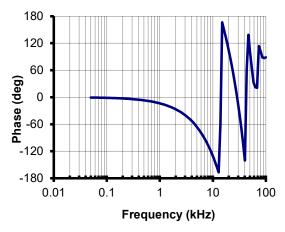



Figure 6: Supply current function of temperature

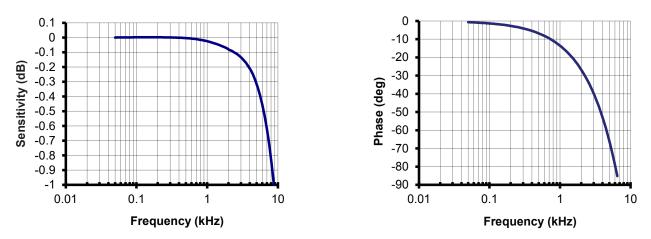
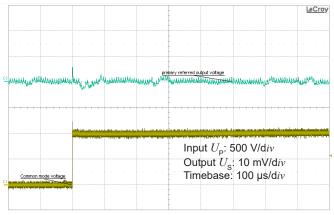
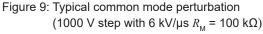


Figure 8: Typical frequency and phase response (detail)

20October2021/Version 4


LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com


Page 6/9

DVL 1000/SP9

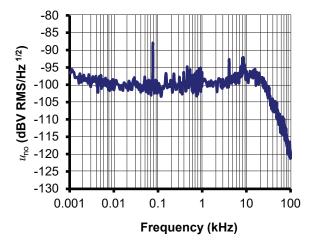


Figure 11: Typical noise voltage spectral density $u_{\rm pp}$ with $R_{\rm M}$ = 2 k Ω

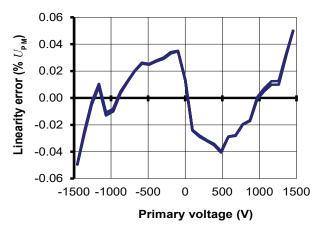


Figure 13: Typical linearity error at 25 °C

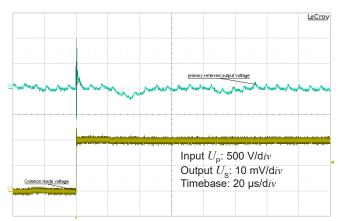


Figure 10: Detail of typical common mode perturbation (1000 V step with 6 kV/µs, $R_{\rm M}$ = 100 kΩ)

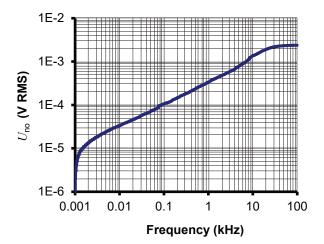


Figure 12: Typical total output RMS noise voltage with $R_{\rm M}$ = 2 k Ω ($f_{\rm c}$ is upper cut-off frequency of bandpass, low cut off frequency is 1 Hz)

Figure 11 (noise voltage spectral density) shows that there are no significant discrete frequencies in the output.

Figure 12 confirms the absence of steps in the total output RMS noise voltage that would indicate discrete frequencies. To calculate the noise in a frequency band f1 to f2, the formula is:

$$U_{\rm no}(f1 \text{ to } f2) = \sqrt{U_{\rm no}(f2)^2 - U_{\rm no}(f1)^2}$$

with $U_{no}(f)$ read from figure 12 (typical, RMS value).

Example: What is the noise from 10 to 100 Hz? Figure 12 gives $U_{no}(10 \text{ Hz}) = 33 \text{ }\mu\text{V}$ and $U_{no}(100 \text{ Hz}) = 106 \text{ }\mu\text{V}$. The output RMS noise voltage is therefore:

$$\sqrt{(106 \times 10^{-6})^2 - (33 \times 10^{-6})^2}$$
 = 100 μV

Page 7/9

LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

DVL 1000/SP9

The schematic used to measure all electrical parameters are:

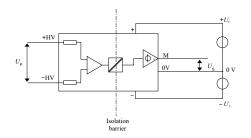


Figure 14: Standard characterization schematics for voltage output transducers ($R_{\rm M}$ = 100 k Ω unless otherwise noted)

Transducer simplified model

The static model of the transducer at temperature T_A is:

$$\begin{array}{l} U_{\rm S} = S \cdot U_{\rm P} + \varepsilon \\ \text{In which} \\ \varepsilon = U_{\rm OE} + U_{\rm OT}(T_{\rm A}) + \varepsilon_{\rm S} \cdot S \cdot U_{\rm P} + \varepsilon_{\rm ST}(T_{\rm A}) \cdot S \cdot U_{\rm P} + \varepsilon_{\rm L} \cdot S \cdot U_{\rm PM} \\ U_{\rm S} & : \text{secondary voltage (V)} \\ S & : \text{sensitivity of the transducer (µA/V)} \\ U_{\rm P} & : \text{primary voltage, measuring range (V)} \\ U_{\rm PM} & : \text{primary voltage, measuring range (V)} \\ T_{\rm A} & : \text{ambient operating temperature (°C)} \\ U_{\rm OE} & : \text{electrical offset voltage (V)} \\ U_{\rm OT}(T_{\rm A}) & : \text{temperature variation of } V_{\rm O} \text{ at temperature } T_{\rm A}(V) \\ \varepsilon_{\rm S} & : \text{sensitivity error at 25 °C} \\ \varepsilon_{ST}(T_{\rm A}) & : \text{thermal drift of sensitivity at temperature } T_{\rm A} \\ \varepsilon_{\rm I} & : \text{linearity error} \end{array}$$

This is the absolute maximum error. As all errors are independent, a more realistic way to calculate the error would be to use the following formula:

$$\varepsilon = \sqrt{\sum_{i=1}^{N} \varepsilon_i^2}$$

Sensitivity and linearity

Performance parameters definition

To measure sensitivity and linearity, the primary voltage (DC) is cycled from 0 to $U_{\rm PM}$, then to $-U_{\rm PM}$ and back to 0 (equally spaced $U_{\rm PM}$ /10 steps).

The sensitivity *S* is defined as the slope of the linear regression line for a cycle between $\pm U_{PM}$.

The linearity error ε_{L} is the maximum positive or negative difference between the measured points and the linear regression line, expressed in % of the maximum measured value.

Electrical offset

The electrical offset voltage $U_{\rm O\,E}$ is the residual output voltage when the input voltage is zero.

The temperature variation U_{0T} of the electrical offset voltage U_{0E} is the variation of the electrical offset from 25 °C to the considered temperature.

Total error

The total error $\varepsilon_{\rm tot}$ is the error at $\pm U_{\rm P\,N}$, relative to the rated value $U_{\rm P\,N}$. It includes all errors mentioned above.

Delay times

The delay time $t_{D 10}$ and the delay time $t_{D 90}$ are shown in the next figure.

Both depend on the primary voltage dv/dt. They are measured at nominal voltage.

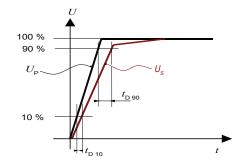
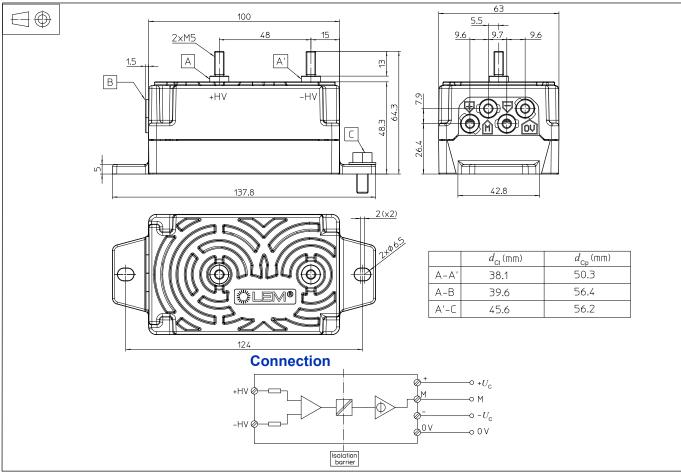



Figure 15: Delay time $t_{D 90}$ @ 90 and delay time $t_{D 10}$ @ 10

Page 8/9

Dimensions (in mm)

DVL 1000/SP9

Safety

Mechanical characteristics

• General tolerance

• Transducer fastening

Connection of secondary

- ±1 mm
- 2 holes Ø 6.5 mm 2 M6 steel screws
- Recommended fastening torque 4 N·m Connection of primary
 - 2 M5 threaded studs
- Recommended fastening torque 2.2 N·m
- 4 M5 threaded inserts (max. screw length is 12 mm) Recommended fastening torque 2.2 N·m

Remarks

•

•

- U_s is positive when a positive voltage is applied on +HV.
- The transducer is directly connected to the primary voltage. •
- The primary cables have to be routed together all the way. •
- The secondary cables also have to be routed together all • the way.
- Installation of the transducer is to be done without primary • or secondary voltage present.
- Installation of the transducer must be done unless • otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/.

Note: Additional information availble on request.

20October2021/Version 4

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Page 9/9 LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

accordance with the manufacturer's operating instructions.

circuits according to IEC 61010-1.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary connections, power supply). Ignoring this warning can lead to injury and/ or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

This transducer must be used in limited-energy secondary

This transducer must be used in electric/electronic equipment

with respect to applicable standards and safety requirements in

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)