

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH3DR 1500-S07/SP7

Introduction

The HAH3DR-S07 family is a tri-phase transducer for DC, AC, or pulsed currents measurement in automotive applications. It offers a galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Features

- · Open Loop transducer using the Hall effect sensor
- Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range up to ±1500 A
- Maximum RMS primary admissible current: limited by the busbar, the magnetic core or ASIC T < +125 °C
- Operating temperature range: -40 °C < T < +125 °C
- Output voltage fully ratiometric (in sensitivity and offset)
- All in one tri-phase transducer
- Perfect fit to Infineon 'HybridPACK [™]' drive IGBT.

Special Features

- Special mounting interface
- Enlarged aperture compatible with the busbar 1.0 mm and 1.5 mm thickness.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- High frequency bandwidth
- No insertion losses
- Very fast delay time.

Automotive applications

- Starter Generators
- Inverters
- HEV applications
- EV applications
- DC / DC converter.

Principle of HAH3DR S07 family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall

voltage, is generated by the primary current $I_{\rm p}$ to be measured.

The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$B(I_{\mathsf{P}}) = a \times I_{\mathsf{P}}$$

The Hall voltage is thus expressed by:

$$U_{\text{Hall}} = (c_{\text{Hall}} / d) \times I_{\text{Hall}} \times a \times I_{\text{F}}$$

Except for $I_{\rm P}$ all terms of this equation are constant. Therefore:

U_{Hall} = b	× I _P
а	constant
b	constant
\mathcal{C}_{Hall}	Hall coefficient
d	thickness of the Hall plate
$I_{\rm Hall}$	current across the Hall plates

The measurement signal $U_{\rm Hall}$ amplified to supply the user output voltage or current.

Fig. 1: Principle of the open loop transducer.

N° 97.H2.65.077.0

15November2022/Version 1

Dimensions (in mm)

HAH3DR 1500-S07/SP7

Mechanical characteristics

- Materials
 - CuSn6.Sn Plating
- PinsMass
- 108 ±5 % g

PBT-GF30

Mounting recommendation

- Positioning refers to drawing
- Secondary connection Pressfit (see dimensions)
 - Max. insertion force for 5 press fit pins = 500 N
 - Min. retention force after mounting = 125 N
- M4 screws
- Recommended torque 2 N·m ±10 %
- DELTA PT [®] WN 5451 30, torque = 0.8 N⋅m ±5 %

Remark

 $U_{\rm out}$ > $U_{\rm o}$ when $I_{\rm p}$ flows in the positive direction (see arrow on drawing).

System architecture (example)

 C_{L} < 2.2 nF EMC protection (optional) RC Low pass filter (optional).

On board diagnostic

 $R_{l} > 10 \text{ k}\Omega$. Resistor for signal line diagnostic (optional).

LEM reserves the right to carry out modifications on its transducers, in order to improve them.

Absolute ratings (not operating)

HAH3DR 1500-S07/SP7

Devemator	Sumbol	Unit	Specification			Conditions	
Parameter	Symbol	Unit	Min	Typical	Max	Conditions	
					8	Continuous not operating	
Maximum supply voltage	$U_{\rm Cmax}$	V	-0.5		6.5	Exceeding this voltage may temporarily reconfigure the circuit until the next power on	
Ambient storage temperature	T _{A st}	°C	-40		125		
Electrostatic discharge voltage	$U_{\rm ESD}$	kV			8		
RMS voltage for AC insulation test	$U_{\rm d}$	kV			2.5	50 Hz, 1 min, IEC 60664 part1	
Creepage distance	d _{Cp}	mm	4.9				
Clearance	d _{ci}	mm	3.3				
Comparative tracking index	CTI		PLC3				
Insulation resistance	R _{INS}	MΩ	500 500 V DC, ISO 16750		500 V DC, ISO 16750		

Operating characteristics

All characteristics noted under conditions -1500 A $\leq I_{\rm p} \leq$ 1500 A, 4.75 V $\leq U_{\rm c} \leq$ 5.25 V, -40 °C $\leq T_{\rm A} \leq$ 125 °C, unless otherwise noted.

Paramotor	Symbol	Unit	Specification			Conditions
Falailletei			Min	Typical	Max	Conditions
Electrical Data						
Primary current, measuring range	I _{PM}	Α	-1500		1500	
Supply voltage 1)	Uc	V	4.75	5	5.25	
Ambient operating temperature	T _A	°C	-40		125	
Output voltage (Analog)	U_{out}	V	$U_{\rm out} = (U_{\rm C}/5) \times (U_{\rm O} + S \times I_{\rm P})$		$+ S \times I_{P}$)	@ T _A = 25 °C
Sensitivity	S	mV/A		1.33		
Offset voltage	Uo	V		2.5		
Current consumption	I _c	mA		45	60	@ U _c = 5 V
Load resistance	R	ΚΩ	10			
Output internal resistance	R _{out}	Ω		1	10	
Performance Data						
Ratiometricity error	ε _r	%		±0.5		
Sensitivity error	€ _S	%		±0.6		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V
Electrical offset voltage	U _{oe}	mV		±2		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V
Magnetic offset voltage	U _{om}	mV		±1		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V, after ± $I_{\rm PM}$
Average temperature coefficient of U_{OE}	TCU _{OEAV}	mV/°C		±0.05		
Average temperature coefficient of S	TCS _{AV}	%/°C		±0.03		
Linearity error	ε _L	%	-1		1	% of linear range $I_{\rm P}$ < 1300 A
Delay time to 90 % to the final output value for $I_{\rm PN}$ step	t _{D 90}	μs		2	6	d <i>i</i> /d <i>t</i> = 100 A / μs
Frequency bandwidth 2)	BW	kHz	40			@ -3 dB
Phase shift	$\Delta \varphi$	0	-4			@ DC to 1 kHz

¹⁾ The output voltage U_{out} is fully ratiometric. The offset and sensitivity are dependent on the supply voltage U_{c} relative to the following formula: $I_{P} = \left(\frac{5}{U_{c}} \times U_{out} - U_{O}\right) \times \frac{1}{s}$ with *s* in (V/A) ²⁾ Primary current frequencies must be limited in order to avoid excessive heating of the busbar, magnetic core and the ASIC (see feature Notes:

paragraph in page 1).

HAH3DR 1500-S07/SP7

Total error

Primary current	Тс	otal error @ 25	°C	Tot	al error @ <i>T</i> rai	nge
(A)	(mV)	(A)	(%)	(mV)	(A)	(%)
-1500	±60	±45	3.0 %	±120	±90	6.0 %
-1300	±40	±30	2.0 %	±80	±60	4.0 %
0	±15	±11.25	0.8 %	±20	±15	1.0 %
1300	±40	±30	2.0 %	±80	±60	4.0 %
1500	±60	±45	3.0 %	±120	±90	6.0 %

15November2022/Version 1

LEM reserves the right to carry out modifications on its transducers, in order to improve them.

Page 4/6 LEM International SA Route du Nant-d'Avril, 152 1217 Meyrin www.lem.com

HAH3DR 1500-S07/SP7

PERFORMANCES PARAMETERS DEFINITIONS

Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:

The maximum positive or negative discrepancy with a reference

straight line $U_{out} = f(I_p)$. Unit: linearity (%) expressed with full scale of I_{PN} .

Delay time $t_{D 90}$:

The time between the primary current signal ($I_{\rm P~N}$) and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity *S* is the slope of the straight line $U_{\text{out}} = f(I_p)$, it must establish the relation:

$$U_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (S \times I_{\text{P}} + U_{\text{O}})$$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^{\circ}$ C.

The offset variation I_{OT} is a maximum variation the offset in the temperature range:

The offset drift TCI_{OEAV} is the I_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation S_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range: S_{τ} = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C. The sensitivity drift *TCS*_{AV} is the S_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0 A$:

The offset voltage is the output voltage when the primary current

is zero. The ideal value of $U_{\rm o}$ is $U_{\rm c}/2$. So, the difference of $U_{\rm o} - U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

LEM reserves the right to carry out modifications on its transducers, in order to improve them. LEM International SA Route du Nant-d'Avril, 152 1217 Meyrin www.lem.com

Page 5/6

Verification Test Specification

HAH3DR 1500-S07/SP7

Name	Standard	Condition						
ELECTRICAL TESTS								
Frequency bandwidth	LEM 98.20.00.538.0	30 Hz to 100 kHz; @ 20 A peak; ≥40 kHz @ −3 dB						
Phase delay	LEM 98.20.00.538.0	$U_{\rm c}$ = 5 V, 30 Hz to 100 kHz; At 20 A peak; Phase delay $\ge -4^{\circ}$ @ 1 kHz						
Delay time; di/dt	LEM 98.20.00.545.0	100 A/µs $I_{\rm P}$ pulse = 1100 A; $t_{\rm D90}$ of $I_{\rm PN} \le 6$ µs						
du/dt	LEM 98.20.00.545.0	Slope: 5 kV/µs U = 1000 V						
ENVIRONMENTAL TESTS								
Ageing 85 °C /85 % <i>RH</i>	JESD 22-A101 (03/2009)	$T^{\circ}C = 85^{\circ}C; RH = 85^{\circ}K;$ Duration = 1000 h $U_{c} = 5 \text{ V}; I_{p} = 0 \text{ A};$ Monitoring each 60 min						
Low temperature storage	ISO 16750-4 § 5.1.1.2 (04/2010)	T °C = -40 °C, Duration = 24 h; U_c = 5 V Monitoring: 2 times per hour						
High temperature storage	ISO 16750-4 § 5.1.2.2 (04/2010)	T °C = 125 °C, Duration = 96 h; U_c = 5 V Monitoring 2 times per hour						
Humidity heat, cyclic test: Test 2 Composite temperature/humidity cyclic test	ISO 16750-4 § 5.6.2.3 (04/2010)	<i>T</i> °C = −10 °C/ +65 °C , Humidity = 93 % Duration = 240 h; (10 cycles)						
Thermal shock	ISO 16750-4 § 5.3.2 (04/2010)	$T^{\circ}C = -40^{\circ}C \& 125^{\circ}C$, Duration = 500 cycles; 40 mins/40 mins $U_{c} = NO$ power supply (\equiv unconnected) and No wiring harness						
Sinus Vibration	ISO 16750-3 § 4.1.2.2.2.2 (12/2012)	Monitoring U_c and U_{out} is mandatory,Temperature -40/125 °C, 22 H/axis, 100 Hz to 440 Hz, Sweep: \leq 0.5 oct/min ;						
Random Vibration	ISO 16750-3 § 4.1.2.2.2.3 (12/2012)	Monitoring $U_{\rm c}$ and $U_{\rm out}$ is mandatory, Temperature –40/125 °C 10 to 2000 Hz 10 G (RMS), 22 H/axis						
echanical Shocks IEC 60068-2-29 IEC 60068-2-27		Pothole: Pulse shape: half sine,peak 25 G, 20 ms; 400 shocks per direction (total 2400), Power on with U_c and U_{out} monitoring Collision: Pulse shape: half sine,peak 50 G, 11 ms; 6 shocks per direction (total 36), Power off						
Free Fall	ISO 16750-3 § 4.3 (12/2012)	Height = 1 m on Concrete floor 3 axes; 2 directions by axis; 1 sample by axis						
INSULATION TESTS								
Dielectric withstand voltage	ISO 16750-2 § 4.11 (11/2012)	2.5 kV test voltage; time = 60 s; No dielectric breakdown; no flash-over; functional after test						
Insulation test	ISO 16750-2 § 4.12 (11/2012)	500 V DC time = 60 s $R_{\rm INS} \ge$ 500 M Ω Min						
EMC TESTS								
Immunity to Electrostatic Discharges (Handling of devices)	ISO 10605 (07/2008)	Contact discharges: ±4 kV, Air discharges: ±8 kV U_c = NO power supply, Criteria B						
Immunity to Radiated disturbances (ALSE)	ISO11452-2 (2019)	Power supply: 5 V f = 200 MHz to 2000 MHz Criteria : A Criteria A acceptance @ 5 %						
Immunity to Conducted disturbances (BCI)	ISO 11452-4 (12/2011)	Level = see Annex E Fig. & Table E.1 f = 1 MHz to 400 MHz Criteria A acceptance @ 5 %						
Emission Radiated (ALSE)	CISPR 25 § 6.5 (2016)	Table 7, Class 5 by default $f = 150$ kHz to 2.5 GHz						

单击下面可查看定价,库存,交付和生命周期等信息

>>LEM(莱姆)